Issue 2, 2024

Bio-based hyperbranched epoxy resins: synthesis and recycling

Abstract

Epoxy resins (EPs), accounting for about 70% of the thermosetting resin market, have been recognized as the most widely used thermosetting resins in the world. Nowadays, 90% of the world's EPs are obtained from the bisphenol A (BPA)-based epoxide prepolymer. However, certain limitations severely impede further applications of this advanced material, such as limited fossil-based resources, skyrocketing oil prices, nondegradability, and a “seesaw” between toughness and strength. In recent years, more and more research has been devoted to the preparation of novel epoxy materials to overcome the compromise between toughness and strength and solve plastic waste problems. Among them, the development of bio-based hyperbranched epoxy resins (HERs) is unique and attractive. Bio-based HERs synthesized from bio-derived monomers can be used as a matrix resin or a toughener resulting in partially or fully bio-based epoxy thermosets. The introduction of a hyperbranched structure can balance the strength and toughness of epoxy thermosets. Here, we especially focused on the recent progress in the development of bio-based HERs, including the monomer design, synthesis approaches, mechanical properties, degradation, and recycling strategies. In addition, we advance the challenges and perspectives to engineering application of bio-based HERs in the future. Overall, this review presents an up-to-date overview of bio-based HERs and guidance for emerging research on the sustainable development of EPs in versatile high-tech fields.

Graphical abstract: Bio-based hyperbranched epoxy resins: synthesis and recycling

Article information

Article type
Review Article
Submitted
31 Aug 2023
First published
18 Dec 2023

Chem. Soc. Rev., 2024,53, 624-655

Bio-based hyperbranched epoxy resins: synthesis and recycling

Y. Jiang, J. Li, D. Li, Y. Ma, S. Zhou, Y. Wang and D. Zhang, Chem. Soc. Rev., 2024, 53, 624 DOI: 10.1039/D3CS00713H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements