Issue 20, 2017

Frontiers of water oxidation: the quest for true catalysts

Abstract

Development of efficient and economic water oxidation catalysts (WOCs) remains a crucial bottleneck on the way to artificial photosynthesis applications. Over the past few decades, WOC research has turned into a fascinating interdisciplinary field that ranges from bio-inspired molecular design over nanomaterials and thin films to solid materials tuning. Under the umbrella of WOC optimization, advanced in situ/operando analytical techniques are being developed as increasingly powerful tools to elucidate the controversial discussions about the molecular or nanoscale nature of many WOCs. More and more of these approaches also enable the monitoring of possible key intermediates as an essential prerequisite for proposing catalytic mechanisms. This review is organized in three main parts: first, recent highlights outline frontiers in WOC development, such as the benefits of connecting molecular WOCs with solids along with the introduction of molecular concepts into heterogeneous WOC research. Next, a brief overview of emerging in situ/operando approaches demonstrates new options for monitoring WOC transformations. Finally, selected monitoring studies over the entire WOC dimensionality spectrum illustrate interesting cases of catalytic border crossings as new input for WOC construction.

Graphical abstract: Frontiers of water oxidation: the quest for true catalysts

Article information

Article type
Review Article
Submitted
09 May 2017
First published
26 Jul 2017

Chem. Soc. Rev., 2017,46, 6124-6147

Frontiers of water oxidation: the quest for true catalysts

J. Li, R. Güttinger, R. Moré, F. Song, W. Wan and G. R. Patzke, Chem. Soc. Rev., 2017, 46, 6124 DOI: 10.1039/C7CS00306D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements