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Recent developments and applications of
quantitative proteomics strategies for
high-throughput biomolecular analyses
in cancer research

Hannah N. Miles, †a Daniel G. Delafield †b and Lingjun Li *ab

Innovations in medical technology and dedicated focus from the scientific community have inspired

numerous treatment strategies for benign and invasive cancers. While these improvements often lend

themselves to more positive prognoses and greater patient longevity, means for early detection and

severity stratification have failed to keep pace. Detection and validation of cancer-specific biomarkers

hinges on the ability to identify subtype-specific phenotypic and proteomic alterations and the

systematic screening of diverse patient groups. For this reason, clinical and scientific research settings

rely on high throughput and high sensitivity mass spectrometry methods to discover and quantify

unique molecular perturbations in cancer patients. Discussed within is an overview of quantitative

proteomics strategies and a summary of recent applications that enable revealing potential biomarkers

and treatment targets in prostate, ovarian, breast, and pancreatic cancer in a high throughput manner.

Introduction

Mass spectrometry (MS) represents a unique and powerful
technological platform in investigative biomolecular research.
This high sensitivity regime grants access to the discovery and
identification of small molecules,1–3 endogenous peptides,4–7

proteins,8–10 and macromolecular complexes.11–13 The utility of
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MS is enhanced through the facility of ionizing biomolecule
species in solution via electrospray ionization14 (ESI) and
matrix-assisted laser desorption/ionization15–17 (MALDI)
that provides a means of producing ions from stationary
supports and tissue sections. As well, numerous mass
analyzers18 have been developed to accommodate high-speed
and high-resolution measurements. Realizing the full potential
and flexibility of modern MS platforms, as well as their ability
to decipher complex biological samples, focus has shifted

towards improving instrument efficiency and sample
throughput.

Gradual improvements in instrument operational speed, the
advent of novel dissociation techniques19–22 and implementation
of multidimensional ion separation regimes23–25 enable
researchers to obtain greater levels of detail from complex
mixtures than ever before. However, while shotgun proteomics
provides a means for deep proteomic profiling, the typical time
course and complexity of a single experiment26 renders
repetitive measurements of numerous samples untenable. For
this reason, many have turned to multiplexed quantitative
proteomics workflows to provide simultaneous deep proteomic
profiling of numerous samples while retaining the ability to
assign relative and absolute abundance information.

Quantitative proteomics, now comprised of several distinct
strategies, operates under the principle that signal response
from any given analyte is related to its abundance within the
mixture. As such, should an analyte be identified in numerous
samples, the relative intensity of the analyte’s signal response
in each sample can be used to provide a means of relative or
absolute quantitation. However, MS reporting signal is
divided into numerous channels depending on the quantity
and ionization efficiency of all present biomolecules, which
indicates the high variability that can arise from even discrete
sample changes. In remedy of this ailment—and to remove run-
to-run variation—researchers have employed unique chemical
modifiers that often incorporate stable isotopes to label bio-
molecules within solution. These labels result in a unique mass
shift for each sample without altering their retention time in
liquid-chromatography. These newly tagged analytes may then
be combined, measured simultaneously via MS, and then
evaluated for the relative abundance of all labeled channels.

These quantitative strategies have provided unique avenues
towards the discovery and validation of cancer-specific biomarkers.
The ability to analyze numerous samples simultaneously
provides researchers not only with a means for high throughput
sample profiling, but also a means to uncover what proteomic
perturbations are relevant across patients, between control
groups, and specific to disease severity and progression. These
perturbations and quantitative differences are often discussed
in language that is familiar to proteomic researchers but that
may create confusion in those coming from adjacent fields of
research. Within proteomics, and ubiquitous throughout this
review, quantitative differences of proteins, peptides and other
biomolecules are described as ‘‘up-regulated’’ or ‘‘down-
regulated.’’ These terms are used to describe those species
with quantifiable differences against the control, often with
statistical significance. Though readers may conjecture that
up- or down-regulated protein species are the result of
pathway regulation, these hypotheses are often not explored
in proteomic literature and may be discussed elsewhere.
For this reason, it is important to clarify that differences in
regulation are meant only to indicate the quantitative findings
presented by the original authors. Regardless of verbiage
technicalities, researchers often pursue quantitative proteomics
as a facile avenue towards novel biological insight.
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Given the significant heterogeneity associated with various
cancer subtypes, researchers have sought to employ quantitative
proteomics to a litany of biological questions. As seen within,
these endeavors have provided seminal insights into the role
post-translational modifications play in cancer progression,
uncovering up- and down-regulation of biomolecules in disease
groups, as well as the efficacy of using protein expression to
monitor medical treatment. The true breadth of proteomic
cancer research cannot be understated. While quantitative
experiments date back several decades, we aim to present a
mass spectrometry-centric review. High-throughput quantitative
proteomics firmly gained prominence in the early 2000s,
providing nearly twenty years of meaningful contributions to
cancer detection, identification, and understanding. To provide
readers with the most timely and topical review—as well as to
provide discussion on future research interests, we have
confined our literature review to applications published within
the past 5 years. This concise range enables us to provide critical
suggestions for researchers seeking to begin or continue their
unique cancer research. Here we present a brief introduction to
quantitative proteomics methods and recent investigations of
prostate, ovarian, breast, and pancreatic cancer.

Quantitative strategies

Quantitative proteomics has experienced substantial growth
over the last two decades, due in large part to the invention and
development of high-speed, high-resolution mass spectrometry
instrumentation. While there are numerous unique and
technically driven means to pursue relative and absolute protein
quantitation, most applications fall within one of four major
categories: metabolic labeling, isotopic labeling, isobaric labeling,
and label-free quantitation. Each method has been thoroughly
reviewed and in-depth discussion can be found elsewhere.
However, in order to provide rationale behind each strategy for
use in investigative cancer research, understanding the principles
and key considerations of each is imperative.

Metabolic labeling

Metabolic labeling is the earliest27,28 and arguably most
traditional method of mass spectrometry-based quantitative
proteomics. Taking after the classical Meselson-Stahl29

experiment that proved the semiconservative nature of DNA
replication, more routine use of mass spectrometry for peptide
identification revealed that proteins, too, could be metabolically
labeled with stable isotopes to provide ‘heavy’ and ‘light’
isotopologues. Within these experiments, adjacent cell cultures
are provided with either unlabeled, naturally occurring amino
acids or amino acids that have been labeled with stable isotopes;
this also lends itself to the acronym SILAC, Stable Isotopic
Labeling with Amino Acids in Cell Culture.27,30 Though SILAC
has grown to incorporate numerous stable isotopes, the most
traditional SILAC strategy is to grow a control group in the
presence of 12C-lysine and 13N-arginine while providing
the experimental group with 13C-lysine and 15N-arginine.31

During culture growth, these light or heavy amino acids are
incorporated into the protein backbones with no effect on
protein function, viability or expression. Digesting these cellular
proteins with a proteolytic enzyme (e.g. trypsin) produces
peptides that contain a single labeled or unlabeled residue.
Peptides are then combined and analyzed via MS, at which point
their mass difference can be observed. Evaluating the intensities
of the labeled and unlabeled peptide partners allows the relative
abundance of peptides and proteins to be determined. Metabolic
labeling strategies are of topical interest to groups seeking to
reveal how altered growth conditions, drug administration, or
environmental perturbations affect protein production
and expression. Beyond relative quantitation of proteins and
peptides, SILAC-like experiments have been used to probe post-
translational modification production and turnover. However,
the chief considerations and drawbacks of these methods are (1)
the small number of suitable amino acids that may be used for
isotope incorporation; (2) poor separation of isotopic envelopes
(causing errors in quantitative accuracy); and (3) the inability to
incorporate isotopes to biological tissue and biofluid samples.
In remedy, researchers may choose to tag proteins and peptides
with isotopic labels after extraction and digestion.

Isotopic tagging

Isotopic tagging, though similar in nature to metabolic
incorporation, comes with a higher level of flexibility and
customization.31 Modern research settings have access to a
broad array of stable isotopes, the most ubiquitous being 13C,
15N, 2H, and 18O. These isotopes enable researchers to
synthesize their own chemical scaffold while varying the
incorporation of these isotopes, creating an array of chemical
tags with unique masses that may be functionalized and
chemically bound to proteolytic peptides to provide them with
a mass difference distinguishable via MS.32,33 In this way, the
need for metabolic incorporation is completely removed and
experimental peptides can be labeled after extraction
and digestion. Similar to metabolic labeling, differences in
MS1-level signal intensity between labeled species allow for
determination of relative quantitation. Furthermore, isotopic
labeling can be used as a means of absolute quantitation,
whereby internal calibration curves are created and compared
to experimental peptides. Overall, isotopic labeling presents
highest utility in instances where the sample collection is
relatively small because as sample number increases so does
spectral complexity, which can create mass overlap between
unique peptide species and produce erroneous quantitation
estimates. These limitations in mind, the vast improvements in
MS operational speeds, resolving power, and scanning depth
begged the question as to whether more efficient chemical
labels could leverage these instrumental improvements and
eliminate the spectral complexity found in complex isotopic
tagging experiments.

Isobaric labeling

As mass spectrometry technology continued to develop, it
became obvious that the spectral complexity associated with
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high-throughput metabolic labeling and isotopic tagging
experiments directly counteracted any instrumental
improvements. As such, it became pertinent to find a method
for absolute and relative quantitation that alleviate the
ailments posed by multiplexed labeling methods while still
retaining the facility in quantitative measurements. Remembering
that isotopic tags may be constructed to provide a high number of
labeling channels, each with a distinct mass difference of 41 Da,
isobaric labels correct for this inherent mass difference using a
balancing group.34 When implemented, these isobaric labels
display virtually indistinguishable masses at the MS1 level,
reducing the spectral complexity of high-throughput experiments.
Upon selection of a labeled analyte, MS dissociation causes the
isobaric tags to fragment and produce ‘reporter ions’ of unique
mass. In this way labeled analytes may be selected and
fragmented, providing identification and quantitative informa-
tion in a single step. As a result, the reduced spectral complexity at
the MS1 level promotes greater profiling depth of complex
samples and provides equivalent quantitative accuracy. The most
popular examples of commercial isobaric labels are iTRAQ,
Isotopic Tags for Relative and Absolute Quantitation35 and TMT,
Tandem Mass Tags.36 However, the broad utility of isobaric
labeling has garnered significant attention from the research
community, resulting in numerous novel quantitative labeling
strategies37,38 that promote quantitative accuracy at significantly
reduced cost.

Label-free and reaction monitoring

Finally, in instances where sample labeling may not be preferred
(i.e., precious samples, low-abundance molecules of interest, or
instances where protein targets are known), label-free and
reaction monitoring methods provide a suitable alternative.39

Label-free quantitation serves to provide relative quantitation
between samples by comparing area-under-curve for detected
analytes. This method, though steadily improving with better
instrumentation and software tools, is highly susceptible to
changes in sample composition, can result in missing values,
and is lower throughput than labeled methods. However, label-
free quantitation does still represent a meaningful entry point in
discovery-based quantitative proteomics, often providing deep
sample profiling and elucidating targets for future analyses.
In contrast, reaction monitoring workflows (e.g. multiple
reaction monitoring, select reaction monitoring, etc.) may be
considered one of the most accurate quantitative strategies,
being most suited to targeted analyses and instances when
internal standards are readily available. Though reaction
monitoring strategies are often tailored to fit unique
experimental conditions, all workflows bear resemblance to a
basic strategy. First, serial dilutions of a purified or synthetic
peptide standard are analyzed via targeted MS/MS. In these
targeted analyses, the biomolecule(s) of interest are subjected
to MS dissociation, with the various fragments observed and
recorded. As each biomolecule will provide a unique transition/
fragment, the prevalence of these transitions may be used as a
proxy for overall biomolecule abundance. In this way, absolute
and relative quantitation information can be determined

without the need for chemical labeling while eliminating
concerns over sample and spectral complexity. Often, it is
preferential to incorporate an isotope-encoded standard,40,41

enabling rapid analyses and high quantitative accuracy. Given
the variety of quantitative strategies, it is of topical importance to
evaluate their efficacy and provide understanding of quantitative
accuracy.

Diagnostic accuracy

As quantitative proteomics continues to mature, discussions
over quantitative accuracy will continue to be a vanguard
consideration. Recently, Dowle et al.42 provided an in-depth
comparison of multiple quantitative strategies and should
evaluated independently by interested parties. Within all
quantitative strategies, the primary diagnostic for accuracy
and utility are metrics built on specificity and sensitivity.
Measures of specificity (i.e. proportion of correctly-identified
true positives) and sensitivity (i.e. proportion of correctly-
identified true negatives), may be combined into a single
metric. This receiver operating characteristic (ROC) is often
viewed as a curve with high sensitivity and specificity represent-
ing a value close to 1. As demonstrated by Dowel, several
commonly used quantitative strategies display high ROC
values, providing detailed considerations of the method most
appropriate for a range of experiments. This work may serve
as a helpful guide when entering or expanding quantitative
proteomics experiments.

Taken together, metabolic labeling, isotopic tagging, isobaric
labeling, and label-free strategies provide a wealth of entry points
into quantitative proteomics. This access in mind, the growing
needs of the medical community combined with the ever-
increasing access to mass spectrometry technology necessitate
the utilization and expansion of investigational proteomics to
aid in discovering and validating cancer-specific biomarkers.

Prostate cancer

The second leading cancer type in men, prostate cancer is
estimated to affect around 12 percent of all men during their
lifetime and currently affects over 3 million men within the
United States, with the majority of individuals diagnosed being
at least 65 and older.43 Androgen deprivation, the first means of
therapeutic intervention, can lead to the progression of
castration-resistant prostate cancer (CRPC) in some men, a
more aggressive stage of cancer resulting in poor prognosis
and survival, with the majority of men developing metastases
prior to or following diagnosis.44 Further analyses of the
literature have characterized these CRPC subtypes and demon-
strated the growing emergence of CRPC phenotypes that have
either low or negative AR expression for which there are few
targeted therapeutics.45 The growing heterogeneity in prostate
cancer subtype underscores the urgency to elucidate and discover
novel molecular mechanisms underlying pathogenesis for all
subtypes. The use of mass spectrometry (MS)-based quantitative
proteomics for prostate cancer research in recent years has been a
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driving force to exploit the factors underlying tumorigenesis and
metastasis.

Cellular and tissue analyses

Investigations often profile quantitative differences in the
proteome via patient-derived tissue samples, cellular models,
or genetically engineered mouse models such as the transgenic
adenocarcinoma of the mouse prostate (TRAMP) model. One
such study by Zhang et al.46 utilized a label-free approach to
quantify differences in expression between the prostate glands
of TRAMP versus wild-type littermates. Through generation and
an in-depth analysis of the quantitative proteomics data, the
authors were able to predict and validate the role of platelet-
derived growth factor (PDGF)-B overexpression in increased
proliferation, thereby highlighting the therapeutic potential of
targeting PDGF signaling within prostate cancer. Other label-
free approaches have utilized patient-derived tissue samples to
profile global differences, including the work of Müller et al.47

using formalin fixed, paraffin embedded tissue from radical
prostatectomy, which focused on characterizing differences
between nonmetastasizing tumors, metastasizing primary
tumors and their distant nodal metastases. Although the
analysis had only five biological replicates per tumor type,
significant differences in expression were measured that
allowed for clear distinction of each and presented several
potential proteins whose increased expression in metastatic
tumors could be targeted in future therapeutic studies.
However, a smaller sample set warrants further investigation into
these proteins as potential targets with a larger sample cohort.

Methods that incorporate stable isotopes into the peptide
backbone, such as SILAC, allow for direct comparison of
identical peptides across sample types and is more robust to
instrumentational variation compared to unlabeled approaches.
Recently, SILAC was used to examine extracellular vesicles (EVs)
and the impact that upregulated a(1,6)-fucosyltransferase (FUT8)
expression had on biogenesis of these secreted biomolecules.48

This was one of the first reports to map the systematic impact of
an overexpressed glycosyltransferase on the EV proteome,
specifically of a glycosyltransferase with known oncogenic
activity.49,50 FUT8 overexpression showed a decrease in EVs
produced compared to wild-type cells and further analysis of
intact glycopeptides from LAPC4 EVs showed marked differences
in glycosite occupancy between EV populations and revealed a
shift in glycoform composition. Miao et al.51 combined the
SILAC approach with parallel-reaction-monitoring (PRM)
methods to discern differential kinase expression in two bone
metastasis-derived prostate lines, PC3 and PC3MLN4.51 Of the
kinases that were quantified and found to be differentially
expressed, most notably different was mitogen-activated protein
kinase kinase kinase kinase 4 (MAP4K4), a kinase previously
observed to play a role in ovarian cancer.52 One final example
using the SILAC strategy by Sbrissa et al.53 investigated
the mechanisms of bone metastasis by determining
CXCR4-interacting proteins through overexpression and
knockdown of CXCR4 in PC3 cell lines. Proteomic analysis found
one unexpected protein, phosphatidylinositol 4-kinase III a

(PI4KIIIa), to be upregulated and it was found to localize with
CXCR4 to lipid rafts and thus promote cancer cell invasion
through increasing phosphatidylinositol-4-phosphate production.
The discovery of this novel interaction between chemokine
receptor and PI4KIIIa and its regulation on tumor cell invasion
requires more detailed experiments characterizing the specific
molecular details regarding receptor-kinase communication.

Chemical or enzymatic isotopic labeling strategies allow for
labeling of more than cell culture models to study prostate
cancer. One approach by Lee et al.54 used biotin—both as an
isotopic label and for affinity purification—to systematically
label cell-surface proteins that could serve to distinguish
adenocarcinoma from neuroendocrine prostate cancer. From
this proteogenomic investigation, they systematically validated
two candidate antigens: FXYD domain containing ion transport
regulator 3 (FXYD3) in prostate adenocarcinoma and CEA cell
adhesion molecule 5 (CEACAM5) in neuroendocrine prostate
cancer. While additional investigation into targeting these
antigens is warranted, such a study demonstrates the utility
of quantitative proteomics in discovering and validating new
therapeutic targets for advanced prostate cancer.

Much of the quantitative research has shifted to the use of
isobaric labeling strategies, which allow for increased multi-
plexing capabilities and decreased instrument variation
through reduced overall runs. Zhou et al.55 used 5-plex TMT
labeling to perform a large-scale proteomic quantitation of
core fucosylated glycopeptides after selective lectin affinity
enrichment to differentiate non-aggressive and aggressive
prostate cancer cell models (Fig. 1). Over 20 fucosylated
proteins were upregulated in the aggressive cell lines and were
involved in processes such as cellular signaling, adhesion and
extracellular communication. Identification of these fucosy-
lated proteins and their upregulation in aggressive prostate
cancer models establishes these proteins as potential targets
for further examination into how their upregulation impacts
the aggressive phenotype of the associated model. Another
advantage to using TMT labeling is that these tags can undergo
synchronous precursor selection (SPS)-MS3 quantitation, which
allow for more accurate quantitation. Zhou et al.56 utilized a
TMT-SPS-MS3 approach on patient-derived tissue samples
with varying prostatic phenotypes to determine differential
expression of protein complexes. Low-grade prostate cancer
samples were found to have upregulation of complexes
involved in RNA splicing and downregulation of those
associated with cell adhesion, while high-grade prostate tissue
samples had increased assembly of antiapoptotic complexes
and a similar lower abundance of complexes involving cell
adhesion. Such a comprehensive study of individual protein
complexes may give way to determining what protein
complexes are critical in distinguishing and diagnosing low-
and high-grade cancers.

Comparable to TMT labeling, iTRAQ allows for both relative
and absolute quantitation of labeled samples. Höti et al.57 set
out to examine the mechanisms underlying androgen resistance
through a global proteomic approach using iTRAQ, labeling tryptic
peptides from two prostate cancer cell models grown in triplicate.
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One main realization of the data was that androgen resistance
cannot be treated with a single therapeutic, as the mechanisms
driving resistance involve multiple independent pathways. While
unfortunate, these findings did uncover some of the mechan-
isms driving resistance, including the PI3K/AKT signaling path-
way, mitochondrial dysfunction of oxidative phosphorylation
complexes and the multicatalytic 26S proteasome. Zhang
et al.58 used two sublines of PC-3M to distinguish unique
characteristics of highly- and poorly-metastatic potential in
prostate cancer. After validation, two proteins were found to
potentially contribute to the higher metastatic potential, matrix
metallopeptidase 1 (MMP1) and four and a half LIM domains
1 (FHL1). While FHL1 has been extensively studied in a variety of
cancer types, the information collected here suggests a unique
role of MMP1 for increasing metastatic potential in prostate
cancer, presenting the opportunity for future inspection of both
MMP1 and other MMPs. Webber et al.59 performed a stromal
cell proteomics analysis to differentiate normal from tumor-
reactive stromal phenotypes that drive disease progression.
One compelling finding was the loss of aldehyde dehydrogenase
(ALDH1A1) expression in altered versus normal stromal types,
suggesting its potential role as a novel marker of disease-induced
changes of the stromal environment. Additional investigations
have turned to animal models, as prostate cancers grown in vivo
reflect interactions that may otherwise be missed in cell culture
models. The Pten-knockout mouse model60 was recently
examined by Zhang et al.61 through the combined analysis of
iTRAQ proteomics and microarray transcriptomics to identify
associated molecular changes in mouse prostate carcinogenesis.
Both transcriptomic and proteomic data found that immune
and inflammation responses were greatly perturbed, in addition

to mediations in central nodal activity through the Akt, NF-kB
and P53 signaling pathways.

While tissue-based sampling allows for determination of
mechanistic properties of the pathways contributing to tumor-
igenesis and metastasis, its highly invasive nature is discouraged
unless necessary. Even if biopsies are obtained, these analyses are
often limited by size constraints, as patient-derived tissues
covering all stages of prostate cancer progression can be difficult
to obtain in large numbers. Mouse models afford the opportunity
to mimic tumor progression and metastasis in vivo, but there are
still controversies surrounding prostate-based mouse models due
to distinct anatomical differences.62 Cell culture models avoid the
translational constraints that other model organisms are bound
to, but often omit stromal–epithelial interactions during cell
growth, a process that has a great impact on tumor invasiveness
and metastatic potential. Additionally, current cell-based models
for prostate cancer often either only reflect advanced prostate
cancer or require the use of multiple cell lines to cover multiple
progression stages, introducing variability that complicates
genetic-based analyses. Recent advances in cell-based prostate
models have been made that address some of the pitfalls outlined
here,63 so future quantitative studies should be selective in the
models they choose when profiling.

Biofluid analyses

There is a push to develop biomarker strategies involving the
collection of biofluids, a less invasive and more cost-effective
method of sample collection. Biofluids—such as blood, tissue-
based fluid, saliva, or urine—allow for easier monitoring
of patient outcomes, as disease progression and treatment
responsiveness can be evaluated with frequent patient

Fig. 1 Complete workflow utilized by Zhou et al.55 detailing the quantitative approach to investigate site-specific fucosylation and glycoproteins
associated with aggressive prostate cancer phenotypes. The optimized enrichment strategy used to identify glycopeptides contributing to prostate
cancer aggressiveness shows promise for application in a variety of cancer glycosylation studies but should also be applied to other prostate cancer
models to determine its utility across sample types. Reprinted with permission.
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sampling. Such biofluid-based monitoring strategies are
critical in prostate cancer patients, as a portion of men
diagnosed with prostate cancer have tumors that are indolent.
One study by Davalieva et al.64 comparatively profiled urine
samples using a label-free strategy from patients with prostate
cancer, benign prostatic hyperplasia, bladder cancer and renal
cancer to determine selective biomarkers for earlier diagnosis
of prostate cancer. Of the most promising urinary biomarkers
identified by the authors, nine had not yet been associated with
prostate cancer, indicating their potential as novel biomarkers
and necessitating further research into their associated
pathways. Soekmadji et al.65 profiled secretome differences of
unlabeled, CD9-positive EVs from cell culture models treated
with the hormone dihydrotestosterone (DHT). Their combined
analyses determined that DHT treatment increases CD9-
positive EV secretion and alters the content of secreted EVs,
and in agreement with previous literature highlighting the
potential of CD9 EVs as a biomarker for prostate cancer.

Reaction monitoring-based strategies are one label-free
approach that are typically used after initial discovery for
validation and accurate quantitation of biomarkers. Targeted
analysis of urinary EVs was completed by Sequeiros et al.66

using SRM to quantify 64 protein candidate biomarkers for
prostate cancer. A two-protein combination (ADSV and TGM4)
distinguished patients with benign tissue from those with
cancer, and a five-protein panel differentiated high-from low-
grade prostate cancer (CD63, GLPK5, SPHM, PSA and PAPP),
highlighting the advantages of targeted proteomics as a diag-
nostic tool in the clinic. Kim et al.67 investigated expressed
prostatic secretion samples using SRM-based quantitation to
determine molecular signatures for extracapsular prostate can-
cer. From a pool of over 200 potential candidates, these
researchers narrowed the candidate list to include 34 peptides
representative of 27 unique proteins with promising results
as biomarkers. Karasota et al.68 evaluated the analytical
performance of multiple SRM- and PRM-based strategies to

quantitate kallikrein related peptidase 4 (KLK4) in a variety of
biofluid samples. Secreted KLK4 was demonstrated to be present
in seminal plasma, and for the first time was investigated as a
potential biomarker in both seminal plasma and blood. Taken
together, the label-free, targeted proteomics methods used for
analysis of biofluids offer a reliable tool for biomarker validation
and should thus be considered as useful tools for clinical
development.

Fujita et al.69 combined two strategies, initially using iTRAQ
for urine samples to profile EVs from patients with a high
Gleason score.70 After quantifying 3528 proteins, candidate
biomarkers were selected for further quantitation and valida-
tion using SRM/MRM. Fatty acid binding protein 5 (FABP5) was
highlighted as the most promising biomarker from urinary EVs
for the detection and diagnosis of high Gleason score prostate
cancer, but further studies would be necessary for confirmation.
Yan et al.71 performed an iTRAQ-based analysis on the serum of
prostate cancer patients with or without bone metastasis to find
potential biomarkers indicative of these metastases. Of the 32
differentially expressed proteins identified, three—CD59, hapto-
globin and tetranectin—were selected and validated to be related
to prostate cancer bone metastasis, confirming their utility as
serum biomarkers. Larkin et al.72 implemented iTRAQ to
enhance their proteomic profiling of high-quality serum samples
for biomarker discovery. After identification and validation using
ELISA, two biomarkers, SAA and TSR1, showed promising results
when used in combination with KLK3. However, these results
were obtained in a small sample cohort, so further studies with
a larger, more diverse sample set are necessary before
serious consideration of these proteins as biomarkers. Table 1
summarizes selected prostate cancer biomarkers.

The use of quantitative proteomic strategies on patient-
derived biofluid samples show promise in the discovery and
validation of new biomarkers. Specifically, the KLK family of
proteins has been shown in the mentioned literature to have
potential in many biofluids and may improve diagnostic

Table 1 Summarized selection of prostate cancer biomarkers

Proposed biomarker Source Findings

Platelet-derived growth factor (PDGF)-B46 Prostatic tissue Overexpressed with increased cancer
proliferation

a(1,6)-Fucosyltransferase (FUT8)48–50 LAPC4 and LNCaP cells Increased FUT8 expression corresponded with
decreased extracellular vesicle production

Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4)51,52 PC3 and PC3MLN4 cells Differential expression in metastasis-derived
cell lines

Phosphatidylinositol 4-kinase III a (PI4KIIIa)53 PC3 cells Upregulated in PC3 cell lines; promotes cancer
cell invasion

FXYD domain containing ion transport regulator 3 (FXYD3)54 PrAd, NEPC cell lines Biomarker specific to prostate adenocarcinoma
CEA cell adhesion molecule 5 (CEACAM5)54 PrAd, NEPC cell lines Biomarker specific to neuroendocrine cancer
Four and a half LIM domains 1 (FHL1), matrix metallopeptidase 1
(MMP1)58

PC-3M sublines Promote higher metastatic potential

Aldehyde dehydrogenase (ALDH1A1)59 Stromal tissue Loss of expression in altered stromal cell types
Actin-depolymerizing factor (ADSV), transglutaminase 4 (TGM4)66 Urine Differentiates benign and cancerous tissue
CD63 molecule (CD63), glycerol kinase 5 (GLPK5), SPHM sulfohydrolase
(SPHM), prostate-specific antigen (PSA) and pappalysin 1 (PAPP)66

Urine Distinguishes high- and low-grade cancer

Kallikrein related peptidase 4 (KLK4)68 Seminal fluid Biomarker available in seminal fluid
Fatty acid binding protein 5 (FABP5) Urine Utility in detecting, diagnosing high gleason

score prostate cancer
CD59 molecule (CD59), haptoglobin and tetranectin71 Serum Expression correlated to bone metastasis
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accuracy further when combined with others. On the other
hand, serum biomarkers in prostate cancer deserve a level of
scrutiny as demonstrated by prostate-specific antigen (PSA), a
currently approved biomarker whose elevation in serum is also
associated with benign prostatic hyperplasia (BPH), resulting in
high false positive rates.73 Noting this, prostate cancer biomar-
kers should be rigorously tested against patients with BPH and
other prostatic diseases to ensure accuracy. Such rigorous tests
involving larger sample sets can be achieved using the quanti-
tative strategies described above, indicating their potential to
advance the knowledge within the field at a rapid pace.

Pancreatic cancer

The seventh leading cause of cancer-related deaths in the
world,74 pancreatic cancer has rightfully garnered significant
attention from clinical research communities. In-depth proteomic
analyses have illuminated the highly dynamic nature of post-
translational modifications,75–77 while providing novel insights
toward treatment monitoring and severity stratification. The
promising results of these profiling experiments in hand, great
success has come in the effort to employ quantitative strategies to
illuminate dysregulated protein expression, identify treatment
pathways, and validate potential biomarkers.

Tissue analyses

The prevalence of pancreatic cancer across the world’s population
has necessitated in-depth proteomic analyses of cancerous tissue
and model systems. Model cell lines have enabled researchers
to identify pertinent biomolecules specific to pancreatic cancer
without the need for invasive, repetitive tissue resection. Naturally,
the study of cell lines lends itself to the use of SILAC to perform
quantitative investigations. Recently, Liu et al.78 performed
secretomic analyses of pancreatic cancer cells (PC-1), revealing
161 proteins with altered expression, including 55 proteins not
previously reported. As well, they note a combination panel for
cadherin 3 (CDH3), plasmogen activator, urokinase (PLAU), and
lunatic fringe (LFNG) proteins that may be useful for improving
cancer patient prognoses. Beyond this, Marchand et al.79

employed a three-channel SILAC approach to reveal association
of transcription factor EB (TFEB) with nuclear proteins upon
inhibition of glycogen synthase kinase-3 (GSK3) and mammalian
target of rapamycin (mTOR). Moving beyond SILAC experiments,
Shi et al.80 used isotopic dimethyl labeling to examine paracrine
communication between pancreatic cancer cells and pancreatic
stellate cells (PSCs). This experiment provided the knowledge
that leukemia inhibitory factor (LIF) is a key paracrine factor
from activated PSCs acting on cancer cells. Employing a novel
approach, Roberts et al.81 developed a cysteine-reactive fragment-
based ligand library to coordinate novel small molecules that
impair pancreatic cancer pathogenicity with druggable hotspots
for potential cancer therapy. While numerous SILAC and isotopic
tagging workflows exist outside the time frame of this review, the
relatively small number of recent applications indicates an area of
potential focus for researchers examining pancreatic cancer.

Isobaric labeling, however, has seen significant use in the
study of pancreatic cancer. Zhang and colleagues82 have
provided a meaningful guide for those seeking to perform
isobaric labeling experiments using the commercial TMT36

offering from ThermoScientific. Beyond this, Perera et al.83

employed TMT labeling to study pancreatic cancer cell
metabolism, revealing the MiT/TFE proteins – MITF, TFE3
and TFEB – are decoupled from regulatory mechanisms,
increasing expression levels of lysosomal catabolic function
essential for pancreatic ductal adenocarcinoma (PDA) growth.
As an alternative to TMT, An et al.84 employed iTRAQ in the
analysis of serum exosomes from chemotherapy patients (Fig. 2).
Of note, this study indicates patient-derived exosomes play a
significant role in cancer metastasis. Furthermore, Li et al.85

demonstrated monumental success in broad protein quantitation
while analyzing Peripheral Blood Mononuclear Cells (PBMCs).

Fig. 2 Workflow described by An et al.84 for the quantitative analysis of
chemotherapy patient exosomes through iTRAQ labeling and quantitative
mass spectrometry. This example of a facile isobaric labeling proteomics
experiment provides deep proteomic profiling of multiple complex
samples with lower spectral complexity than isotopic labeling methods.
Reprinted with permission.
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This study, which employed iTRAQ labeling and 2D-LC-MS
quantified 3357 proteins, with 114 being distinguished as
dysregulated in the cancer group. These examples of isobaric
labeling indicate the broad utility for high throughput analyses
of complex pancreatic cancer samples. However, a chief limita-
tion of TMT and iTRAQ is cost, placing their use out-of-reach
for many budding research groups. In remedy, Li and
colleagues34 developed Dimethyl Leucine (DiLeu) that provides
greater multiplexity86–88 than commercial options at a fraction
of the cost. DiLeu is available as an isotopic,89 isobaric,34,86,87

and mass-defect90 chemical tag and has even been modified to
provide absolute quantitation.89,91 The mass-defect offering,
mdDiLeu, has been successfully applied for simultaneous
multiomic analysis of pancreatic cancer cells,92 providing
uncompromised access to high throughput small molecule
and protein quantitation.

Label-free analyses, too, have seen routine utilization in
pancreatic cancer investigations. Wang et al.93 introduced the
novel IonStar pipeline for accurate MS1-level protein quantitation.
This preliminary example quantified 44000 proteins from 40
biological samples and identified 541 proteins dysregulated
groups treated with birinapant and paclitaxel. Later Zhu et al.94

applied the IonStar pipeline to elucidate the relations among
relevant signaling pathways during gemcitabine and birinapant
treatment. These applications highlight the utility of quantitative
proteomics to evaluate treatment efficacy. In a similar vein,
Singh et al.95 presented a large-scale, label-free proteomics study
to uncover the mechanism by which sanguinarine suppresses
cancer proliferation. While quantifying 43100 proteins, 37 bio-
molecules were identified as differentially expressed, highlighting
the pleotropic effects of sanguinarine. Finally, Zhou et al.96

employed parallel reaction monitoring (PRM) to identify 165
potential biomarkers in pancreatic cancer. During validation,
brain acid soluble protein 1 (BASP1) was identified as a novel
target for pancreatic cancer therapy and is shown to interact with
Wilms tumor protein (WT1).

Biofluid analyses

Considering the real-world application of investigational pro-
teomics analyses, a topical concern is the need for invasive
patient sampling. This in mind, researchers have long sought
to identify cancer-specific analytes from biofluids, which may
be sampled repeatedly at lower physical and monetary cost to
patients. Though metabolic and isotopic labeling are not well
represented in pancreatic cancer research in recent years,
Jhaveri et al.97 used a novel serum antibody-based SILAC
immunoprecipitation approach, denoted as SASI, to identify
specific targets expressed in cancer patients post-vaccine ther-
apy. More popular, however, are applications utilizing isobaric
labeling. Sogawa et al.98 employed TMT labeling to ascertain
that complement component 4 binding protein alpha (C4BPA)
and polymeric immunoglobulin receptor (PIGR) expression was
significantly higher in preoperative patients than postoperative.
Naba et al.99 identified unique expression levels in 35 proteins
as pancreatic cancer islets progressed from hyperplastic to
angiogenic to insulomas. Yu et al.100 employed iTRAQ to

quantify 4517 proteins in the exosomes of Panc02 and
Panc02-H7 cells, notably revealing cancer-derived exosomes
promote tumor metastasis. Lin et al.101 and Liu et al.102 further
implemented iTRAQ for quantitative evaluations of pancreatic
cancer patient serum. An important overlap of these two
studies was the identification that apolipoprotein A-1 (APOA1)
shows distinct expression in pancreatic cancer patients.
Considering this trend was shared between patients expressing
carbohydrate antigen (CA) 19-9 and those who are CA19-9-
negative, APOA1 presents an area of significant interest moving
forward.

Similar to the studies presented in pancreatic cancer tissue
analyses, label-free quantitation has been routinely employed
in quantification of biofluid proteins. Through this quantitative
strategy, Ohmine et al.103 successfully validated deoxycytidine
kinase (dCK) as a good predictor of progression-free survival
and an effective biomarker of gemcitabine sensitivity.
Yoneyama et al.104 identified insulin-like growth factor-
binding proteins insulin-like growth factor binding protein 2
(IGFBP2) and IGFBP3 as compensatory biomarkers of pancreatic
cancer in instances when CA19-9 screening is inconclusive.
Park et al.105 performed a large-scale validation of biomarkers,
finding that APOA-IV, APOCIII, IGFBP2, and tissue inhibitor
of metalloproteinase 1 (TIMP) were significantly altered in
pancreatic cancer. Of note, a panel including CA19-9, APOA-IV,
and TIMP1 showed improved performance in distinguishing
early pancreatic cancer from pancreatitis. Do et al.106 identified
18 biomarker candidates associated with malignancy in
intraductal papillary mucinous neoplasms (IPMNs). Finally,
Nigjeh et al.107 developed an optimized data-independent
acquisition (DIA) workflow to identify and quantify 414 000
peptides from B2300 plasma proteins (Fig. 3).

As seen by the numerous examples of pancreatic cancer
tissue and biofluid investigation, quantitative proteomics
provides a facile entry point into the field of biomarker
identification and validation (Table 2). Considering the
agreement across several studies that proteins such as APOA1,
APOA4, IGFBP and CA19-9 serve as rigorous biomarkers in
pancreatic cancer, future studies should investigate the utility
of high throughput label-free, PRM, or MRM screening of these
biomolecules. Meaningful evaluation of MS-based protein
assays in blind studies may demonstrate potential to accurately
identify and diagnose pancreatic cancer at scale. Development
of these workflows and associated technology will be vital to
understanding the risk factors associated with disease onset
and progression, as well as the success of current and novel
treatment strategies.

Breast cancer

The high rate of incidence associated with breast cancer, as well
as targeted focus drawn from successful advocacy and research
fundraising, have shed significant light on the mechanisms of
breast cancer. Though this dedicated focus has reduced
patient mortality and cancer rates in high income countries,
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developing nations display the opposite trend.108 Beyond this,
breast cancer is of continual interest to the medical community
due to the high rate of recurrence and metastasis.109,110 For
these reasons, many have turned to quantitative proteomics to
aid in stratifying cancer subtypes and identifying potential
biomarkers.

Tissue and biofluid analyses

Within the timeframe of this review, the majority of quantitative
proteomic investigations have been centered on tissue analyses,

often employing model cell lines or resected tumor tissue to
determine protein expression. Though few applications have
employed metabolic labeling for quantitative analyses,
Tyanova et al.111 presented a robust investigation that merged
quantitative mass spectrometry with traditional RNA- and
DNA-based sequencing strategies. Analyzing 40 tumors that were
either estrogen receptor positive, Her2 positive, or triple
negative, the authors identified an average of 47000 proteins
on average, spanning 8 orders of magnitude in protein intensity.
Within this study, they combined their quantitative results with

Fig. 3 Workflow implemented by Nigjeh et al.107 Quantitative workflows utilizing isobaric labels present the greatest propensity for deep proteome profiling.
However, these workflows are limited by their instrument acquisition speed and cycle time required to select and fragment top precursors. For this reason,
implementation of DIA strategies presents the ability to sequence a greater number of peptides in the same amount of time. Though the data processing methods
are significantly more involved, DIA workflows are sure to be of critical importance to proteome profiling in the coming years. Reprinted with permission.

Table 2 Summarized selection of pancreatic cancer biomarkers

Proposed biomarker Source Findings

Cadherin 3 (CDH3), plasmogen activator, urokinase (PLAU),
lunatic fringe (LFNG)78

PC-1 cell secretome Potential for improving cancer patient
prognoses

Transcription factor EB (TFEB)79 HEK293, PANC1, MIA PaCa-2
cells

Association with nuclear protein upon
inhibition of GSK3

Leukemia inhibitory factor (LIF)80 Pancreatic stellate cells Denoted as major paracrine factor
Melanocyte inducing transcription factor (MITF), transcription
factor binding to IGHM enhancer 3 (TFE3) and transcription
factor EB (TFEB)83

Tissue, PDA cells Decoupled from regulatory mechanisms,
promote catabolic function

Brain acid soluble protein 1 (BASP1)96 Tissue Novel cancer therapy target
Complement component 4 binding protein alpha (C4BPA),
polymeric immunoglobulin receptor (PIGR)98

Serum Higher expression in preoperative patients than
postoperative

Apolipoprotein A-1 (APOA1)101,102 Serum Distinct expression in both CA19-9 positive and
CA19-9-defficient patients

Deoxycytidine kinase (dCK)103 PK9, CFPac-1, PK1, SUIT-2,
and AsPC-1 cells

Predictor of progression-free survival,
biomarker of gemcitabine sensitivity

Insulin like growth factor binding protein 2 (IGFBP2) and
IGFBP3104

Plasma Compensatory biomarkers when CA19-9
screening is inconclusive

Insulin-like growth factor binding protein 2 (IGFBP2) tissue
inhibitor of metalloproteinase 1 (TIMP1), apolipoprotein A IV
(APOA-IV), apolipoprotein CIII APOCIII105

Blood Protein panel highly effective in early detection
of pancreatic cancer
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microarray analyses and machine learning classification to
identify potential subtype-specific therapies.

More popular than SILAC-like experiments, isobaric labeling
has been extensively employed in breast cancer investigations.
Suman et al.112 employed iTRAQ to identify proteins associated
with breast cancer subtypes. Notably, this study indicated
fibronectin (FN1), alpha-2-macroglobulin (A2M), complement
component-4-binding protein-alpha (C4BPA) and complement
factor-B (CFB) were critical to subtype differentiation in both
plasma and tissue samples. Calderon-Gonzalez et al.113 further
employed this technology to identify 306 differentially
expressed proteins in breast cancer cell lines. As well, their
study indicates large proline-rich protein (BAG6), ATP-
dependent RNA helicase (DDX39), annexin A8 (ANXA8) and
cytochrome c oxidase subunit 4 (COX4) may serve as useful
biomarkers. Gajbhiye et al.114 provided a novel DIA-iTRAQ
strategy to uncover proteomic divergence in HER2-enriched
cancer cell lines, which allowed for the creation and testing
of a 21 protein panel to discriminate cancer and healthy
controls. Turning to TMT labeling, Going et al.115 and Clark
et al.116 utilized this strategy, illuminating the pathways of
action of methoxyclcone in triple negative breast cancer
(Fig. 4) and classifying exosomal cargo proteins, respectively.
As a cost-effective alternative to these iTRAQ and TMT labeling
strategies, DiLeu tagging approach has also successfully been
employed in identifying strategies for inhibiting cancer cell
proliferation. Within this work, Liu et al.117 revealed that

dynamic methylation of pyruvate kinase M2 (PKM2) directly
affect the metabolic activity of cancer cells and promotes cell
propagation, migration and metastasis. This study, along
with those detailed above, serve to indicate the importance of
high-throughput quantitative cancer proteomics, outlining
potential targets for future treatment strategies.

A significant entry into quantitative breast cancer proteomics
was provided by Johansson et al.118 This study provided in-depth
quantitation of 45 breast cancer tumors, spanning each of the
5 PAM50-based molecular classifications. Upon quantitation of
9995 proteins, the authors used these proteome profiles to
interpret multiple layers of systems measurements. While each
of these studies offered unique insight into uncovering and
validating potential biomarkers and investigative strategies, a
chief concern among many is the long-term reproducibility of
quantitative measurements. Using iTRAQ to quantify proteins
from human-in-mouse xenograft tissue, Zhou et al.119 demon-
strated that the large majority of quantitative measurements
hold consistent over time, but also raised some topical concerns.
First, they observed higher variability in quantitation of
hydrophilic peptides compared to those of average peptide
character, likely due to poor retention of these peptides on
column. Second, as researchers have their choice of dissociation
methods, this study reveals stepped collision energy offers
higher reproducibility between unique measurements. Finally,
whereas most commercial software implements a form of
scoring to determine the quality of a peptide spectral match
(PSM), this study goes further and reveals that a stricter scoring
mechanism improves reliability of time-course measurements.
This study provides an excellent framework and series of
considerations for individuals seeking to begin or improve
quantitative mass spectrometry investigations.

Label-free analyses have also been routinely implemented
for high throughput biomarker discovery and screening.
Among these, Ntai et al.120 compared the quantitation
efficiency in bottom-up and top-down analyses of tumor
xenografts. Tveitras et al.121 performed comparative analyses
of pre-metastatic and metastatic triple negative breast cancer
xenograft tissue, uncovering significant changes in expression
of haptoglobin, fibrinogen, and thrombospondin-4 and
transferrin receptor protein 1 between groups. Wang et al.122

employed a DIA-select reaction monitoring (SRM) approach to
reveal distinct proteomic and N-glycoproteomic divergence
between normal, precancerous, and cancerous tissues.
Gamez-Pozo et al.123 integrated label-free MS quantitation with
RT-qPCR to definitively distinguish estrogen receptor positive
and triple negative cancer subtypes. Nie et al.124 identified 98
differentially expressed proteins when comparing pure breast
cancer stem cells and mature luminal cells. Finally, Warmoes
et al.125 elucidated 215 proteins that are significantly enriched
in BRCA1-deficient secretome. This study highlights the
potential of mass spectrometry to provide sensitive identification
of biomarkers in instances when traditional ELISA screening
may fall short.

These examples of successful quantitative proteomic analyses
in breast cancer applications highlight the flexibility and facility

Fig. 4 Representative workflow established by Going et al.115 As quantitative
proteomics is critical for discovering and validated biomolecules of interest
during periods of disease and treatment, this workflow represents an example
of how treatment strategies may be controlled and systematically evaluated.
While SILAC methods would be useful in situations where cell growth is
monitored, isotopic labeling methods may be considered inherently lower
throughput due to the increases in spectral complexity they may provide.
Reprinted with permission.
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of creating novel workflows to answer an array of biological
problems. Knowing there have been a significant number of
proteomic measurements made prior to the period in review,
these examples of biomarker discovery and validation highlight
how rigorous protein MS-based screening assays for the
confident identification and stratification of breast cancer may
be within reach (Table 3). Assays of this kind, devoid of the need
for invasive and repetitive tissue sampling, provide a meaningful
conduit towards aiding communities that have limited access to
dedicated cancer screening centers and provide direct targets for
potential novel therapies.

Ovarian cancer

Although it has an estimated incidence rate of approximately
2% for 2020, ovarian cancer is the deadliest reproductive cancer
in women, with an estimated mortality rate of 5% in women
diagnosed with any cancer type and 64% for women diagnosed
with ovarian cancer.126 Much emphasis has been placed on the
continued research into mechanisms driving ovarian cancer, as
late-stage diagnosis of advanced cancer contributes to the high
mortality of ovarian cancer. Continued efforts have focused on
the identification of critical mechanisms driving disease
progression across ovarian cancer subtypes. Quantitative
proteomic strategies have continued to increase the depth of
knowledge surrounding ovarian cancer and its various subtypes
to improve earlier identification strategies and highlight new
therapeutic targets.

Cellular and tissue analyses

Because the majority of diagnosed ovarian cancer cases have
already progressed to a more advanced stage, much quantitative
research delves into tissue and cellular proteomic profiling to
isolate and exploit dysregulated proteins. While only applicable
to cellular-based models, SILAC has been implemented in
ovarian cell lines and led to the discovery of critical modulators
in ovarian disease progression. Musrap et al.127 cultured the
ovarian line OV-90 in adherent and non-adherent conditions
using SILAC to compare the impacts of cancer aggregate
formation on cellular proteomics. After quantifying 1533 proteins
in total, they compared expression with other aggregate-forming
lines and saw upregulation of CLCA1, which appeared to affect
cancer cell aggregation after further siRNA experimentation.

Grassi et al.128 utilized SILAC to quantify epidermal growth factor
(EGF)-induced epithelial–mesenchymal transition (EMT) to identify
specific mechanisms of this process that may be dysregulated for
metastatic purposes. 206 proteins were found to be differentially
expressed, some of which included proteins associated with the
G1 and G2 checkpoints of the cell cycle, indicating the role of
EGF-induced EMT in cell cycle control mechanisms. Another
investigation by Ji et al.129 utilized the metabolic strategy to perform
an integrated proteomic and N-glycoproteomic analysis of ovarian
cancer lines that were either doxorubicin-sensitive or -resistant.
They quantified 5509 protein groups and identified 1525 high-
confidence N-glycosites corresponding to 740 glycoproteins.
Quantifying the protein abundance allowed these researchers to
examine glycoprotein abundances and alterations, which provides
unique information into the role of N-glycosylation in drug
resistance.

Applicable to more than just cell culture-based models,
isobaric labeling is commonly employed for quantitative
experiments applied to ovarian cancer sample sets. Zhang
et al.130 used iTRAQ labeling to integrate quantitative
proteomics with the transcriptomic profile of ovarian high-
grade serous cancer (HGSC) patient biospecimens. Over 3500
proteins were quantified and used in tandem with genomic
results to reveal a strong association between specific histone
acetylation events and the homologous recombination
deficient phenotype seen in patient samples. Hiramatsu et al.131

comparatively profiled HGSC and endometrial carcinoma
samples using iTRAQ-based quantitation. Comprehensive
analysis revealed 356 quantifiable proteins and identified
mitochondrial inner membrane protease subunit 2 (IMP2) and
minichromosome maintenance complex component 2 (MCM2) to
be modulators of rapid HGSC growth, illustrating the need to
examine these two proteins in further ovarian cancer studies.

Alternatively, many other analyses have used the TMT-based
isobaric strategy rather than iTRAQ labeling. Recently,
Hu et al.132 used an integrated proteomic and glycoproteomic
approach with TMT-labeled peptides in their analysis of
ovarian HGSC versus non-tumor tissues. These authors
combined global proteomics, solid-phase extraction of
glycosite-containing peptides (SPEG) and glycan identification
via intact glycopeptide analysis to provide a comprehensive view
into N-glycoproteomics within ovarian cancer. Their integrated
approach yielded promising results, identifying tumor-specific
glycosylation and revealing glycosylation enzymes that were

Table 3 Summarized selection of breast cancer biomarkers

Proposed biomarker Source Findings

Fibronectin (FN1), alpha-2-macroglobulin (A2M),
complement component-4-binding protein-alpha
(C4BPA) and complement factor-B (CFB)112

Tumor tissue Critical for subtype differentiation

Large proline-rich protein (BAG6), ATP-dependent
RNA helicase (DDX39), annexin A8 (ANXA8) and
cytochrome c oxidase subunit 4 (COX4)113

MCF7 and T47D, MDA-MB-231, and
SK-BR-3 cells

Putative biomarkers for breast cancer

Methylated pyruvate kinase M2 (PKM2)117 MCF7, MDA-MB-231, HEK293T cells Promotes cell propagation, migration and metastasis
Haptoglobin, fibrinogen, and thrombospondin-4
and transferrin receptor protein 1121

Pre-/metastatic xenograft tissue Reveal N-glycoproteomic divergence between normal,
precancerous, and cancerous tissues
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correlated with altered glycosylation status. Yoshimura et al.133

treated neighboring peritoneal mesothelial cells with a micro-
RNA shown to be elevated in the serum of ovarian cancer
patients to determine its role in cancer invasion and metastasis.
The TMT-based proteomics analysis exhibited increased
expression of fibronectin and vitronectin, enhancing the ability
of the cancer cells to invade the surrounding environment.
A straightforward, quantitative comparison of TMT-labeled
normal versus cancerous ovarian tissue was performed by
Qu et al.134 to find differentially expressed proteins that hold
promise in elucidating disease progression. Initial analyses
found 498 differentially expressed proteins and highlighted
chloride intracellular channel protein 1 (CLIC1), which
was examined further and ultimately determined to promote
tumorigenesis, making it an attractive therapeutic target.
Proteogenomic and phosphoproteomic analysis was performed
by McDermott et al.135 to characterize mechanisms driving
ovarian HGSC functions down to the post-translational level.
Global proteomic analysis led to the identification of 10 706
proteins and combined results described a role of histone
acetylation as a marker for homologous recombination
deficiency, confirming an association earlier proposed by
Zhang et al.130 Phosphoproteomics data provided understanding
into proliferation-induced replication stress and the impact it
has on chromosomal instability in HGSC, implying that mitotic
and cyclin-dependent kinases could serve as therapeutic targets
after future experimental validation.

Label-free quantitation is frequently employed for ovarian
cancer analyses, as the global overview it provides of the
proteome allows researchers to identify multiple pathways for
further targeted analyses. Chuffa et al.136 used this approach to
determine the influence of melatonin treatment on an in vivo
model of ovarian cancer. Comparative proteomics analyses
showed that downregulation of processes involved in cancer
signaling was promoted, underlining molecular targets for
therapeutic intervention while indicating the feasibility of
melatonin supplementation for ovarian cancer patients.
Another comparative analysis by Júnior et al.137 explored the
effects of P-MAPA, IL-12 or a combination immunotherapy of
the two on the SKOV-3 ovarian cancer cell line. After confirming
532 proteins were identified across all groups, it was noted that
combination therapy of P-MAPA and IL-12 was most efficient at
regulating proteins involved in metabolic processes that may
render cancer cells more vulnerable, suggesting that the use of
the two therapies concomitantly is a plausible treatment
strategy. Coscia et al.138 used a quantitative, label-free approach
in tandem with other quantitative strategies to probe the
proteomes of platinum-resistant and -sensitive ovarian HGSC
patient-derived tissues (Fig. 5). Multi-level quantitative analyses
revealed cancer/testis antigen family 45 (CT45) as a prognostic
factor through mediation of chemosensitivity, thereby exposing
it as an immunotherapy target.

The quantitative tissue analyses outlined here provide multiple
protein targets for the development of new targeted therapies.
The role of a defective DNA damage response in ovarian cancer is
well established, so the multiple studies highlighting histone

acetylation and its role in homologous recombination deficiency
is supported by current literature and should be examined in
therapeutic development.139 Additional analyses that examine
post-translational modifications simultaneously with proteomics
should also be explored, as these studies may highlight other
processes outside the DNA damage response that promote cancer
progression. The experiments above outline the utility that
quantitative proteomic approaches hold in advancing the
knowledge of the ovarian cancer field.

Biofluid analyses

Quantitative analyses that inspect biofluids of ovarian cancer
samples provide valuable information about potential biomarkers
that allow for earlier detection and diagnosis, a current area of
the ovarian cancer field that is in dire need of new research
breakthroughs. Isobaric labeling of ovarian biofluids allow
scientists to relatively quantify biomarkers that may otherwise
go undetected or are lost during depletion of abundant serum
proteins such as albumin. Zhang et al.140 profiled exosomes
derived from patient plasma using the TMT tagging strategy.
When the 225 proteins identified across all samples were
quantitatively compared, proteins associated with the
coagulation cascade were found to be differentially expressed
and may therefore be promising diagnostic factors for ovarian
cancer. Zhang et al.141 went on to further profile circulating
exosomes of late-stage cancer patients using iTRAQ.
After validation, they determined that apolipoprotein E (ApoE)
multiplexed with epithelial cell adhesion molecule (EpCAM),
plasminogen (PLG), serpin family C member 1 (serpinC1) and
complement component 1q (C1q)were able to accurately
diagnose ovarian cancer. It was also noted that activation of
coagulation cascades was increased in the ovarian cancer
cohort due to increased Factor X levels, demonstrating the
impact that tumor-derived extracellular vesicles may have on
other biological processes. Swiatly et al.142 examined iTRAQ-
labeled serum proteins from healthy control, benign ovarian
tumor and ovarian cancer patients. Five proteins were found to
be differentially expressed within the ovarian cancer group, and
three of these coupled to current biomarkers CA125 and HE4
improved diagnostic discrimination between benign and
malignant ovarian tumors. Russell et al.143 used iTRAQ to
screen preclinical serum samples for detection of early stage
biomarkers and initially identified 90 differentially expressed
proteins in ovarian cancer cases. A second targeted analysis of
20 selected candidates revealed vitamin K-dependent protein Z
(VKDP), an anticoagulant not previously associated with
ovarian cancer, as either a novel independent early detection
biomarker or concomitantly with CA125 to increase differential
diagnostic capabilities.

Although label-free analyses suffer from longer instrument
times and potential run-to-run variability, they provide the
greatest profiling depth of the multiple quantitative strategies
and are vital to finding new ovarian biomarkers. Barnabas
et al.144 performed deep proteome profiling of 187 uterine
liquid biopsy-derived microvesicles to identify early detection
biomarkers. Machine learning algorithms identified a 9-protein
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signature that correctly identified all Stage I lesions, demon-
strating the strength of the panel for future use in early
diagnosis. Zhang et al.145 studied the plasma proteins to isolate
biomarkers related to chemoresistance of postoperative
reoccurrence. These experiments found a total of six dysregulated
proteins that could serve as predictive biomarkers for chemore-
sistance in ovarian cancer patients. The combination of plasma
proteomics and metabolomics was utilized by Ahn et al.146 to
discover new molecular signatures of ovarian HGSC. Differential
expression of 34 metabolites and 197 proteins was found, with
three proteins (phosphopantothenoylcysteine synthetase (PPCS),
peripheral myelin protein 2 (PMP2) and tubulin beta class I
(TUBB)) and two metabolites (L-carnitine and PC-O) related to
the carnitine system established as potential markers of cancer
plasticity. Hüttenhain et al.147 created a biomarker development
strategy for large-scale SRM studies in ovarian cancer plasma
samples. After developing a 5-protein signature for ovarian cancer
and testing it against the current ELISA-based standard for
biomarker tests, it was found that the SRM-based method had
sensitivity measurements that exceeded the current ELISA
standard, validating its potential for clinical development and use.

Rauniyar et al.148 also used a more targeted approach, combin-
ing data-independent acquisition methods with PRM to
improve identification of ovarian cancer serum biomarkers.
They demonstrated that ApoA-IV is a more reliable biomarker
than previously determined by immunological assays in addi-
tion to the identification of C-reactive protein, transferrin and
transthyretin as other available ovarian serum markers. Overall,
this study validated the use of quantitative mass spectrometry
as a more sensitive and reliable method of quantitation com-
pared to immunological-based procedures.

While the quantitative research mentioned here has
progressed ovarian cancer research, continuing studies are still
necessary to delve deeper into specific mechanisms of novel
markers identified. During the review process, many of the
identified studies had a tissue-based proteomics approach and
minimal studies focused on biofluid samples (Table 4). More
studies focusing on the use of biofluids in ovarian cancer
research are critical in the development of novel biomarkers
for earlier detection and treatment, and the lack of literature
compared to tissue-based studies highlights a current
area for further quantitative experimentation in ovarian cancer.

Fig. 5 Analysis by Coscia et al.138 to determine proteomic differences in ovarian cancer tissue samples either resistant or sensitive to platinum-based
chemotherapeutics. This strategy identified CT45 as a chemosensitivity modulator and demonstrates the ability of quantitative methods to identify
factors that play a role in therapeutic resistance. Reprinted with permission.
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In particular, studying the microvesicular proteome for the
discovery of novel biomarkers has shown great potential both
here and in other quantitative applications. Profiling of
extracellular vesicles may prove to be a vital key in the
prevention of late-stage diagnosis and increasing the overall
survival rate of patients diagnosed with ovarian cancer.

Conclusions and future directions

The various quantitative strategies outlined here have demon-
strated the growing utility of MS-based quantitation methods in
cancer diagnosis and research. Quantitative analyses of
prostate cancer have been frequently performed within the
field due to the growing emergence of resistance to first-line
treatments and false diagnoses associated with elevated PSA
levels. Multiple members of the KLK family were identified as
potential biomarkers and further strengthened when detected
in combination with other proteins, suggesting their potential
for clinical diagnosis. Targeted validation experiments in a
cohort spanning all grades of prostate cancer as well as BPH
should be performed before serious consideration is given to
using these proteins as biomarkers. Pancreatic studies have
been relatively successful in determining sets of robust bio-
markers for diagnosis and patient stratification. APOA1,
APOA4, IGFBP, and CA19-9 have been indicated in numerous
peer-reviewed studies as critical components for pancreatic
cancer screening. Future analyses should focus on high
throughput reaction monitoring to rapidly screen for these
biomarkers. Breast cancer research has seen limited quantitative
proteomics studies in recent years, so future efforts of those
investigating new biomarkers and determining mechanisms of
carcinogenesis should consider quantitative proteomics
strategies in their analyses. The small number of studies high-
lighted here contribute potential protein panels useful for breast
cancer screening, but more large-scale studies that confirm the
utility of these proteins as biomarkers are necessary. Ovarian
research has seen large numbers of tissue- and cellular-based

quantitation, but there is a lack of biofluid-based experiments.
While tissue-based studies provide large amounts of information
that guide knowledge of disease mechanisms, biofluid studies
offer important insights that could facilitate the identification
and development of protein biomarkers for clinical diagnosis.
Due to the lack of biomarkers that detect ovarian cancer at an
earlier stage, studies covering biofluids are critical and present
an understudied area within the ovarian field.

A common drawback of the quantitative studies addressed is
that these investigations only determine up- or downregulation
of differentially expressed proteins at a single point in time.
Time-course evaluations monitoring the differential expression
and dynamic changes of these proteins over time could prove to
be more useful, as these studies would explain how expression
levels change within a single patient over time. In combination
with the expression levels across varying disease severity, there
is a potential to determine a critical expression level for each
stage of cancer progression that determines not only if the
patient has cancer, but also the severity of that cancer relative
to biomarker concentration levels. Rapid analyses of cancer
samples via targeted monitoring strategies offer benefits over
current immuno-based assays such as ELISA, demonstrating
the advantage of MS-based quantitation for detection and
prolonged patient monitoring. Another strategy for improving
cancer diagnosis is the integration of additional analyses,
such as transcriptomics, metabolomics, or analysis of post-
translational modifications and associated crosstalk. Many of
the studies outlined here utilized a combined approach to their
investigations, leading to the successful identification of a
specific protein or process with altered expression in both
datasets. These integrated approaches help scientists identify
mechanisms driving cancer metastasis and treatment
resistance, thus demonstrating their growing utility in future
studies. Additional efforts should be made towards under-
standing communication within the tumor microenvironment,
as much remains to be known about the interactions that
help a tumor transition from localized to metastatic ability.

Table 4 Summarized selection of ovarian cancer biomarkers

Proposed biomarker Source Findings

Calcium-activated chloride channel 1 (CLCA1)127 OV-90 cells Affects cancer cell regulation
Insulin-like growth factor 2 (IMP2) and minichromo-
some maintenance complex component 2 (MCM2)131

HGSC and endometrial tissue Modulators of rapid high-grade serous cancer
growth

Fibronectin and vitronectin133 Peritoneal mesothelial cells Increased expression promotes cancer cell invasion
Chloride intracellular channel protein 1 (CLIC1)134 Tissue Determined to promote tumorigenesis
Histone acetylation130,135 Tumor tissue Marker for homologous recombination deficiency
Phospholinoleate-palmitoleate anhydride (P-MAPA),
interleukin 12 (IL-12)137

SKOV-3 Combination immunotherapy is a plausible
treatment strategy

Cancer/testis antigen family 45 (CT45)138 Tissue Found to be a prognostic factor
Apolipoprotein E (ApoE), epithelial cell adhesion
molecule (EpCAM), plasminogen (PLG), serpin family
C member 1 (serpinC1) and complement component
1q (C1q)141

Circulating exosomes Diagnostic markers of ovarian cancer

Vitamin K-dependent protein Z (VKDP) Preclinical serum Novel, early detection biomarker
Phosphopantothenoylcysteine synthetase (PPCS),
peripheral myelin protein 2 (PMP2) and tubulin beta
class I (TUBB)146

Blood, plasma Potential markers of cancer plasticity

Apolipoprotein IV (ApoA-IV)148 Serum More reliable biomarker compared to benchmark
proteins
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Finally, studies focusing on single-cell analyses should also be
considered for future experiments, as the cellular diversity and
heterogeneity provided from such examinations may prove to
be critical in understanding specific mechanisms that allow
pathogenesis to advance.

Taken together, this review highlights the utility of various
quantitative strategies, their associated limitations, and some
directions for novel applications in cancer diagnosis and cancer
research. As instrumental capabilities continue to grow, it will
become necessary for researchers to develop and validate
higher throughput labeling strategies that accommodate
deeper proteomic profiling. Regardless of the application,
quantitative proteomics represents a premier avenue towards
cancer biomarker detection, identification, and validation.
Continued efforts in the coming years will certainly be centered
on the utility of mass spectrometry-based biomarker detection
in clinical settings and the development of point-of-care
biomolecule screening.
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E. S. Boja, H. Rodriguez, R. R. Townsend and
N. L. Kelleher, Integrated bottom-up and top-down pro-
teomics of patient-derived breast tumor xenografts, Mol.
Cell. Proteomics, 2016, 15(1), 45–56.

121 M. K. Tveitarås, F. Selheim, K. Sortland, R. K. Reed and
L. Stuhr, Protein expression profiling of plasma and lungs
at different stages of metastatic development in a human
triple negative breast cancer xenograft model, PLoS One,
2019, 14(5), 1–16.

122 Z. Wang, H. Liu, Y. Yan, X. Yang, Y. Zhang and L. Wu,
Integrated Proteomic and N-Glycoproteomic Analyses of
Human Breast Cancer, J. Proteome Res., 2020, 19,
3499–3509.
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