Perovskite photoinitiated RAFT-mediated polymerization-induced self-assembly for organic–inorganic hybrid nanomaterials†
Abstract
Perfluorooctanoic acid-modified CsPbBr3 perovskite quantum dots (F-PQDs) are used as both luminescence centers and photocatalysts to prepare organic–inorganic nanohybrid assemblies. Polymerization-induced self-assembly (PISA) technology of poly(poly(ethylene glycol) monomethyl ether methacrylate)-b-poly(perfluorooctyl)ethyl methacrylate copolymers (POEGMA-b-PFOEMA) via photo-induced electron/energy transfer RAFT (PET-RAFT) simplifies the synthetic steps of hybrid nanoparticles and enables the in situ encapsulation of PQDs through the dipole–dipole interaction based on the fluorocarbon chain on F-PQDs’ surface and FOEMA. The insolubility of the PFOEMA block with liquid crystal properties allows for effective modulation of the hybrid nanostructure in toluene. Modulation of the block length achieves the transition from nanorods to spindle-like nano-assemblies and these hybrid nanoparticles possess PQDs’ inherent fluorescence and enhanced stability. This strategy simplifies the preparation scheme of a PQD/polymer composite and provides a new perspective for the design of organic–inorganic hybrid materials through the photo-PISA strategy.
- This article is part of the themed collection: FOCUS: Perovskite Materials and Devices