Volume 216, 2019

Can we use on-the-fly quantum simulations to connect molecular structure and sunscreen action?

Abstract

The ground-up design of new molecular sunscreens, with improved photostability, absorbance and spectral coverage, stands as a challenge to fundamental chemical science. Correlating sunscreen molecular structure and function requires detailed insight into the relaxation pathways available following photoexcitation; however, the complex coupled electron/nuclear dynamics in these systems stands as a tough challenge to computational chemistry. To address this challenge, we have recently developed efficient and accurate simulation methods to model non-adiabatic dynamics of general molecular systems as a route to correlating photoinduced dynamics and potential sunscreen activity. Our approach, combining the multi-configuration time-dependent Hartree (MCTDH) method with PESs generated using machine-learning, represents a new “on-the-fly” strategy for accurate wavefunction propagation, with the potential to provide a new “black box” strategy for interrogating ultrafast dynamics in general photoinduced energy transport processes. Here, we illustrate our attempts to apply this methodology to study the ultrafast photochemistry of four compounds derived from mycosporine-like amino acids (MAAs), compounds which are believed to act as microbial sunscreens in micro-organisms such as algae. Specifically, we investigate how the choice of active vibrational space and diabatic electronic states in MCTDH strongly influences the predictions of ultrafast dynamic relaxation in representative MAAs. Our results serve to demonstrate that “on-the-fly” quantum dynamics using MCTDH is increasingly viable, but important barriers relating to coordinate choices and diabatisation remain.

Graphical abstract: Can we use on-the-fly quantum simulations to connect molecular structure and sunscreen action?

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2018
Accepted
18 Jan 2019
First published
22 Jan 2019

Faraday Discuss., 2019,216, 476-493

Can we use on-the-fly quantum simulations to connect molecular structure and sunscreen action?

Gareth W. Richings, C. Robertson and S. Habershon, Faraday Discuss., 2019, 216, 476 DOI: 10.1039/C8FD00228B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements