Issue 45, 2015

Stoichiometric and catalytic C–F bond activation by the trans-dihydride NHC complex [Ru(IEt2Me2)2(PPh3)2H2] (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene)

Abstract

The room temperature reaction of C6F6 or C6F5H with [Ru(IEt2Me2)2(PPh3)2H2] (1; IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene) generated a mixture of the trans-hydride fluoride complex [Ru(IEt2Me2)2(PPh3)2HF] (2) and the bis-carbene pentafluorophenyl species [Ru(IEt2Me2)2(PPh3)(C6F5)H] (3). The formation of 3 resulted from C–H activation of C6F5H (formed from C6F6via stoichiometric hydrodefluorination), a process which could be reversed by working under 4 atm H2. Upon heating 1 with C6F5H, the bis-phosphine derivative [Ru(IEt2Me2)(PPh3)2(C6F5)H] (4) was isolated. A more efficient route to 2 involved treatment of 1 with 0.33 eq. of TREAT-HF (Et3N·3HF); excess reagent gave instead the [H2F3] salt (5) of the known cation [Ru(IEt2Me2)2(PPh3)2H]+. Under catalytic conditions, 1 proved to be an active precursor for hydrodefluorination, converting C6F6 to a mixture of tri, di and monofluorobenzenes (TON = 37) at 363 K with 10 mol% 1 and Et3SiH as the reductant.

Graphical abstract: Stoichiometric and catalytic C–F bond activation by the trans-dihydride NHC complex [Ru(IEt2Me2)2(PPh3)2H2] (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene)

  • This article is part of the themed collection: Fluorine

Supplementary files

Article information

Article type
Paper
Submitted
27 May 2015
Accepted
08 Jul 2015
First published
17 Jul 2015

Dalton Trans., 2015,44, 19597-19605

Author version available

Stoichiometric and catalytic C–F bond activation by the trans-dihydride NHC complex [Ru(IEt2Me2)2(PPh3)2H2] (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene)

M. K. Cybulski, I. M. Riddlestone, M. F. Mahon, T. J. Woodman and M. K. Whittlesey, Dalton Trans., 2015, 44, 19597 DOI: 10.1039/C5DT01996F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements