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Characterising soft matter using machine learning

Paul S. Clegg

Machine learning is making a major impact in materials research. I review current progress across a

selection of areas of ubiquitous soft matter. When applied to particle tracking, machine learning using

convolution neural networks is providing impressive performance but there remain some significant

problems to solve. Characterising ordered arrangements of particles is a huge challenge and machine

learning has been deployed to create the description, perform the classification and tease out an

interpretation using a wide array of techniques often with good success. In glass research, machine

learning has proved decisive in quantifying very subtle correlations between the local structure around a

site and the susceptibility towards a rearrangement event at that site. There are also beginning to be

some impressive attempts to deploy machine learning in the design of composite soft materials. The

discovery aspect of this new materials design meets the current interest in teaching algorithms to learn

to extrapolate beyond the training data.

1 Introduction

Machine learning algorithms are programs, typically used to find
patterns in data or to make predictions, that function more
effectively with increasing experience. They become increasingly
useful when the quantity of data is large or the data or model
complexity is significant. There are a wide array of techniques
from simple linear regression1 to sophisticated deep learning;2

choosing the appropriate algorithm is a critical step.
One of the algorithms which appears repeatedly below is the

support vector machine (SVM) that divides data points into two
disjoint classes. For example, imagine carrying out a large
number of experiments, you have several parameters describing
the composition of each sample and a few more parameters
describing how each sample was processed, in addition you are
in a position to determine whether each experiment was a
success or a failure. Taking the data points to be scattered in
the multi-dimensional feature space of compositions and pro-
cessing parameters, the SVM algorithm determines the hyper-
plane that best divides the data into the two classes (success or
failure). It does this via a non-linear mapping to a higher
dimensional space in which the two classes are more-or-less
linearly separable. The hyperplane chosen is the one that best
separates the two classes. The support vectors are the normal
vectors connecting the hyperplane to the nearest data points in
each class.1,3 Once the SVM has been trained, you are in a
position to predict the outcome of a future experiment and also

to investigate the nature of past experiments that are close to or
far from the dividing hyperplane.

This is an example of supervised learning: each data point
has an outcome (success or failure) associated with it that can
be used to train the algorithm. Because the outcome designates
which group the data point belongs to, this is a classification
problem. If an algorithm had been chosen to learn a value, such
as the yield stress of the sample, then this is a regression
problem. When machine learning is carried out with the aim of
looking for patterns in data, where no outcome is known, the
task is called unsupervised.

The application of machine learning is becoming ever more
prominent across scientific research including in soft matter.
Existing review articles introduce machine learning4,5 and
cover topics such as drug discovery,6 multiscale design,7,8 active
matter,9 fluid mechanics,10 and chemical engineering.11 I have
chosen a handful of example cases, hence unfortunately I miss
a great deal of the existing literature, for example, on amyloid
assembly,12–14 analysis of image data,15–17 density functional
theory,18,19 drying blood,20 liquid crystals,21–26 modeling differential
equations27–29 nanoparticle assembly,30,31 network aging,32 opti-
mising microscopy,33 polymers,34–41 speeding up simula-
tions42,43 and 3d printing.44–46

Machine learning has a reputation for being applied in haste
with too little follow-up. As a worrying counter-example from
the field of accelerated drug discovery, when a follow-up
machine learning study with the same data was carried out it
led to different conclusions.47 The Google Accelerated Science
Team have documented three challenges they have recently
encountered.48 Firstly, in a supervised learning problem the
existing data is divided up into a training set (for training the
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algorithm) and a testing set (for evaluating performance). Often
making a random division of the data into these two groups is
not good enough, the division needs to be made so that each
set is representative in the terms of the problem being tackled.
Secondly, the algorithm may well be making predictions based
on a confounding parameters and not the parameters that were
being controlled. Thirdly, the quantity to be minimized while
training the algorithm should carefully capture the goals of the
project.47,48

Below I review the application of machine learning to
particle dispersions, ordered particle clusters and crystals,
glasses and composite materials. I have tried to choose topics
where several different teams have attacked the same problem.
In each case, machine learning has been applied to data from
computer simulations and from experiments. In some examples
machine learning is being used as part of a data analysis pipe-
line, in others the aim is to aid the design of new materials and
in a few it is being used to provide a framework for under-
standing previously intractable data.

2 Dilute dispersions

Machine learning can be used to provide information on dilute,
rapidly changing, colloidal dispersions as a function of time.49–53

Rather than tackling an unsolved problem, this is an attempt to
provide a performance enhancement for a tool which is already
commercially available. Colloids that approach in size the wave-
length of light, scatter light into a complex pattern as described
by Mie and Lorenz. The scattered light forms a concentric ring
pattern when it interferes with the unscattered beam.54 This is
the basis of a form of colloidal microscopy in which classical
image analysis of two-dimensional image frames can be used to
determine particle locations and sizes. Tracking the position and
identity of microscopic particles, via such a route, is essential for
flow visualization, microrheology, force microscopy and trans-
port studies within biological cells.

Yevick and coworkers use support vector regression (SVR),
an adaptation of SVM to regression, to offer a huge speed up
compared to non-linear least squares fitting with image data.49

When SVM is turned into a regression tool, the new measure-
ment is compared to a library of training data which make up
the support vectors. A prediction is made that is a weighted
sum of the comparisons to these support vectors.55 If the
relationship between the property to be predicted (radius,
refractive index, depth) and the experimental data (the radial
profile of the concentric ring pattern) is linear, then the
similarity between the radial profile and the support vectors
is evaluated via the calculation of dot products. For more
complex relationships a non-linear kernel is used; in this work
the kernel is based on the assumption that the similarity
decreases exponentially with the distance between the experi-
mental observation (radial profile) and a support vector.

In particle tracking, SVR is used to compare the theoretical
Mie–Lorenz scattering pattern and the signal from each particle
in the experimental data. By this route it is possible to predict

the radius, refractive index and depth of single particles. Using
SVR, the precision is 10 times worse than non-linear fitting,
however, the speed 1000 times faster.49 When fitting the
theoretical scattering pattern to the two-dimensional image
data the particle size, refractive index and depth are optimized
to give the best correspondence. This process has a problematic
sensitivity to the initial guess of the particle centre meaning
that the fitting has to be repeated for many candidate centres.
In this work, this problem is avoided because the particle
centres are found by using a convolution procedure to identify
the centre of rotational symmetry of the scattering pattern.56

The support vectors for SVR are 5000 training sets of calculated
radial profiles from theory. The performance was demonstrated
for mixed batches of particles and for a single descending
particle.

Artificial neural networks (ANN) have been deployed exten-
sively in the research described below. This is a machine
learning tool for modeling the functional relationship between
input parameters and output state inspired by neuroanatomy.
The output state can be a classification or a value. The network
is made up of separate elements, neurons, that are connected
together in layers. Each neuron takes several inputs from the
output of other neurons or from the input data. These inputs
are combined linearly and the output of the neuron emerges via
a non-linear activation function, Fig. 1(A). If this function is a
step, the neuron is known as a perceptron. Other choices such
as a tanh or a rectified linear unit (ReLU, Fig. 2b) have
advantages for training.3,5 The final internal layer connects all
neurons to the output as part of the final regression or
classification step. This is known as a fully connected (FC)
layer. The first and last layer of neurons are known as the input

Fig. 1 Showing (A) the parts that go to make up an individual neuron and
(B) how neurons are combined in layers to construct an artificial neural
network. Reproduced with permission from ref. 5.
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and output layers, the internal layers are known as hidden layers.
Having multiple hidden layers is the defining characteristic of
deep learning, Fig. 1(B).

Schneider and coworkers use an ANN based image analysis
method to rapidly measure the core and shell diameters for a
stream of core–shell particles.50 They have in mind an applica-
tion where microfluidics is used to separate structured particles
into separate channels and hence they are pleased to achieve
reasonable performance with synthetic images of isolated,
centred particles with relatively constrained characteristics.
Both the SVR approach, described above,49 and the ANN
approach analyse the scattering from a particle via the use of
a large quantity of calculated scattering patterns. The ANN is
trained using the calculated patterns and then provides predic-
tions of the size parameters that vary smoothly over the range
spanned by the training data.50 The SVR makes predictions
based on a direct comparison to the training data. The discrete
sampling of the parameter space, implied by SVR, can lead to
predictions being unhelpfully dominated by one support vector
or another which can lead to systematic errors.

For many problems, a neural network where every part of the
input can be combined with every other part is not ideal.57 For
example, in an image processing problem it may be that only
local pixels need to be considered together. Convolution neural
networks (CNN) were developed to address this situation. The
output from one layer of the network is passed on to the input
of the next layer via convolution with a kernel of limited size.5

Because the convolution process treats a local set of pixels in
the same way based on their relative positions, but regardless of
their absolute location on the input grid, the CNN has the
property of translational invariance. CNNs do not typically have
a convolution step at each layer, instead these are interspersed
with coarse graining layers. These layers sub-sample the pre-
vious one, for example, feeding forward the maximum value
from a group of neighbouring outputs, Fig. 2(b). Such a sub-
sampling layer, which achieves coarse graining via replacing a
small region of neurons by the maximum value from those
neuron, is known as a Max Pool layer.

Newby and coworkers use a CNN for finding and determining
the precise position of particles with the frames and movies for
training the system again created via simulation. Here a wide
range of styles of data are considered.51 This system is exceptional
at avoiding false positives (finding a particle where none exists)
and false negatives (failing to find a particle that does exist).
However, the position determination is outperformed by simpler
methods that do not involve machine learning, especially when
each time point consists of a single image rather than a z-stack.

Most recently, Altman and Grier broke the problem of
characterizing a colloidal dispersion into two parts: firstly, they
locate the particles in two dimensions and, secondly, they
determine the radius, refractive index and depth of the particle,
Fig. 2(a).53 The two halves are very different kinds of problem
but they are each solved here using a CNN. The first problem is
to provide a ‘‘yes’’ or ‘‘no’’ answer to the question of whether

Fig. 2 Showing (a) the tracking task broken into two separate steps each handled by convolution layers (CL) with the concentric ring scattering pattern
inset and (b) the convolution neural network in detail, convolution layers (green), fully connected layers (FC, gray), course graining (Max Pool) and
activation function (here a rectified linear unit, which gives 0 if the input is negative or the input itself if it is positive, ReLU) indicated. In (b) the size of the
input image, in terms of pixels, is specified. Below this, the size of the grid of neurons in each convolution layer is given as width � height � depth. Each
layer of depth corresponds to a different convolution kernel. At each Max Pool layer the degree of course graining is also indicated numerically. At the
end of the convolution stages a Max Pool layer is employed to reduce the final grid of neurons to a 401 unit long vector. The elements of this vector are
combined via an ReLU function to reduce the vector to 20 elements that are fully connected via three separate ReLU functions to provide the estimates
of depth zp, size ap and refractive index np for the particle. Reprinted with permission from ref. 53 Copyright 2020 American Chemical Society.
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there is a particle at each location; the second problem is to
provide real numbered values to three characteristics. The
output of the first stage is used to isolate small regions of the
image, which contain the concentric ring pattern, that are then
passed to the second CNN for analysis (this is markedly
different to the SVR approach by some of the same team49,56).
Here, training has been carried out using synthetic data based
on a single particle, together with added noise, in each training
image. The performance of the first stage is a huge improve-
ment over conventional algorithms where the authors suggest
that 40% of particles are missed (false negatives). Using the
CNN they find that there are fewer than 0.1% of false negatives.
The conventional approach misses very large particles whereas
the CNN approach misses a few of the very smallest particles.
Alongside detecting the particles, the first stage CNN provides
coordinates to high accuracy as well as an estimate of the extent
of the ring pattern. The second stage CNN provides estimates of
radius, refractive index and depth to within 10% for synthetic
data. For an experimental test, the authors attempt to discri-
minate between four different sizes of particle made from two
different materials. The results from the commercial system are
taken as the ground truth; the machine learning approach
reports a somewhat larger number of features. The speed at
which features are identified means that the machine learning
approach can establish the particle concentration in real time.
However, it is found that the CNN struggles significantly to
identify the size and the refractive index of the larger poly-
styrene particles i.e. there is no real cluster in feature space
associated with these particles (the smaller polystyrene parti-
cles are not great either). The results can be markedly improved
by adding a third stage (of non-linear model fitting) to the
image data meaning that a robust end-to-end analysis system is
achieved by this route.

As an addition to tracking, machine learning has also been
applied to the analysis of particle tracks once they have been
recorded.60 The intention is to be able to accurately assess track
statistics recorded for heterogeneous materials while making as
few assumptions as possible. Hierarchical agglomerative clus-
tering, is an unsupervised algorithm that begins with all data
points separated and then progressively merges them into
larger and larger clusters based on a measure of the distance
between clusters. This distance measure can then be used to
decide on the optimal number of clusters.1 Here, such clustering
based on the track statistics (the standard deviation of the step
size distribution) is used to divide particle tracks into similar
clusters and then the tracks within each cluster are used to
characterise the associated stochastic process. The method has
been road tested on agarose gels, mucous and a range of other
heterogeneous environments.

Evidently, much progress has been made with particle
tracking using machine learning, the problem of feature
identification can reasonably be described as solved, at least
for dilute dispersions. The problem of determining the precise
particle location, size and refractive index, at least at high
speed, remains a significant challenge.

3 Ordered particle arrangements

Investigating self-assembly and the onset of order is an essential
aspect of understanding matter on the colloidal scale. Here,
computer simulations often play a crucial role, leading to very
significant challenges in scoping very large data sets or in coarse
graining complex colloidal system.

3.1 Classifying order

Inspired by the pioneering work of Behler and Parrinello,61

symmetry functions and neural networks have been used by
Geiger and Dellago in the detection of ordered structures in
molecular dynamics simulations.58 The problem is to rapidly
identify known ordered crystal structures and related defect
configurations based on the local arrangement of atoms. The
main computational cost is characterising this local arrange-
ment via the calculation of symmetry functions, Fig. 3(a).
Training is carried out based on the simulation of known
ordered phases. Provided that the training data includes the
relevant phases then the neural network is fast and efficient; it
even succeeds for the more challenging phases of ice.

Dietz and coworkers developed a complete analysis that relies
only on nearest neighbours, identified via the Delaunay neigh-
bourhood.62 To give scale invariance, the distances are normal-
ised by the average neighbour distance. In order to be able to
distinguish between the crystal structures of interest the site
signature is composed of the nearest neighbour distance, the
bond angles, the Minkowski structure metric, the Minkowski
tensor and the number of neighbours. A modified scalar product

Fig. 3 Showing (a) the ingredients for calculating a symmetry function.
Sites within a cutoff Rc form part of the symmetry function for the yellow
site and are calculated using the relative positions, Rij, and relative angles,
yijk. (b) The layout of an autoencoder based on two neural networks. The
encoder produces the low dimensional representation and the decoder
reconstructs the input from this representation. Reprinted from ref. 58 and
59, with the permission of AIP Publishing.
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of bond orientation order parameters is used to establish
whether a site is ordered or disordered. A multi-layer perceptron
(ANN using a step function) is trained and then tested on
different crystal structures with added noise. The tool is finally
used to demonstrate a new level of understanding of the
crystallization in a gravitational field where transitions between
crystal structures as a function of temperature become evident.

Going to the opposite extreme, Ziletti and coworkers work
with an average over a significant region of crystal rather than
looking at the neighbour hood of a single site.63 The averaging
makes their procedure spectacularly robust, even for highly
defective crystals. The machine learning is carried out using the
CNNs that were originally developed for classifying images. In
order to turn the crystal structure into an image they calculate a
composite diffraction pattern made up of the superposition of
nine diffraction patterns using three colours. One colour is
chosen for each orthogonal axis; for each axis the pattern is
calculated for the initial orientation and one rotated �451
about that axis. The same is repeated for the other two axes
using different colours each time. A library of these images for
perfect crystal structures make the training and the test data.
The trained classifier then performs well for highly imperfect
crystals. The authors make the division between an imperfect
crystal and an amorphous structure based on the Lindemann
criterion. Each classification comes with a probability that the
pattern belongs to that structure. For imperfect crystals, this
probability reflects the degree of disorder. The downside to this
research is the inability to distinguish between crystal struc-
tures whose symmetries mean they are identical in the compo-
site diffraction pattern.

3.2 Unsupervised discovery of ordered motifs

Philips and Voth use two approaches to characterise local order
in monatomic solids.64 The first approach is to analyse how
many neighbours are within the first and subsequent shells i.e.
the size of the neighbourhood. The second approach is to use a
Fourier description of the arrangement of the neighbouring
sites. The size data or the arrangement data are then used to
find clusters of similar sites via unsupervised learning using a
density based clustering algorithm called DBSCAN.65 For the
size data, this can be carried out for every site; for the arrange-
ment data, a subset of sites is used for the learning step and
then an archetypal site is found from the centre of each
resulting large cluster. The resulting library of archetypes is
then compared to the full set of sites in order to create a
complete classification. The global description of a sample is
given by the complete histogram of sizes or arrangements
found; the strength of this approach is the extent to which it
is data driven.

When unsupervised cluster formation is being used, it is
because we assume that there is some parameter, which we do
not have access to, that takes a value characteristic of each
cluster. A popular route to clustering is the Gaussian mixture
model, where it is assumed that this unknown parameter takes
on a Gaussian distribution of values within each cluster.5

Spellings and Glotzer have used a description of the atomic

environment based on bond orientation to drive first unsuper-
vised (via a Gaussian mixture model) and then supervised (via
artificial neural networks) automated analysis of simulation
results.66 The training data for the supervised case could have
been established using the unsupervised approach first. In
both unsupervised and supervised cases, the phase diagram
of the simulation results is similar to that determined by
manual analysis; the ANN approach succeeded with complex
crystal structures for polyatomic systems where manual analysis
had previously been avoided.

In a new departure, Boattini and coworkers used a neural-
network based autoencoder to create a compact representation
of the bond order around each site.59 An autoencoder begins
life as two neural networks, the first (the encoder) performs a
dimensional reduction and the second neural network (the
decoder) takes this compact representation and expands it
again, Fig. 3(b). The pair are trained by evaluating whether
the input data is reproduced at the output of the decoder.14

Once the training is complete, the decoder is discarded and the
encoder is used alone to create a compact description which
here was then formed into clusters without supervision via a
Gaussian mixture model. The key bond order components, that
most influenced the compact description created by the auto-
encoder, could also be identified. This made it possible to
understand which symmetries were driving the clustering. The
authors applied this approach to a very wide variety of example
systems; it was able to cluster the sites into groupings equally
well to the historic, manually tuned approaches.

3.3 Finding pathways between ordered motifs

Unsupervised machine learning can be used to suggest the
pathway via which an arrangement of particles was formed so
as to illuminate the process of self-assembly. One example
system, explored by Long and Ferguson, is anisotropic patchy
particles studied via Brownian dynamics simulations.69 Here
the pathway refers to a connected trajectory through a space in
which patchy particle aggregates of different size and shape
appear as distinct points. To be useful, similar aggregates
should be close together in this space; progress along the
pathway could then indicate how aggregates might grow or
redisperse. To achieve this, each aggregate of particles is
represented as a graph and similarity is identified by using
the graph-matching IsoRank algorithm.70 If two aggregates are
similar it implies that there is a small absolute difference
between corresponding particle locations. A characteristic dis-
tance between two aggregates captures the differences in loca-
tion (due to fluctuations or bonding arrangement). Similarity
between aggregates, which require a great deal of information
to describe, is now being measured as though it were a distance
in space. This measure is then used as the basis for a diffusion
map, as described below. The resulting pathways, for this
specific system, are often composed of two paths that join
more-or-less at a right angle. One path is made up of the points
representing small compact aggregates and a longer path
includes the larger more extended aggregates. As outlined next,
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the diffusion map is able to execute a dimensionality reduction
that captures this non-linear path.

Diffusion mapping was first presented in ref. 71 and is an
attractive approach to dimensionality reduction in complex
data sets.67 For comparison, a traditional method for solving
this problem is principal components analysis (PCA) where the
data is reduced to the d eigenvectors with the largest eigenvalues
from the covariance matrix.1 By this route, an n dimensional
data set is reduced to the d o n dimensions that capture the
largest variability in the data. This technique is not appropriate
when the largest variability of the data occurs along well-
connected but non-linear paths. By contrast, a diffusion map
can be constructed by first defining a Gaussian kernel which
plays the role of a step size distribution for a random walk.67

Sites connected by steps of these sizes form a neighbourhood.
Then a diffusion matrix can be calculated for any two sites giving
the probability of a single step leading from one site to the other.
Powers of the diffusion matrix then give the probabilities of
taking increasing numbers of steps to move between the two
sites, Fig. 4(a). The diffusion map captures the probability of
diffusion between two sites for a particular number of time
steps. The diffusion distance is small if there are many high
probability paths between the two sites. The dimensionality
reduction is achieved by keeping only the dominant d eigenvectors
of the diffusion map. Now non-linear paths can be identified as
the directions that capture the largest variability in the data,
Fig. 4(b).

Experimental data can also be used as the basis for a diffusion
map and has been explored for the case of aggregating of Janus
particles in an oscillating electric field and confined to two

dimensions.68 Many tens of thousands of Janus particle aggre-
gates were characterised as graphs and compared. The approach
mirrors that described above for patchy particles with the differ-
ences between the aggregates quantified by a distance metric
which is then used as the basis of the diffusion map. Ultimately,
the formation pathway undergoes significant shape changes in
response to variations in electric field strength, frequency or salt
concentration. The results on chain formation are particularly
impressive. The diffusion maps suggests trajectories by which
electric field strength and frequency can be used to control
whether chains form of relatively uniform length or whether there
is a mixture of long chains, rings and branched structures, Fig. 5.

The strength of the diffusion mapping approach is that it is
based on kinetic proximity between different system configura-
tions i.e. the map represents the probability of diffusion between
configurations. That the system dynamics are well-modeled as a
diffusion process is an assumption.72 One application area
where this approach is crucial is in the creation of colloidal
memory elements.73 Here transitions between states describe
how easy it is to write to a memory element and subsequently
how long lived the state is. The exploration here is based on
Brownian dynamics simulations of four or six halo particles
around a central particle. The outcome is a design criteria for the
relative size of central and halo particles in each case.

Whereas the preceding examples relate to studies of small
aggregates, Reinhart and coworkers propose a method of
unsupervised crystal structure identification based on topology
by making use of diffusion mapping.74 Common Neighbour
Analysis (CNA) is used to construct a characteristic signature
from the connectivity of a particle’s neighbours.75 This is
followed by a graph matching step (with an MLP-based
speed-up) and then by the construction of a diffusion map to
reduce the dimensionality. Using cluster size on the diffusion
map as an indicator of importance, the key structural motifs are
identified as corresponding to different crystal structures, surface
structures or other defects. A Voronoi construction is then used to
partition the diffusion map so that all sites can be classified. This
approach is particularly effective close to surfaces and defects;
although, this needs to be weighed against the computational
cost. It has been extended to binary crystals in two dimensions by
including specie identity in the graph and speeded up via the use
of relative graphlet frequencies.76 By this route Reinhart and
Panagiotopoulos are able to demonstrate that some crystal struc-
tures, previously found in simulations, are actually part of a
continuous transition that runs across multiple structures.

Dimensional reduction using both linear and non-linear
techniques was combined with unsupervised learning by Adorf
and coworkers.77 They went on to provide an alternative route
to discovering the pathways to self-assembly, for example
crystallization via nucleation. They began with a large number
of descriptors including bond angles, bond lengths, spherical
harmonic order parameters and the bispectrum environment
descriptor. Via PCA they reduce this down to its 20 most
important components. These are further reduced using the
uniform manifold approximation and projection for dimen-
sional reduction (UMAP) algorithm, an alternative nonlinear

Fig. 4 (a) Schematic of the relationship between numbered sites which is
captured by a diffusion map. The blue lines are one step; the yellow and
green routes are alternative paths between ‘‘1’’ and ‘‘6’’. (b) Showing the
geometrical structure revealed by a diffusion map. Reproduced with
permission from ref. 67.
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route to dimensionality reduction.78 The resulting space was
then used for finding clusters. Solid and liquid regions were
easily separated and they were able to identify particular crystal
structures as well as some less perfectly ordered solid struc-
tures. The development of clusters in the reduced dimension
space gave an indication of the self-assembly route.

As outlined above, the study of self-assembly and the onset
of order on the colloidal scale is now served by a wide array of
machine learning tools. Reducing the problems to a size that is
computationally manageable remains a significant challenge.

4 Glasses

The dynamics of glasses are characterized by occasional rear-
rangements which are sometimes known as cage breaking
events.81,82 However, previous attempts to relate the likelihood
of a relaxation event to the local structure have been unsuccess-
ful. Typically, the local structure has been characterized via free
volume or bond orientational order which fail to have predic-
tive power. By contrast, the scattering of sound waves can be
used to successfully demonstrate the existence of defects in the

local structure of glasses.83 Unfortunately, this does not help
identify the associated local structure. As we consider machine
learning, it is interesting to note that glassy dynamics are also
exhibited by under-parameterised deep neural networks, i.e.
where the number of neurons in a hidden layer have been
drastically reduced.84 The process of training the network is
equivalent to quenching a liquid to low temperature; the loss
function, which is to be minimised during training, is analogous
to the system energy. Such glassy dynamics are not observed
when training a deep neural network with a more traditional
architecture.

4.1 Supervised learning using dynamics

Machine learning has been used to quantify very subtle correla-
tions between the local structure around a site and the suscepti-
bility towards a rearrangement event at that site, and to develop
a new conceptual approach.79,83,85 This research, led by Liu,
began with data from experiments in two dimensions and
computer simulations in two and three dimensions. The data
is in the form of the structure of sites that are known to be
about to rearrange (labeled 1, ‘soft’) and the structure of sites
where no rearrangement occurs (labeled 0, ‘hard’). Instead of

Fig. 5 Landscapes for the self-assembly of Janus particles in an AC electric field. C2 and C3 are the eigenvalues that are being used to describe the self-
assembly as controlled using the amplitude, E, and the frequency, f, of the field. Reproduced from ref. 68 with permission from The Royal Society of
Chemistry.
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characterizing the sites using free volume or the degree of bond
orientational order, a multitude of structure functions
(Fig. 3(a)) are calculated (typically 160 for each site).61 These
fall into two classes: radial structure functions based on the
number of neighbours that fall within a certain distance and
angular structure functions based on the bond angles with near
neighbours. This super-abundance of descriptors for each site
are then analysed using an SVM which finds the hyperplane
that best separates the ‘soft’ from the ‘hard’ sites. The ‘softness’
of a site can then be characterized as the sites shortest distance
to the hyperplane. Having determined the location of the
dividing hyperplane using carefully selected data, the ‘softness’
can then be evaluated for all of the sites in an experimental or
computational system. The authors demonstrate that this
approach identifies 20–25% of the sites in each system as ‘soft’
and these sites are the location of the majority of rearrange-
ments.83 Hence this measure of local structure is strongly
correlated with the relaxation dynamics of these glasses, Fig. 6.

This team have shown that there is indeed structure buried
within a disordered glass and that it can be quantified via the
parameter ‘softness’. Indeed, the slow, non-exponential
dynamics of glasses can be related back to the evolution of
the ‘softness’ in time.79 It is satisfying to be able to relate the
dynamics to the structure, this characterization of the local
structure, as currently specified, does rely on substantial
detail.86 Using the local coordination number or the local
energy are far less successful as predictors. By contrast, it is
possible to identify the subset of structure functions that most
control the ‘softness’ and to ignore the rest without sacrificing
very much predictive power.85 In general, soft sites have fewer
near neighbours with larger angles between them.83 It may be
necessary to accept, that it is quite involved to describe a
broken cage.

A vast quantity of experimental and computational results
have been deployed to show that the same framework can be
used to describe the behaviour of disordered solids over a very
broad range of systems from atomic, through colloidal to
granular.87 The spatial correlation length in the particle posi-
tions and spatial correlation length in softness are found to be

essentially equal over seven orders of magnitude in particle
diameter. These lengths are approximately one particle
diameter.88 It is also demonstrated that there is a universal
yield strain for such systems suggesting that the macroscopic
shape change that is required is universal. The change in the
mean softness in response to the applied yield strain may be
independent of the particle diameter.

In spite of the disquiet over the detailed particle-level
information required, the concept of ‘‘softness’’, established
via machine learning, profoundly informs the understanding of
glasses and can clearly be very widely applied. Experiments on
the hopping behaviour of bidisperse colloidal particles have
been used to demonstrate that, while the distribution of hopping
times has a stretched exponential form, the hopping time at a
single ‘‘softness’’ has an exponential form.88 I.e. colloids with
similar local environments are characterised by a particular
softness value and exhibit exponential relaxation with the same
activation time. This had previously been suggested using com-
puter simulations.79 Further simulations of polycrystalline solids
have shown that the idea of an energy barrier related to a
‘‘softness’’ can be extended to atoms at grain boundaries.89

Subsequent studies have applied the learning of ‘‘softness’’
to simulations of thin polymer films and pillars and to the
analysis of granular experiments using spheres, dimers and
ellipsoids.90–92 In the former case, Sussman and coworkers
found that the enhanced dynamics close to the surface of a
polymer thin film is uncorrelated with the ‘‘softness’’ para-
meter. The SVM approach worked as before for predicting
which sites would be likely to move, it just failed to identify
any changes close to the free surface (or to the substrate). The
authors tried a broader variety of techniques in order to search
for structural differences close to the surface but found none.
Instead they found an Arrhenius process close to the surface
that is wholly unrelated to any structural differences.90 For the
case of polymer pillars, the relationship between ‘‘softness’’
and mesoscale shear banding was investigated. Additionally, a
parallel classification of planes into ‘‘weak’’ and ‘‘strong’’ was
created by a similar route. The analysis of the simulation
results demonstrated the key role of surface defects in leading
to pillar failure.91 The experiments using spheres, dimers and
ellipses demonstrated that a naive implementation of the
‘‘softness’’ concept worked reasonably for spheres and ellipses
but quite poorly for dimers. Harrington and coworkers modified
the family of structure functions in order to better match the
arrangements of anisotropic particles. This gave an excellent
ability to predict rearrangements for ellipses and reasonable
performance for dimers.92

Inspired by the success of SVMs, the ‘‘softness’’ approach
has been generalized via the use of graph neural networks that
are able to predict the location of structural rearrangements.80

Graph neural networks are being envisioned as a flexible machine
learning methodology in which the role of the algorithm in
shaping the character of the solution can be productively
employed.57 The idea is to avoid the distinction between a
‘‘hand-engineered’’ data pre-processing step (such as choosing a
set of structure functions83) and an ‘‘end-to-end’’ approach (where

Fig. 6 Showing (a) a simulation snapshot of the system with particles
coloured according to their softness from red (soft) to blue (hard). (b) The
distribution of softness for the particles that are about to rearrange (red)
compared to all of the particles (black). The solid red indicates that 90% of
the particles that are about to rearrange have a positive softness value.
Reprinted by permission from Springer Nature: ref. 79.
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any assumptions about the data, including those embodied in a
pre-processing step are minimised). With a graph neural network,
computations are performed on entities and the relationships
between them. This makes it possible for the algorithm to learn
about the way entities relate to one another rather than this being
designed by hand. However, the algorithm does not have the
freedom to decide what the entities are or which ones interact
directly. In our context, within the graph formalism, the entities
(i.e. nodes) are the particles and the relationships (i.e. edges) are
the directed vectors between two particles within a pre-defined
distance of one another; the algorithm then learns how to
characterise the environment of each particle without the explicit
use of a family of structure functions. Unlike a neural network
based on fully connected layers, the graph neural network could
not learn that one particle relaxes in instantaneous response to
the location of a particle that is a great distance away in the
sample.

Bapst and coworkers obtain training and test data by carrying
out simulations of a Kob–Anderson mixture in three dimensions
from which they calculate the propensity of each particle.80 The
propensity is the mean square particle displacement averaged
over particles sites with the same initial configuration that the
graph neural network is trained to predict.95 All N particles from
the simulation are included in the graph; particles within 2
simulation units of each other are connected by edges, informa-
tion about particle type is the feature recorded at the nodes. The
feature recorded at each edge is the three-dimensional relative
position of the two neighbours. The first step is to encode these
features via separate multi-layer perceptrons (MLPs) resulting in
a low-dimensional representation. All edges are then updated
based on the characteristics of the neighbouring nodes passed
through an MLP. Subsequently, the nodes are updated based on
their connected edges in a similar manner. This is repeated

through seven cycles (corresponding to particles influences
being propagated to greater distances) and then there is a
decoding step leading to the calculation of the propensity for
each particle, Fig. 7. In the training process, these propensities
are compared to the expected values; the properties of the MLPs
are modified until the propensities match. Initially, they test
their ability to predict the propensity at long times based on the
initial particle locations and find that the GNN based approach
out performs the competitors including the SVM approach
described above. They further explore predictive ability as a
function of both temperature and shear. Again the GNN
approach performs best; none-the-less they are not able to
predict when a sample will yield under shear. To address the
complaint that machine learning does not aid understanding,
considerable effort has been expended on analysing the proper-
ties of the network. For example, they vary the attributes used to
describe each particle to establish which are important. Further-
more, they take a pre-trained network and require it to make
predictions based on constrained input data. They find that the
short time dynamics only depend on the first two shells of
particles. However, the quality of predictions about the long
time dynamics degrades when you lose particles even in the
fourth shell. By conducting this style of analysis as a function of
temperature, they argue that the system exhibits an increasing
correlation length as it becomes a glass.80

Simultaneously, Swanson and coworkers compared the per-
formance of convolution neural networks and a related type of
graph neural network analysing particle positions in two
dimensional simulations.93 Both approaches were used to
categorise simulation snapshots as either ‘liquid’ or ‘glass’.
The CNN took input data in the form of an image while the
GNN took particles as nodes and relative positions as directed
edges. The two techniques were able to classify snapshots

Fig. 7 Showing (a) a flowchart of the prediction pipeline used when graph neural networks are applied to glasses; (b) the update steps and, (c) the repeated
cycles corresponding to progressively more distant particles. Reprinted by permission from Springer Nature: ref. 80.

Soft Matter Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 0
2/

11
/2

02
5 

8:
09

:3
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm01686a


4000 |  Soft Matter, 2021, 17, 3991–4005 This journal is © The Royal Society of Chemistry 2021

essentially without error. In the case of the GNN, it was possible
to gain understanding by evaluating a quantity called the ‘self-
attention’.96 Here the aspects of the data that the algorithm
pays most attention to are evaluated. Based on this informa-
tion, it was established that the classification was being made
on the basis of the location of B-type particles (the smaller
ones) and their relationship to their neighbours. The B-type
particles form ‘dimers’ with ‘high attention’ edges in the liquid,
but not in the glass, Fig. 8. Furthermore, there is a wealth of
information from the variation of the ‘self-attention’ with
temperature.

4.2 Unsupervised learning based on statics alone

More recently, glasses have been addressed using an approach,
first described in Section 3.2, which avoids using information
about the particle dynamics.97 Here snapshots of the arrange-
ment of particles are taken from computer simulations of
glasses. Bond order parameters are combined with an auto-
encoder to provide a compact description of the particle sites.59

The compact description is then the basis of an unsupervised
division of the sites into two classes. For both binary hard
spheres and Wahnstrom glasses, the probability of being in one
of the two classes of site is very highly correlated with the
propensity; for the Kob–Anderson glass the correlation is not
quite as strong. The probability of being a member of the faster
cluster is evidently revealing that there is an essential aspect to
the local organization.

Paret and coworkers have also developed an unsupervised
clustering procedure based on maximising the information
provided by the clusters (structural communities) without
appealing to dynamic information to control the process.98

They have explored this approach for several different glass
simulations, separately using the radial distribution and the
angular distribution to establish which particles belong in each
cluster. How the particles are clustered typically depends on
which of these approaches are chosen. Again, they compare all
the variant clusters to the dynamics. The two are well-correlated
for the Wahnstrom mixture and somewhat less well for the
Kob–Anderson and harmonic spheres simulations indicating
that the Wahnstrom/Kob–Anderson division is robust over two
very different implementations.

In glass research, machine learning has added the impor-
tant concept of softness and a new way of working. Both
supervised and unsupervised learning are providing additional
understanding and will permit a whole slew of questions to be
addressed in the future.

5 Composite materials

Using machine learning in the design of complex materials at
the atomic level has been explored extensively in recent
years.100–102 This includes research to optimise specific proper-
ties of crystalline materials via iterating between experiments in
the lab and the generation of refined computational sugges-
tions.103 In this context, a cost function is being minimised for
which each new ‘‘function evaluation’’ involves fabricating a
new sample. Optimisation problems involving a cost function
that is punishing to evaluate have been the focus of machine
learning techniques for a long time. A common approach is to
model what is already known about the parameter space using
a Gaussian process104 and then to further explore the para-
meter space via a trade off between regions where the cost
function is likely to be low and regions where the uncertainty in
the predictions of the cost function is very high; the quantity
which captures this trade-off is usually known as the ‘expected
improvement’. This approach has variously been called kriging,
adaptive design and efficient global optimization.105 At the
moment this approach is not being used to design soft materials,
although it has been deployed to design polymer molecules,106

image pre-processing protocols107 and to optimally position
boundaries on phase diagrams.108 Alternative techniques have
been used by researchers to design composite materials at the
mesoscale and it is this that I focus on below.

A group led by Buehler have targeted the response of a two-
dimensional ‘‘checker-board’’ material to crack propagation as
a model system for computational design.94,109,110 The aim is to
harness the machine learning technology that proved so suc-
cessful in winning the game AlphaGo to the service of compo-
site materials.111 In both game playing and materials design,
the number of possible arrangements or moves is far too large
to search exhaustively. Hence better strategies are required
which learn to go beyond what is available from a modest set

Fig. 8 Showing the ‘self-attention’ in the glass and liquid states. Connec-
tions between particles are shown as green lines with the line thickness
indicating the weight of attention. (c) and (d) show the same data as (a) and
(b) with isolated A-type particles and dimers of B-type particles high-
lighted. Reproduced from ref. 93 with permission from The Royal Society
of Chemistry.

Review Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 0
2/

11
/2

02
5 

8:
09

:3
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm01686a


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 3991–4005 |  4001

of training data. The target here is a sheet of material made up
of square patches with different properties drawn from a
palette of two or three options. The test applied, to judge the
material performance, is the propagation of a crack from one
side when the material is under tension.

In the first example,109 Gu and coworkers consider squares
of material which are either soft or stiff. For 8 � 8 and 16 � 16
grids they want to discover the optimal arrangement of the soft
and stiff squares. For the training data, a finite element model
is used to calculate strength and toughness of a particular
arrangement, however, they do not attempt to learn real valued
quantities here. Instead they create an ordered list of designs
and give the top half the label ‘‘good’’, based on toughness or
strength, with the bottom half designated ‘‘bad’’. It is these
categorical labels that are then the focus of the learning
process; new arrangements are given a probability of being
‘‘good’’ and hence it is possible to rank the designs based on
these probabilities. These ranks can then be compared to the
outcome of the finite element model to evaluate the perfor-
mance of the machine learning. As machine learning appro-
aches, they compare a neural network based on single layer
perceptrons with softmax classifier with a CNN. They show that
strength and toughness can be accurately predicted using this
approach even with a very small amount of training data, from
this they conclude that they could apply this approach to much
larger systems. The common motif of having soft squares to
reduce the stress concentration around the crack tip is straight-
forward to understand. The compression response of cellular
solids on a similar grid has also now been tackled, where the
full response curve was learnt rather than a ranking.112

In an effort to push the performance of their model materials
well beyond that of the training data, the Buehler team has
targeted a similar two-dimensional material (combined with
finite element modeling of toughness) but here with three
different building blocks – either isotropic, stiff along x or stiff
along y.110 To move the machine learning model beyond the
training data they introduce a self-learning aspect. In every

sampling loop, 10% of the designs are based on the top
performing designs from the previous loop. Hence the three
different blocks are preferentially placed where they appear to be
most effective; noise is added to prevent the self-learning con-
verging to a local minimum. By this route the composite designs
rapidly diverge away from the training data in terms of both
design and performance, indeed the final output is completely
separated in composition space from the data that was used in
the initial training. The composite designs are also tested
experimentally using additive manufacturing.110

Yu and coworkers have returned to the soft and stiff squares,
but have now harnessed a genetic algorithm to enhance the
self-learning part of the composite design.94 They begin by
training a CNN on composite designs combined with tough-
ness values calculated using the finite element model. Once
trained the output of the CNN becomes the parent composi-
tions for the genetic algorithm. Self-evolution begins by seeding
the CNN with an initial population of random composite
designs. The CNN scores each one according to its material
properties and passes them on to the genetic algorithm, Fig. 9.
The genetic algorithm combines and mutates the composite
designs so as to optimise performance;113 the choice of parents
is based on both fitness and diversity. The children, i.e. new
designs, are then re-input to the CNN. After 100 iterations
around this loop the toughness has improved markedly. Part
of the design is simply the stress concentration reduction
strategy of soft material near the crack tip. Intriguingly, many
of the high performance composite designs involve soft material
at the edges of the grid which appear to have a significant
influence on the shear stress distribution.

Finally, Kumar and coworkers have taken on the challenge of
complex composite design in three dimensions with the aim of
creating the desired anisotropic elastic properties.99 This team is
keen to create metamaterials while avoiding creating stress con-
centrations due to the use of trusses and or plates. To do this they
focus on materials that are derived from the spinodal domain
pattern familiar from phase separation. They have developed a

Fig. 9 Showing a flow chart of a self-learning procedure for composite materials design. From ref. 94 copyright IOP Publishing. Reproduced with
permission.
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machine learning route to determine what spinodal-like arrange-
ment would give the required mechanical properties. They begin
with the Gaussian Random Field representation of the spinodal
pattern114 and introduce anisotropy by parameterising the direc-
tion of the spatial wavevectors in terms of angles y1, y2, y3. These
angular limits, combined with the volume fraction of solid
material, r, specify the structure which can range from lamellar,
through conventional isotropic spinodal to columnar, Fig. 10.
Elastic properties are calculated via the finite element method and
then represented as a three dimensional elastic surface. They use
a deep neural network to model the relationship between the four
material parameters and the nine independent elastic moduli. At
this point, Kumar and coworkers can predict elastic properties
based on their design parameters; they aim to solve the inverse
problem of finding the design parameters that give the desired
elastic properties. A challenge is that multiple composite designs
may be able to give the required properties. Typically, the neural
network tends to favour sets of yi values that are all intermediate,
even when one angle was extreme in the comparison data; the
volume fraction tends to match the data very accurately. Overall,
this is a bold step towards computer guided materials design.

Optimizing soft composite design is an area in its infancy;
indeed, the examples above are not traditional soft composite

materials. Nonetheless, the approach of combining machine
learning with a random mutation of design looks to be a
fruitful one to pursue.94

6 Conclusions

Machine learning is becoming increasingly widely used by the soft
matter community. It is enabling old problems to be solved faster
and new problems to be solved for the first time. Within the
examples above, it is interesting to note that there is a clear
division in the way that machine learning is being used. For some,
the ability to make predictions is key and hence the trained
algorithm is the tool. For others, it is the ability to interrogate
the algorithm to determine how it is making predictions that
paves the way to new understanding. The composite materials
design community is currently taking on the challenge of devel-
oping approaches that are able to go beyond the training data.
This will have obvious future application in discovering new
classes of complex soft matter and new regimes of behaviour.
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