Volume 2, 2024

Photothermal catalytic oxidation of toluene over the Pt–Mn2O3/CN nanocomposite catalyst

Abstract

The Pt–Mn2O3/CN catalyst formed through synthesis via a solvent-thermal method involves a synergistic combination of polymer CN and Pt nanoparticles loaded on Mn2O3 to catalyze the degradation of toluene. The composition incorporates Mn2O3 as the central element for photothermal conversion, CN as a uniformly dispersed matrix for Pt nanoparticles, and Pt as the catalytically active center, demonstrating significant efficacy. Particularly noteworthy is the discernible enhancement in the photothermal catalytic degradation capability of the Pt–Mn2O3/CN composite catalyst, specifically in the context of toluene. When subjected to light intensity of 300 mW cm−2 and a toluene concentration of 400 ppm, Pt–Mn2O3/CN achieves toluene conversion and CO2 mineralization rates of 99% and 80.9%, respectively. This improvement primarily stems from the Pt nanoparticles inducing a substantial presence of oxygen vacancies within the catalyst structure, thereby increasing the oxygen adsorption capacity and surface mobility. This, in turn, activates adsorbed oxygen species at the catalyst's interface. The adept utilization and conversion of solar irradiance for volatile organic compound (VOC) abatement underscore its potential as an environmentally friendly and renewable energy source.

Graphical abstract: Photothermal catalytic oxidation of toluene over the Pt–Mn2O3/CN nanocomposite catalyst

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 Dec 2023
Accepted
18 Jan 2024
First published
20 Jan 2024
This article is Open Access
Creative Commons BY-NC license

EES. Catal., 2024,2, 811-822

Photothermal catalytic oxidation of toluene over the Pt–Mn2O3/CN nanocomposite catalyst

X. Yu, C. Zhao, L. Yang, J. Zhang and C. Chen, EES. Catal., 2024, 2, 811 DOI: 10.1039/D3EY00298E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements