Issue 13, 2020

Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors

Abstract

The contact resistance (Rc) and the effective carrier mobility (μeff) are considered as the important indicators of the performance of organic field-effect transistors (OFETs). Conventionally, the contact resistance is regarded as the interface effect between the metal electrodes and the organic semiconductors, while the carrier mobility is correlated to the crystallinity and π–π stacking of the organic molecules. In the staggered OFETs, Rc is actually closely correlated to μeff through the channel sheet resistance. Besides, the accuracy of the carrier mobility directly extracted from the non-ideal transfer curves with significant contact effect is always questionable. Herein, a diffusion-lead surface doping approach is employed to improve the contact resistance and mobility issues simultaneously. By suppressing the trap states in the sublimated 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), we observed a 3-fold increase in the carrier mobility from 0.5 to 1.6 cm2 V−1 s−1, and the Rc also drops remarkably from 25.7 kΩ cm to 5.2 kΩ cm. Moreover, the threshold voltage (VTH), subthreshold swing (SS) and the bias stability of the OFETs are also significantly improved. Based on the detailed characterization of the C8-BTBT film upon surface doping, including X-ray diffraction (XRD) for the film crystallinity, Kelvin probe force microscopy (KPFM) for the surface potential, trap state investigation by density of states (DOS) measurement and electrical circuit modeling for partial doping analysis, we confirmed that the spontaneous charge transfer process due to the diffusion of the F4-TCNQ dopants in the C8-BTBT matrix can lead to an effective trap filling. This technique and findings can be potentially developed into a general approach for the improvement of different performance parameters of OFETs.

Graphical abstract: Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2020
Accepted
25 Feb 2020
First published
27 Feb 2020

Phys. Chem. Chem. Phys., 2020,22, 7100-7109

Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors

K. Pei, A. H. Y. Lau and P. K. L. Chan, Phys. Chem. Chem. Phys., 2020, 22, 7100 DOI: 10.1039/D0CP00487A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements