Issue 21, 2023

TADF emitters based on a tri-spiral acridine donor and a spiro-B-heterotriangulene acceptor with high horizontal dipole orientation ratios and high efficiencies in deep-blue OLEDs

Abstract

Developing thermally activated delayed fluorescence (TADF) emitters showing high horizontal transition dipole orientation and molecular rigidity is crucial for enhancing the color purity and performance of deep-blue organic light-emitting diodes (OLEDs). Here, we report two linearly expanded TADF emitters, O-tsAC-BAsBP (1) and S-tsAC-BAsBP (2), based on a tri-spiral acridine donor and a spiro-fluorenyl B-heterotriangulene acceptor. These emitters exhibit deep-blue emissions, with peaks centered at 458–467 nm for 1 and 462–469 nm for 2, respectively, in the host films, with high photoluminescence quantum yields, small singlet–triplet energy splitting (ΔEST < 0.05 eV), and short delayed fluorescence lifetimes (τd < 2 μs). Theoretical studies demonstrate that effective spin–orbit coupling between the charge transfer singlet (1CT) and acceptor-centered local triplet (3LE) excited states accelerates the reverse intersystem crossing (RISC) process, resulting in a high RISC rate constant of ∼106 s−1. Notably, both emitters exhibit very high horizontal dipole orientation ratios (Θ) of ∼93% in their doped host films. Owing to the outstanding TADF characteristics and high Θ values, TADF-OLEDs incorporating emitters 1 and 2 achieve high maximum external quantum efficiencies of 27.4% and 31.5%, respectively, in the deep-blue region.

Graphical abstract: TADF emitters based on a tri-spiral acridine donor and a spiro-B-heterotriangulene acceptor with high horizontal dipole orientation ratios and high efficiencies in deep-blue OLEDs

Supplementary files

Article information

Article type
Research Article
Submitted
08 Jun 2023
Accepted
24 Aug 2023
First published
05 Sep 2023

Mater. Chem. Front., 2023,7, 5413-5421

TADF emitters based on a tri-spiral acridine donor and a spiro-B-heterotriangulene acceptor with high horizontal dipole orientation ratios and high efficiencies in deep-blue OLEDs

Y. H. Lee, J. Ji, T. Q. Tran, T. Lee, J. Jung, Y. Lee, S. Yoo and M. H. Lee, Mater. Chem. Front., 2023, 7, 5413 DOI: 10.1039/D3QM00653K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements