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Targeted multimodal theranostics via
biorecognition controlled aggregation of metallic
nanoparticle compositesT

Xi-Le Hu,? Yi Zang,? Jia Li,*® Guo-Rong Chen,? Tony D. James,© Xiao-Peng He*?
and He Tian®

We have developed a theranostic nanocomposite of metallic nanoparticles that uses two distinct
fluorescence mechanisms: Forster Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence
(MEF) controlled by ligand—receptor interaction. Supramolecular assembly of the fluorophore-labeled
glycoligands to cyclodextrin-capped gold nanoparticles produces a nanocomposite with a quenched
fluorescence due to FRET from the fluorophore to the proximal particle. Subsequently, interaction with
a selective protein receptor leads to an aggregation of the composite, reactivating the fluorescence by
MEF from the distal metallic particles to fluorophores encapsulated in the aggregates. The aggregation
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Accepted 3rd May 2016 also causes a red-shift in absorbance of the composite, thereby enhancing the production of reactive
oxygen species (ROS) on red-light irradiation. Our nanocomposite has proven suitable for targeted

DOI 10.1039/c65c01463a cancer cell imaging as well as multimode therapy using both the photodynamic and drug delivery

www.rsc.org/chemicalscience properties of the composite.

Introduction

Metallic nanoparticles are attractive nanomaterials that have
found applications in a diverse range of research fields. In
particular, because of their unique optical properties, these
materials have been employed for the diagnosis and photody-
namic therapy of human diseases. For example, gold nano-
particles (AuNPs) are used for the naked-eye detection of
biomolecules and pathogens due to the sensitive colorimetric
change observed upon aggregation.' They have also been used
as photoluminescent agents (gold nanoclusters)'® for cellular
and in vivo imaging. More recently, using the localized surface
plasmon resonance (LSPR) of AuNPs, novel sensors have been
developed using Raman spectroscopy.**™* It is also well known
that long-wavelength irradiation of AuNPs can promote the
production of reactive oxygen species (ROS) to kill cancer cells
and pathogens in a photodynamic manner.*>*¢

AuNPs can tune the emission of fluorophores when the
distance between the two species is adjusted. For example, the
Forster Resonance Energy Transfer (FRET) mechanism, where
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the AuNP serves as an energy acceptor and a proximal fluo-
rophore as the energy donor, may result in a quenched fluo-
rescence of the latter.”” However, a longer distance between the
AuNP and fluorophore can cause an enhancement of fluores-
cence of the latter via the metal-enhanced fluorescence (MEF)
mechanism."® With this research we demonstrate that these two
distinct mechanisms can be finely tuned by ligand-receptor
recognition, in order to develop a nanocomposite for targeted
theranostics.

Shown in Fig. 1a are the structures of the fluorophore-
labeled ligands. A glycoligand (galactose) was coupled to
naphthalimide using a click reaction,"?® followed by intro-
duction of adamantane to the dye moiety for the coating of
a cyclodextrin-attached AuNP (CD-AuNP).* Four analogues with
different alkyl chain lengths between dye and adamantane
(HXL1 vs. HXL2) or between dye and glycoligand (HXL2 vs.
HXL3 vs. HXL4) were synthesized for evaluation of the struc-
ture-activity relationship. These compounds were then coated
onto the CD-AuNP using the adamantane-CD host-guest inter-
action, in order to produce nanocomposites (Fig. 1b). While
quenched fluorescence is observed because of FRET from the
naphthalimide to the proximal AuNP, subsequent aggregation
of the composites by selective receptor protein interactions then
enhances the fluorescence by MEF from distal AuNPs to the
fluorophores encapsulated in the protein aggregate (Fig. 1b).
Meanwhile, the aggregation also causes a red-shift in absor-
bance of the nanocomposite, thereby enhancing the ability to
produce ROS upon red-light irradiation.

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 (a) Structure of the fluorophore-labeled glycoligands (HXLs)
with adamantane as a cyclodextrin binder and cartoon of HXL2, SH-
cyclodextrin (SH-CD) and gold nanoparticle (AuNP). (b) Schematic
illustration of the nanocomposite based on the host—guest interaction
between CD-AuNP and HXL2 with quenched fluorescence, and
enhancement of both fluorescence and reactive oxygen (ROS)
production by ligand—-receptor recognition.

Firstly, we tested the fluorescence quenching of HXLs after
supramolecular assembly with CD-AuNPs in a Tris-HCI buffer
solution (0.01 M, pH 7.4). The results indicated that the fluo-
rescence of all of the naphthalimides quenched in a concen-
tration-dependent manner with increasing CD-AuNP (Fig. 2a
and Slat), suggesting that the compounds are immobilized in
proximity to the particle surface. The overlapping emission
band of the naphthalimide and absorbance band of the AuNP
suggests that FRET is the cause of the fluorescence quenching
(Fig. S2t). Subsequently, we observed that the addition of
a selective galactose receptor, peanut agglutinin (PNA), gradu-
ally enhances the fluorescence of the nanocomposites with
different recovery rates (Fig. 2b and S1b?). While only a minimal
difference in quenching was observed for HXL1 and HXL2
(Fig. 2a), the fluorescence recovery of the latter was much
stronger than the former (Fig. 2b). However, slight chain elon-
gation displayed little effect on the fluorescence (HXL3 vs.
HXL2), whereas a more distant coupling between ligand and
fluorophore decreased the rate of fluorescence enhancement
(HXL4 vs. HXL2). We also determined that the enhancement
was specific for PNA over a range of unselective proteins (Fig. 2¢
and S371). The observed enhancement of fluorescence is prob-
ably the result of MEF, which could occur in the protein-
nanocomposite aggregate matrix, from the distal AuNPs to the
fluorophores. Our observations are in agreement with the
previously reported MEF-based biosensing systems.?*?** Our
results also suggest that optimization of the molecular length of

This journal is © The Royal Society of Chemistry 2016
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Fig.2 (a) Concentration-dependent fluorescence quenching of HXLs

(0.56 pM) in the presence of increasing CD-AuNP. (b) Concentration-
dependent fluorescence recovery of HXLs@CD-AuNP (0.56 uM/7 nM)
in the presence of increasing peanut agglutinin (PNA). (c) Fluorescence
enhancement of HXL2@CD-AuUNP (0.56 pM/7 nM) in the presence of
different proteins (30 puM, from left to right: pepsin, wheat germ
agglutinin, ribonuclease, bovine serum albumin, concanavalin A and
Lens culinaris lectin) (I1, lo, I and I’ are the fluorescence intensity of HXL,
HXL@CD-AuNP, HXL with CD-AuNP of a certain concentration and
HXL@CD-AuNP with a protein of a certain concentration, respec-
tively). (d) UV-vis absorbance of HXL2@CD-AuNP (0.56 uM/7 nM) in
the absence and presence of PNA (70 pM). (e) Reactive oxygen species
(ROS) production after irradiation (600 nm) of HXL2@CD-AuNP (0.56
uM/7 nM, composite) in the absence and presence of PNA (30 uM,
aggregate) with time. (f) Reactive oxygen species (ROS) production of
HXL2@CD-AuNP (0.56 uM/7 nM) with increasing PNA after irradiation
(600 nm) for 10 min.

the compounds can enhance the MEF efficiency within the
aggregates.

To substantiate the FRET and MEF mechanisms, we have
carried out additional fluorescence life-time measurements. On
the one hand, with increasing CD-AuNP a sequential decrease of
lifetime of HXL2 is observed, indicating energy transfer from
the compound to nanoparticles (Fig. S4at).>* While on the other
hand, according to a previous report* we determined the
radiative (k;) and nonradiative kinetic (k,,) parameters for
HXL2, HXL2@CD-AuNP and HXL2@CD-AuNP in the presence
of PNA. While, a slight change in k,, of HXL2 upon association
with CD-AuNP and interaction with PNA is probably the result
of small disruptions of the nanoparticles, the increased &, of the
HXL2@CD-AuNP nanocomposite in the presence of PNA (6.1 x
1077 S7') with respect to the nanocomposite itself (1.1 x 10~
S™") suggests that the lectin-induced aggregation of nano-
particles increases the electromagnetic resonance coupling.
Therefore, corroborating a MEF fluorescence enhancement
mechanism.*

Next, we determined that the absorbance band of the
composite was red-shifted after aggregation with PNA (Fig. 2d).
This leads to a drastic increase in the production of ROS upon
red-light irradiation (600 nm) with time (Fig. 2e), as measured
by a ROS trapper.”® The ROS signal was also observed to
intensify gradually with increasing PNA (Fig. 2f). These results

Chem. Sci,, 2016, 7, 4004-4008 | 4005
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indicate that, in addition to the enhanced emission, the
aggregation also facilitates the ability of the nanocomposite to
produce ROS upon red-light irradiation.

To further characterize the aggregation of the nano-
composite, a series of microscopic techniques were employed
(Fig. 3). With transmission electron microscopy (TEM) we
observed that bare CD-AuNP and the HXL2@CD-AuNP
composite were monodispersed particles, whereas addition of
PNA caused particle aggregation (Fig. 3a). The morphological
change is in agreement with data obtained from dynamic light
scattering (the particle size of the composite increased sharply
with added PNA) (Fig. 3b). Dark-field microscopy (DFM) was
also used to characterize the aggregation, considering that an
intensified scattering can be recorded with large AuNP aggre-
gates due to coupled plasmonic oscillations of the aggregated
AuNPs."™ With minimal signals for CD-AuNP and the
HXL2@CD-AuNP composite, we observed strong scattering
spots for the PNA-aggregated particles. Similarly, confocal laser
scanning microscopy (CLSM) corroborated that the quenched
fluorescence emission of HXL2@CD-AuNP composite could be
recovered in the presence of PNA (Fig. 3a). These data support
the aggregation as well as the resulting fluorescence enhance-
ment of the nanocomposite.

We then set out to evaluate our nanocomposite for receptor-
targeted cell imaging. A hepatoma cell line (Hep-G2) that

expresses a transmembrane galactose receptor (the
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Fig. 3 (a) Transmission electron microscopy (TEM, scale bar = 200

nm, arrows indicate aggregated particles), dark-field microscopy
(DFM, scale bar = 20 um) and confocal laser scanning microscopy
(CLSM, scale bar = 10 pum) of CD-AuNP (7 nM) and HXL2@CD-AuNP
(0.56 uM/7 nM) without or with PNA (70 uM). (b) Dynamic light scat-
tering of CD-AuNP (7 nM) and HXL2@CD-AuNP (0.56 puM/7 nM)
without or with PNA (30 puM).
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asialoglycoprotein receptor - ASGPr) and control cell lines
(human cervical cancer - HeLa and human lung cancer - A549)
with minimal ASGPr expression were used.”” The ASGPr
expression level was examined by real-time quantitative poly-
merase chain reaction (RT-qPCR) (Fig. 4a). Treatment of
HXL2@CD-AuNP with the cells only led to a fluorescence
production in Hep-G2 cells, but not in the control cells, as
determined by both fluorescence quantification (Fig. 4b) and
imaging (Fig. 4c). To evaluate whether the fluorescence was
dependent on ASGPr-HXL2 recognition, the following assays
were also carried out: (1) knockdown of ASGPr largely decreased
the nanocomposite fluorescence produced in Hep-G2 (Fig. S57),
and (2) preincubation with increasing amounts of free p-galac-
tose and Hep-G2 also gradually suppressed the fluorescence
(Fig. S6T). Meanwhile, the nanocomposite with an increasing
HXL2 concentration did not show toxicity to Hep-G2 and mouse
embryonic fibroblast cell lines (Fig. S71). The fact that both
knockdown of ASGPr and competition by free galactose sup-
pressed the fluorescence suggests a receptor-dependent inter-
action of the nanocomposite with Hep-G2.

We also used DFM to analyze the interaction of HXL2@CD-
AuNP nanoemsemble with the cells (Fig. 4c). We observed
strong AuNP scattering in Hep-G2 cells, where the majority of
the particles were aggregated (Fig. 4c). This is in accordance
with the fluorescence detected in Hep-G2 cells, suggesting that
the intracellular aggregation of the nanocomposites was medi-
ated by ASGPr. However, minimal scattering signals were
recorded for the control cells (HeLa and A549) without ASGPr
expression. These cellular assays suggest the ability of the
nanocomposite developed for targeted cell imaging by receptor-
mediated intracellular aggregation.
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Fig. 4 (a) Normalized mRNA level of asialoglyprotein receptor

determined by real-time quantitative polymerase chain reaction for
Hep-G2 (human hepatoma), Hela (human cervical cancer) and A549
(human lung cancer) cells (¥***P < 0.001). (b) Fluorescence quantifi-
cation of different cells after treatment with HXL2@CD-AuNP (10 uM/
100 nM). (c) Fluorescence and dark field imaging (scale bars: 20 um;
excitation channel: 410-430 nm; emission channel: 460-540 nm) of
different cells after treatment with HXL2@CD-AuNP (10 pM/100 nM).
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Subsequently, the therapeutic potential of the nano-
composite was evaluated using both the photodynamic*>'® as
well as drug delivery properties of the AuNPs.**° We first mixed
an anticancer drug, hydroxycamptothecin (HCPT), with the
nanocomposite. The cell viability assay showed that while
a short-term (15 min) incubation of HCPT alone with different
cancer cells (Hep-G2, HeLa and A549) resulted in a slight cyto-
toxic effect probably because of insufficient internalization of
the drug by the cells (Fig. 5a), loading of the drug with the
nanocomposite significantly enhanced the toxicity for Hep-G2,
but not for the control cells (Fig. 5a). This suggests that the
nanocomposite is able to quickly deliver the drug to Hep-G2
probably by receptor-mediated endocytosis, while also pre-
venting the unselective uptake of the drug by other cells (since
the cell viability of HeLa and A549 treated with the nano-
composite is higher than those treated with drug alone).

Given that the aggregation of the nanocomposite in cells
enhances the production of ROS, we also irradiated the cells
pretreated with the nanocomposite-drug hybrid with red-light
(600 nm). In addition to the cytotoxicity of the drug, we observed
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Fig. 5 (a) Cell viability of Hep-G2, HelLa and A549 after treatment with

hydroxycamptothecin (HCPT, 1 uM), HCPT@HXL2@CD-AuNP (1 uM/
10 uM/100 nM, particle) and HCPT@HXL2@CD-AuUNP with red-light
irradiation (600 nm, 30 min). (b) Concentration/time-dependent
reactive oxygen species (ROS) production of the particle with red-light
irradiation after incubation with different cells and a resulting cell
viability after 30 min irradiation.
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that the irradiation further suppressed the cell viability of Hep-
G2, but not that of the control cells (Fig. 5a). This suggests that
the photodynamic therapy is similarly target-specific. To eval-
uate the photodynamic therapy, we detected the ROS produc-
tion of nanocomposite for different cells. We observed that ROS
was produced selectively with Hep-G2 cells in a concentration
dependent manner over the control cells (Fig. 5b). The ROS
production resulted in a concentration-dependent cell death for
Hep-G2, but not for HeLa and A549 (Fig. 5b). These data suggest
a multimode therapeutic potential (drug loading and photody-
namic ROS production, both of which function predominantly
for receptor-rich cells) of the nanocomposite for targeted
disease theranostics.

Conclusions

To summarize, we developed a unique nanocomposite based on
the switch of two distinct mechanisms of AuNPs. The composite
in its fluorescence-quenched form displays a much more
enhanced emission upon aggregation via a selective receptor
protein interaction. This aggregation also facilitates ROS
production upon red-light irradiation because of a red shift of
the absorbance band. As a proof-of-concept, the nanocomposite
has been demonstrated to work as a receptor-targeting cell
imaging and multimode theranostic system, using both the
drug carrying and photodynamic properties of the nano-
composite. We believe that our research paves the way for the
development of a diverse array of fluorogenic, therapeutic
nanomaterials based on the diversity of available metallic
nanoparticles.

Acknowledgements

This research is supported by the 973 project (2013CB733700),
the Science and Technology Commission of Shanghai Munici-
pality (15540723800), the Shanghai Science and Technology
Development Funds (14YF1413300), the Natural Science Foun-
dation of China (21572058, 21576088 and 81302820), the
National Science and Technology Major Projects (2014ZX09507-
002) and the Shanghai Rising-Star Program (16QA1401400).
Prof. Yi-Tao Long is warmly thanked for help in DFM. The
Catalysis And Sensing for our Environment (CASE) network is
thanked for research exchange opportunities. T. D. ]J. thanks
ECUST for a guest professorship.

Notes and references

1S. Rana, N. D. B. Le, R. Mout, K. Saha, G. Y. Tonga,
R. E. S. Bain, O. R. Miranda, C. M. Rotello and
V. M. Rotello, Nat. Nanotechnol., 2014, 10, 65-69.

2 S. O. Kelley, C. A. Mirkin, D. R. Walt, R. F. Ismagilov,
M. Toner and E. H. Sargent, Nat. Nanotechnol., 2014, 9,
969-980.

3 P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. Gonzalez,
D. Ramos, M. Calleja and J. Tamayo, Nat. Nanotechnol., 2014,
9, 1047-1053.

Chem. Sci., 2016, 7, 4004-4008 | 4007


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sc01463a

Open Access Article. Published on 04 May 2016. Downloaded on 02/11/2025 10:07:18 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

4 7. Nie, A. Petukhova and E. Kumacheva, Nat. Nanotechnol.,
2010, 5, 15-25.

5 G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada,
Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten and
H. Haick, Nat. Nanotechnol., 2009, 4, 669-673.

6 C. C. You, O. R. Miranda, B. Gider, P. S. Ghosh, L-B. Kim,
B. Erdogan, S. A. Krovi, U. H. F. Bunz and V. M. Rotello,
Nat. Nanotechnol., 2007, 2, 318-323.

7 M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev and
J. B. Edel, Nat. Mater., 2012, 12, 165-171.

8 Y. Zhang, Y. Guo, Y. Xuanyu, W. Chen, Y. Zhao and X. Jiang,
Adv. Mater., 2013, 25, 3802-3819.

9 X.-P. He, Y. Zang, T. D. James, J. Li and G.-R. Chen, Chem.
Soc. Rev., 2015, 44, 4239-4248.

10 L.-Y. Chen, C.-W. Wang, Z. Yuan and H.-T. Chang, Anal.
Chem., 2015, 87, 216-229.

11 C. Jing, Z. Gu, Y.-L. Ying, D.-W. Li, L. Zhang and Y.-T. Long,
Anal. Chem., 2012, 84, 4284-4291.

12 L. Shi, C. Jing, W. Ma, D.-W. Li, J. E. Halls, F. Marken and
Y.-T. Long, Angew. Chem., Int. Ed., 2013, 52, 6011-6014.

13 D.-W. Li, L.-L. Qu, K. Hu, Y.-T. Long and H. Tian, Angew.
Chem., Int. Ed., 2015, 54, 12758-12761.

14 R. Qian, Y. Cao and Y.-T. Long, Angew. Chem., Int. Ed., 2016,
55, 719-723.

15 S. S. Lucky, K. C. Soo and Y. Zhang, Chem. Rev., 2015, 115,
1990-2042.

16 L. Cheng, C. Wang, L. Feng, K. Yang and Z. Liu, Chem. Rev.,
2014, 114, 10869-10939.

17 E. Dulkeith, A. C. Morteani, T. Niedereichhoiz, T. A. Klar,
J. Feldmann, S. A. Levi, F. C. J. M. van Veggel,

4008 | Chem. Sci,, 2016, 7, 4004-4008

View Article Online

Edge Article

D. N. Reinhoudt, M. Mdller and D. I. Gittins, Phys. Rev.
Lett., 2002, 89, 203002.

18 P. Anger, P. Bharadwaj and L. Novotny, Phys. Rev. Lett., 2006,
96, 113002.

19 V. V. Rostovstsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596-2599.

20 C. W. Tornge, C. Christensen and M. Meldal, J. Org. Chem.,
2002, 67, 3057-3064.

21 N. Zhang, Y. Liu, L. Tong, K. Xu, L. Zhuo and B. Tang,
Analyst, 2008, 133, 1176-1181.

22 Y. Wang, B. Liu, A. Mikhailovsky and C. C. Bazan, Adv.
Mater., 2010, 22, 656-659.

23 X.Wang, S. Li, P. Zhang, F. Lv, L. Liu, L. Li and S. Wang, Adv.
Mater., 2015, 27, 6040-6045.

24 Z. Zeng, S. Mizukami, K. Fujita and K. Kikuchi, Chem. Sci.,
2015, 6, 4934-4939.

25 S. Sarkar, R. Bose, S. Jana, N. R. Jana and N. Pradhan, J. Phys.
Chem. Lett., 2010, 1, 636-640.

26 Y. Yang, Y. Hu, H. Du and H. Wang, Chem. Commun., 2014,
50, 7287-7290.

27 D.-K.]i, Y. Zhang, Y. Zang, W. Liu, X. Zhang, J. Li, G.-R. Chen,
T. D. James and X.-P. He, J. Mater. Chem. B, 2015, 3, 9182—
9185.

28 P. Ghosh, G. Han, M. De, C. K. Kim and V. M. Rotello, Adv.
Drug Delivery Rev., 2008, 60, 1307-1315.

29 Y. Cheng, A. C. Samia, J. D. Meyers, 1. Panagopoulos, B. Fei
and C. Burda, J. Am. Chem. Soc., 2008, 130, 10643-10647.

30 N. Chen, Z.-H. Yu, D. Zhou, X.-L. Huy, Y. Zang, X.-P. He, J. Li
and J. Xie, Chem. Commun., 2016, 52, 2284-2287.

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sc01463a

	Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle compositesElectronic supplementary information (ESI) available: Additional figures, experimental section. See DOI: 10.1039/c6sc01463a
	Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle compositesElectronic supplementary information (ESI) available: Additional figures, experimental section. See DOI: 10.1039/c6sc01463a
	Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle compositesElectronic supplementary information (ESI) available: Additional figures, experimental section. See DOI: 10.1039/c6sc01463a
	Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle compositesElectronic supplementary information (ESI) available: Additional figures, experimental section. See DOI: 10.1039/c6sc01463a




