Volume 205, 2017

Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production

Abstract

Plasmon-induced chemical reactions have recently attracted great attention as a promising method for high efficiency light-energy conversion and proved to be useful in a wealth of different domains of chemistry and physics. One of the interesting and, so far, less explored avenues of such reactions is their potential for efficient, highly localized and controlled polymer production. Here, we present the first example of a localized, directed plasmon catalyzed polymerization process of a self-assembled monolayer on both silver and gold surfaces monitored by surface- and tip-enhanced Raman spectroscopy (SERS and TERS). As a proof-of-concept, a bi-functionalized dibenzo(1,2)dithiine-3,8-diamine (D3ATP) molecule that undergoes a well-known plasmon-induced coupling via the amino group into an azo group has been used. Initial dimerization is demonstrated using established marker bands associated with the formation of the azo group. A subsequent indicator for a polymerization reaction, the appearance of a new characteristic band, is monitored by time-dependent SERS and TERS experiments. We demonstrate that the dimerization reaction and hence, the subsequent polymerization, can be induced by a plasmonic feature, e.g. a TERS tip, at specific nanoscale locations and, at a much larger micron scale, by continuously scanning the plasmonic probe. The presented results provide the basis for designing further plasmonic catalysis experiments in general, and offer a new platform for producing ultra-thin polymer films with a defined structural dimension.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2017
Accepted
04 May 2017
First published
09 May 2017

Faraday Discuss., 2017,205, 213-226

Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production

Z. Zhang, M. Richard-Lacroix and V. Deckert, Faraday Discuss., 2017, 205, 213 DOI: 10.1039/C7FD00157F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements