Issue 20, 2015

The formation and degradation of active species during methanol conversion over protonated zeotype catalysts

Abstract

The methanol to hydrocarbon (MTH) process provides an efficient route for the conversion of carbon-based feedstocks into olefins, aromatics and gasoline. Still, there is room for improvements in product selectivity and catalytic stability. This task calls for a fundamental understanding of the formation, catalytic mechanism and degradation of active sites. The autocatalytic feature of the MTH process implies that hydrocarbons are active species on the one hand and deactivating species on the other hand. The steady-state performance of such species has been thoroughly studied and reviewed. However, the mechanism of formation of the initial hydrocarbon species (i.e.; the first C–C bond) and the evolution of active species into deactivating coke species have received less attention. Therefore, this review focuses on the significant progress recently achieved in these two stages by a combination of theoretical calculations, model studies, operando spectroscopy and catalytic tests.

Graphical abstract: The formation and degradation of active species during methanol conversion over protonated zeotype catalysts

Article information

Article type
Review Article
Submitted
13 Apr 2015
First published
17 Jul 2015

Chem. Soc. Rev., 2015,44, 7155-7176

Author version available

The formation and degradation of active species during methanol conversion over protonated zeotype catalysts

U. Olsbye, S. Svelle, K. P. Lillerud, Z. H. Wei, Y. Y. Chen, J. F. Li, J. G. Wang and W. B. Fan, Chem. Soc. Rev., 2015, 44, 7155 DOI: 10.1039/C5CS00304K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements