Issue 29, 2024

ZIF-67-derived Co–N–C supported nickel cobalt sulfide as a bifunctional electrocatalyst for sustainable hydrogen production via alkaline electrolysis

Abstract

As non-renewable resources are finite and cannot be utilized indefinitely, hydrogen (H2) has emerged as a promising alternative for clean and sustainable energy. The cost-effective hydrogen production to meet large-scale commercial demand poses a significant challenge. Water electrolysis, powered by electricity derived from renewable resources, stands out as a viable route towards sustainable hydrogen production, with electrocatalysis playing a pivotal role in this process. Notably, materials derived from metal–organic frameworks (MOFs) exhibit excellent physicochemical properties, making them promising candidates for electrocatalysis. In this study, we synthesized zeolitic imidazolate framework-67 (ZIF-67) and its derived Co–N-doped carbon (Co–N–C) supported NiCo2S4 on nickel foam (NF), namely NF@ZIF-67@NiCo2S4 and NF@Co–N–C@NiCo2S4, using a hydrothermal method. The electrocatalytic activity of these synthesized materials for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was systematically evaluated using various electrochemical techniques. The NF@ZIF-67@NiCo2S4 material demonstrates overpotentials of 248 and 359 mV for OER and HER at the current density of 50 mA cm−2, whereas, NF@Co–N–C@NiCo2S4 exhibits overpotentials of 239 and 351 mV, respectively. Furthermore, the catalysts exhibit excellent stability in both OER and HER even under high applied potentials. Moreover, to assess their catalytic performance in a full-cell configuration, two alkaline electrolyzer cells were assembled: NF@ZIF-67@NiCo2S4(+)∥NF@ZIF-67@NiCo2S4(−) and NF@Co–N–C@NiCo2S4(+)∥NF@Co–N–C@NiCo2S4(−). These two electrolyzers demonstrated cell potentials of 1.62 V and 1.59 V at 10 mA cm−2, respectively, showcasing their efficacy in overall water-splitting.

Graphical abstract: ZIF-67-derived Co–N–C supported nickel cobalt sulfide as a bifunctional electrocatalyst for sustainable hydrogen production via alkaline electrolysis

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2024
Accepted
03 Jul 2024
First published
04 Jul 2024

Nanoscale, 2024,16, 14020-14032

ZIF-67-derived Co–N–C supported nickel cobalt sulfide as a bifunctional electrocatalyst for sustainable hydrogen production via alkaline electrolysis

Sumit, A. Borah, S. Palaniyappan and G. Rajeshkhanna, Nanoscale, 2024, 16, 14020 DOI: 10.1039/D4NR01196A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements