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Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered
drug delivery, have been widely studied due to their high specificity and effective therapy. However,
conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with
UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have
been made to engineer nanosystems that can generate luminescence through excitation with near-
infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy
through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light,
these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy
in deeper tissues. In this review, we systematically report the design and mechanisms of different
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1. Introduction

Light-mediated therapeutics have emerged significantly over
the past few decades due to their specificity, non-invasiveness
and high therapeutic efficacy. Typically, a photosensitive mole-
cule is delivered to the target tissue, while light is directed onto
the target tissue to activate the molecule for specific therapy.
For example, photodynamic therapy involves the light activa-
tion of a photosensitizer delivered into the target tissue. Upon
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luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.

activation, reactive oxygen species (ROS) such as singlet oxygen
(*0,) or hydroxyl radicals (*OH) are generated, damaging the
target cells." However, most photosensitizers are only activated
by UV or visible light.> Another well-studied light-mediated
therapy involves light-triggered drug release, which generally
involves nanoparticles conjugated with drug molecules through
photocleavable linkers or bonds. Light in the UV/visible spec-
trum usually has enough energy to cleave such linkers and
release the drug into the target tissue.® Light-based therapeu-
tics ensure the activation of nanomaterials only in the target
tissue, while having minimal effects in other healthy tissues.
However, light in the UV/visible spectrum exhibits poor
penetration of just a few millimetres in biological tissue and
would not be suitable for deep tissue light-mediated therapy.”*
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Therefore, recently, certain nanosystems have been engineered
to produce UV/visible light upon activation with excitation
sources that exhibit deeper penetration in biological tissues.
This enables the implementation of light-mediated therapies in
deep tissue.

Near-infrared (NIR) light, possessing a tissue penetration
depth of 1-2 cm, can produce visible light through upconver-
sion processes through excitation with NIR-I (700-1000 nm) or
NIR-II light (1000-1700 nm).”” In addition, NIR-II light can
also be generated in other NIR-excited nanosystems through
downconversion processes.® The visible light produced is usually
utilised for therapeutic purposes, while the NIR-II light serves as an
imaging modality given its lower tissue attenuation.*” Ultrasound,
with a tissue penetration depth exceeding 10 cm, could also activate
certain nanomaterials to produce light in the visible range.'
Ultrasound generates luminescence either through sonolumines-
cence (cavitation of bubbles in a liquid medium) or through the
deformation of mechanoluminescent nanomaterials.""""* X-rays
have the deepest penetration depth compared to NIR and ultra-
sound, with almost unlimited penetration depth in biological
tissue.”> More importantly, X-rays can pass through very dense
body structures like bone, enabling therapies in organs protected
by bone such as the brain."* X-rays also carty sufficient energy to
cause direct band-to-band excitation in many nanosystems, result-
ing in the generation of strong light in the UV/visible range and the
activation of most photosensitive molecules. Finally, certain nano-
materials could enhance chemiluminescence produced from

—
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chemical reactions without the need for external activation."® This
allows the therapy to be carried out in deep tissue regions without
considering light scattering.

Therefore, it is of great essence that we summarise the
strategies reported that enable the activation of light-mediated
therapies in deep tissue. In this review, we systematically discuss
the design and mechanism of different nanomaterials that
enable emission of chemiluminescence, NIR-, X-ray- and
ultrasound-excited luminescence (Fig. 1). In addition, we will
also report methods for enhancing luminescence intensity,
applications of the nanosystems in deep tissue therapy, as well
as the comparison between strengths and weaknesses of the 4
excitation modes.

2. Chemiluminescence

Chemiluminescence is the phenomenon characterized by the
generation of light through chemiexcitation occurring within a
chemical reaction, without external light excitation.'® By har-
nessing the light emission generated through chemilumines-
cent reactions, it becomes possible to overcome the limitations
of traditional light-mediated therapy with UV/visible light
sources, such as low tissue penetration and potential damage
to surrounding tissues. There are 2 major mechanisms of
chemiluminescence: direct chemiluminescence and indirect
chemiluminescence."’
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Fig. 1 Schematic illustration of the different mechanisms of light generation with chemi-excitation, NIR-excitation, ultrasound-excitation and X-ray-
excitation that support deep-tissue light-mediated therapeutics. (C: chemiluminophore; CL: chemiluminescence; DCL: downconversion luminescence;
F: fluorophore; MB: microbubble; ML: mechanoluminescence; NM: nanomaterial; PersL: persistent luminescence; R: radical; RL: radioluminescence; SL:

sonoluminescence; and UCL: upconversion luminescence).
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Fig. 2 Schematic illustrations of the mechanisms of (a) direct chemilu-
minescence and (b) indirect chemiluminescence.

Direct chemiluminescence refers to the emission of light
directly from the excited state of a chemical species formed
during a chemical reaction (Fig. 2a). Examples of direct chemi-
luminescence involve the oxidation of chemiluminescent sub-
strates (C), such as luminol, or its derivatives. They can be
directly oxidized by reactive oxygen species, such as superoxide
anions (O, ) and hydrogen peroxide (H,0,), resulting in the
generation of excited radicals (R*). These radicals emit photons
while returning to the ground state (R). A classic example of
direct chemiluminescence is the reaction between luminol and
hydrogen peroxide, producing light at 440 nm.'® In indirect
chemiluminescence, the excited radicals do not return to the
ground state directly. Instead, they interact with a nearby
auxiliary species, such as fluorophores (F), to generate light.
Indirect chemiluminescence relies on energy transfer processes
between the chemiexcited species and the luminophore, nor-
mally achieved through chemiluminescence resonance energy
transfer (CRET). Typical examples involve the oxidation of
peroxyoxalate esters, certain ruthenium complexes or dioxe-
tanes, generating high-energy radicals that can excite a nearby
luminophore.

Traditionally, chemiluminescence occurs randomly as a
result of the interaction between reactants at low concen-
tration. By leveraging nanomaterials, we can control the rate,
location and enhance the intensity of chemiluminescence for
therapeutic purposes. Nanomaterials, such as metal nano-
particles, quantum dots, and organic nanomaterials play
important roles in the delivery and enhancement of chemilu-
minescence for deep tissue applications. Nanomaterials with
high loading capacity and surface tunability, such as meso-
porous silica nanoparticles (MSNs) or polymers, facilitate the
targeted delivery of chemiluminophores or catalysts into deep
tissues."®?® On the other hand, other nanomaterials actively
participate in chemiluminescence reactions by catalysing the
necessary reactions or acting as a chemiluminophore.”>*?
Through this strategic approach, nanomaterials pave the way for
light generation in deep tissue regions for light-based therapeutics.

2.1 Nanomaterials as delivery agents

To generate chemiluminescence in specific areas, nanomaterials
have been utilised as delivery agents of chemiluminophores,
oxidizers, or catalysts that catalyse the chemiluminescence reac-
tion. This enables control over the location of chemiluminescence.

Guo et al. encapsulated luminol with the photosensitiser
chlorin e6 (Ce6) in poly(ethylene glycol).'® Following the reac-
tion between luminol and H,O,, light emission occurs at
440 nm, which overlaps with the absorption spectra of Ce6
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for the initiation of photodynamic therapy. Apart from delivering
chemiluminophores, delivering oxidizers could also enhance
chemiluminescence. Certain Fe*'-containing nanomaterials
could generate H,0, endogenously through the Fenton reaction,
which increases the rate of chemiluminophore oxidation. For
example, the MnFe,0, core was encapsulated in the Zr-based
MOF, where Fe*" acted as a catalyst to generate H,0, via the
Fenton reaction.>®> H,0, then reacted with the encapsulated
luminol, resulting in enhanced chemiluminescence, while the
Zr-based MOF acted as a photosensitiser. The system exhibited
significant enhancement in chemiluminescence and high anti-
tumour efficacy in vivo.

Catalysts for chemiluminescence reactions can also be
delivered by nanomaterials to enhance their catalytic activity.
Ren et al. conjugated hemin, a catalyst of luminol-H,0, reaction,
onto polymer dots (hemin-Pdots), resulting in a 700-fold enhance-
ment in chemiluminescence (CL) intensity and 20-fold prolonged
emission.>* The surface of the nanomaterial could be further
engineered for targeting. For example, the surface of a PEGylated
chemiluminophore could be modified with folic acid (FA), allow-
ing specific binding to cancer cells due to the overexpressed folate
receptor (FR).*

To ensure specifically targeted chemiluminescence, Cao
et al. developed hemin-MSN@DNA, incorporating DNA gates
onto the pores of mesoporous silica nanoparticles (MSNs)
loaded with hemin.”® Upon degradation of DNA gates by
specific bacteria, hemin was released from the pores, enhancing
the chemiluminescence signal (Fig. 3a). The authors assessed
the CL intensity on E. coli and S. aureus, and the results revealed
a strong correlation between bacterial concentration and CL
intensity (Fig. 3b and c), confirming specific chemiluminescence
generation. In addition, the DNA gating on the pores of MSNs
allows for a hybridization chain reaction on their surface,
enabling the formation of a hydrogel coating.*® This further
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Fig. 3 (a) Schematic representation of the mechanism of chemilumi-
nescence generation from hemin—-MSN@DNA. Correlation between
chemiluminescence intensity of hemin-MSN@DNA and (b) E. coli and
(c) S. aureus concentration. Reproduced with permission from ref. 25.
Copyright 2019, American Chemical Society.
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improved stability and loading capacity compared to traditional
gated mesoporous silica systems.

2.2 Nanomaterials as catalysts for chemiluminescence
enhancement

Instead of delivering the catalyst to the chemiluminescence
reaction site, many metal-based nanomaterials offer intrinsic
catalytic properties. In this section, we will discuss the nano-
materials that offer catalytic properties for different chemilu-
minescence reactions, including metal-based nanomaterials,
organic nanomaterials and semiconducting nanomaterials.
2.2.1 Metal-based nanomaterials. Gold nanoparticles
(Au NPs) were first reported by Liu et al. as catalysts for the
luminol-H,0, reaction, where gold nanoparticles of around
38 nm in diameter enhanced the chemiluminescence intensity
of the luminol-H,0, reaction by 10 times.'® Basically, AuNPs
catalyse the breaking of the O-O bond in H,0,, resulting in the
formation of double hydroxyl radicals (*OH) as intermediates.
The °*OH radicals react with luminol anions and HO, to
facilitate the formation of luminol radicals (L*”) and super-
oxide radical anions (0,°7), resulting in the formation of
an unstable endoperoxide and subsequent 3-aminophthalate*
(3-APA*). When the excited-state 3-APA returned to the ground
state, an enhanced CL was observed. Following the discovery of
catalytic properties in gold nanoparticles, extensive efforts have
been undertaken to enhance and optimize their catalytic per-
formance. For example, Au NPs modified with ethandiamine
exhibited a fivefold improvement in the catalytic activity of Au
NPs, due to the enhanced interaction with reactive oxygen
species, resulting in the generation of singlet oxygen (*0,).”
The negative anions also attracted endogenous luminol anions,
which were readily oxidised by the 'O, on the surface of Au NP,
leading to enhanced chemiluminescence. P-iodophenol (PIP)-
capped Au NPs further improved CL by 29-fold due to elevated
production of 0,*” radicals, '0,, and H,0, for enhanced
oxidation of luminol.>® Different morphologies of gold nano-
particles were also studied. It was found that gold nanostars are
more beneficial for catalysing CL due to their sharp branches,
which exhibit high electron density at the tips for enhanced
catalytic activity.?® Gold nanoflowers are also beneficial for
catalysis, since they exhibit a larger specific surface area,
providing more active sites for catalytic reactions. Additionally,
they generate a stronger local electromagnetic field enhance-
ment effect, further promoting the catalytic process.*®
Chemiluminescence could also be increased through the
aggregation of catalysts. For example, chemiluminescence was
enhanced by aggregating Au NPs with complex DNA networks
(CDNs).”" A hairpin (H,) exposed to the CDN is cleaved by a
specific DNAzyme (BB’) in the network, forming a single-
stranded hairpin (H;.). Simultaneously, Au NPs that are tagged
with nucleic acids complementary to Hj4(p,q) would be
assembled by H,, to form an aggregated state (Fig. 4a). At a
higher DNAzyme (BB’) level, the absorption band of the CDN
decreased more quickly, indicating more efficient Au NP aggrega-
tion (Fig. 4b and c). In addition, aggregated Au NPs also produced
stronger chemiluminescence compared to the un-aggregated ones

This journal is © The Royal Society of Chemistry 2024
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Fig. 4 (a) Schematic illustration of the time-dependent aggregation of Au

NPs. Time-dependent absorbance spectra of the complex DNA network
with (b) low concentration of BB’ DNAzyme and (c) high concentration of
BB’ DNAzyme. (d) Chemiluminescence emission spectra generated by the
control (black curve) and the aggregated Au NPs (red curve). (e) TEM image
corresponding to the aggregates of the Au NPs generated by CDN with a
low BB’ level after 4 h (panel I) and 8 h (panel Il) of aggragation and by CDN
with a high BB’ level after 4 h (panel Ill) and 8 h (panel IV) of aggregation,
respectively. Reproduced with permission from ref. 21. Copyright 2018,
American Chemical Society.

(Fig. 4d). Finally, the TEM image validated the stronger aggrega-
tion of Au NPs in the CDN with a higher BB’ level (Fig. 4elll and
IV) as compared to a lower BB’ level (Fig. 4el and II).

Silver and platinum nanoparticles also enhance the lumi-
nol-H,0, reaction, with a similar catalytic mechanism to Au
NPs.**? It was also found that the catalytic activity of silver
nanoparticles (AgNPs) increased with the aggregation of small
Ag NPs, due to the increase in the electron density in the Ag
NPs’ conduction bands.?* Other than gold, silver and platinum,
copper(u1) compounds like CuFe,O, nanospheres could also act
as efficient catalysts for luminol-based chemiluminescence
reactions.®® This is because Cu®" catalyses the formation of
CL intermediates such as superoxide radicals (0,* ") and hydro-
xyl radicals (*OH).

Since metal-organic frameworks (MOFs) provide a high
surface area for catalysis, constructing MOFs with catalytic
metal ions would be more effective in enhancing chemilumi-
nescence. For example, metal-organic framework (MOF) nano-
particles composed of Zr** and Cu®" ions bridged by 2,2’
bipyridine-5,5’-dicarboxylic acid ligands provided almost
20-fold improvement in catalytic activity compared to Cu>" ions
alone.*® In addition, Fe-based MOFs modified with AuNPs
showed around 110-fold enhancement in CL intensity com-
pared to AuNPs alone.?¢

2.2.2 Organic nanomaterials. Organic nanomaterials could
also catalyse chemiluminescence reactions through the genera-
tion of radicals. For example, layered double hydroxides (LDHs)
could catalyse the TCPO-H,0, system to produce enhanced

Chem. Soc. Rev., 2024, 53, 2898-2931 | 2901
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CL.*” LDHs accelerated the generation of OOH radicals, which
promoted the formation of a 1,2-dioxetanedione intermediate
and 2,4,6-trichlorophenol, resulting in the emission of CL.

Instead of relying on radical generation, certain DNAzymes
exhibit peroxidase-like activity and can be applied to catalyse
the luminol-H,O, reaction. For example, the microRNA
(miRNA)-responsive DNAzyme system could enhance chemilu-
minescence intensity by 3 fold at 100 pm.*® The presence of a
target microRNA triggered the assembly of the G4 DNAzyme
following binding with specific hairpin probes, resulting in
the specific catalysis of CL from the luminol-H,0O, reaction.
However, a G4 DNAzyme has limited stability, as it is suscep-
tible to many degradation pathways like nuclease attack.
Instead of using DNA networks, DNAzymes can be conjugated
on the surface of a gold nanoparticle (SNAzymes), protecting
them from degradation.?® The SNAzymes not only displayed an
improved resistance to nuclease degradation as compared to
the G4 DNAzyme, but also improved the density of DNA on the
nanoparticle (~150 nucleic acids per particle). This eventually
showed 100-fold CL signal enhancement compared to 1 mole-
cule of G4 DNAzyme.

2.2.3 Semiconducting nanomaterials.
catalyse chemiluminescence through charge separation and
production of radicals. A mixture of graphene quantum dots
and molybdenum disulphide quantum dots (GQDs/MoS, QDs)
catalysed the rhodamine B (RB)-H,O, reaction, resulting in a
9-fold enhancement.”® This is due to the charge separation
between GQDs and MoS, QDs, with GQDs becoming p-type
doped and MoS, QDs becoming n-type doped. Hence, RB
was oxidized by the holes in GQDs while the electrons in
MosS, QDs reacted with H,0,, creating more hydroxyl radicals
(*OH) responsible for the oxidation of RB.

TGA-capped CdTe quantum dots (QDs) catalysed the lumi-
nol-KIO, CL system by generating radicals.* KIO, is stongly
oxidizing and injected a hole into the valence band of CdTe
QDs, producing O,°". The presence of a reducer, hydroxide
ions (OH"), injected an electron into the conduction band of
CdTe QDs, producing °*OH. These active oxygen-containing
reactant intermediates accelerated the oxidation reaction of
luminol and increased CL emission.

Semiconductors

2.3 Nanomaterials as chemiluminophores

Certain nanomaterials can absorb energy from various CL
systems to emit light. There are 2 major mechanisms: first,
the nanomaterial could be injected with electrons and holes by
the radicals in the CL system, where the electron-hole combi-
nation results in light emission. Otherwise, the nanomaterial
accepts energy from excited radicals in the CL system through
chemiluminescence resonance energy transfer (CRET).

2.3.1 Electron/hole injection. Some nanomaterials could
be injected with electrons or holes by radicals in the CL system,
resulting in light emission. For example, oxidizing agents like
K3Fe(CN)g or KMnO, injected holes into carbon dots, resulting
in the generation of positively-charged carbon dots (C-dot**).***?
On the other hand, dissolved oxygen injected electrons into
the carbon dots, generating negatively-charged carbon dots

2902 | Chem. Soc. Rev., 2024, 53, 2898-293]
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(C-dot* ™). Subsequently, electron-hole recombination gave rise
to CL emission at 515 nm or 430 nm when oxidized by K;Fe(CN)s
or KMnO,, respectively. *O,” and *OH radicals resulting from
the H,0,-10, system also acted as hole and electron injectors
on cobalt and nitrogen co-doped carbon dots (Co,N-CDs) for CL
emission at 504 nm.**

2.3.2 Chemiluminescence resonance energy transfer
(CRET). Certain quantum dots can directly harvest the energy
from excited radicals, such as excited singlet oxygen (*0,)* in
the CL system, through chemiluminescence resonance energy
transfer (CRET) to emit light. For example, black phosphorus
quantum dots (BPQDs) emitted light at 490 nm when incubated
with the H,0,-NaHSOj; CL system.>” Moreover, carbon nitrogen
quantum dots (CNQDs) emitted at 480 nm in the 10, -H,0,
system.*® Apart from accepting energy from (*0,)*, carbon dots
accepted energy from excited carbon dioxide (CO,)* in the
NaNO,-H,0,-carbonate system, emitting light at 500 nm.*®
More recently, it was discovered that doping sulphur on quan-
tum dots could further enhance CL. This is because doping of
sulphur into quantum dots can introduce S-related energy
levels between m and =n*, resulting in efficient emission
peaks.*”*® Sulphur and nitrogen co-doped graphene quantum
dots (SN-GQDs) were found to absorb energy from excited
oxygen (O,)* in the H,0,-KIO, system, resulting in a 200-fold
enhancement of CL at 416 nm.*® SN-GQDs could also improve
the CL at 480 nm from the Mn(v)-SO;>~ system by 900-fold
through accepting energy from (SO,)*.>° Moreover, a polymer
with a low band gap (DPAeCNePPV) could also accept the
energy from the reaction between bis(2-carbopentyloxy-3,5,6-
trichlorophenyl) oxalate (CPPO) and H,0, to emit light at
700 nm.”" Further doping with BODIPY leads to roughly 50-
fold enhancement in CL emission in the system since it bridges
the energy gap between the chemiluminescence reaction and
DPAeCNePPV.

NaYF,:Yb**/Er*" nanoparticles, although being widely studied
for their light upconversion properties, were shown to be able to
absorb the energy from radicals in the NaHCO;-NH,OH-H,0,
CL system and emit light.>> The reaction between H,0, and
NaHCO; yields reactive species such as *OH, *CO’~, and *0,~
radicals, normally emitting luminescence at 441, 480, 580 and
634 nm (Fig. 5b). Following incubation with NaYF,:Yb*/Er*",
Yb*" sensitized the CL emission and transferred energy to the
activator ion Er** (Fig. 5a). Relaxation of Er’* resulted in
enhanced CL emissions at 523, 544, and 653 nm, corresponding
to the Hy1,o—"I15/2, *S32~"I15/2, and *Fo,—*I;5/, transitions of Er**
(Fig. 5¢). The disappearance of emission peaks from the original
CL system indicated efficient energy transfer to NaYF,:Yb**/Er*",
while CL intensity was enhanced by 334 fold.

2.4 Chemiluminescence-mediated light therapy

The ability of chemiluminescence to generate light endogen-
ously without external light activation made many deep-tissue
light-mediated therapies possible, including photodynamic
therapy (PDT), photothermal therapy (PTT) and drug delivery.
The efficacy of PDT is mainly based on the intensity of CL,
which ultimately depends on the intracellular concentration of

This journal is © The Royal Society of Chemistry 2024


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3cs00862b

Open Access Article. Published on 24 January 2024. Downloaded on 15/08/2024 05:52:07.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review Article

4
- e,

o

CL intensity (a.u.)
@
2
8
CL intenstty (a.u.)
3
P—

523 |

\ | || 5 456 /ﬂl
\\M | V'i:{ jmw" { 653

~
—

J h\
W’J Said Py ‘W‘-M S
o T T T T T T
300 400 500 600 700 400 500 600 700
Wavelength (nm) Wavelength (nm)

Fig. 5 (a) Schematic illustration of the chemiluminescence mechanism of
NaYF,:Yb®* Er®*. Yb*" absorbs energy from radicals and transfers energy
to excite Er**, which eventually relaxes and emits 3 characteristic wave-
lengths. (b) Emission spectrum of the NaHCO3z-NH4OH-H,O, system.
(c) Emission spectrum of the NaHCO;-NH4OH-H,O, system in the
presence of NaYF,:Yb>*/Er®*. Reproduced with permission from ref. 52.
Copyright 2012, American Chemical Society.

oxidizers like H,O,. However, intracellular H,0, is limited and
efforts have been undertaken to augment H,O, levels to
enhance the efficacy of PDT. For PTT and drug delivery,
chemiluminescence is primarily employed for tracking the
localization of photothermal agents or drugs. Therefore, cur-
rent studies are primarily focused on the development of H,O,-
generating nanoystems, nanosystems that emit near-infrared
(NIR) chemiluminescence and ‘turn-on” nanoprobes that
exclusively activate within the vicinity of the target tissue.

2.4.1 Photodynamic therapy. Photodynamic therapy
involves the delivery of photosensitizers into the target tissue
followed by light activation of a specific wavelength, which
leads to the generation of reactive oxygen species (ROS), killing
the target cells." Taking advantage of the upregulated H,O, level
in tumour cells, the chemiluminophore delivered could generate
a stronger CL to activate the co-delivered photosensitizer.

In 2011, Jiang et al. produced a novel PDT system, which
leveraged the chemiluminescence reaction between peroxalate
ester and H,0,.”> They prepared polyoxometalate (POM) by
encapsulating a peroxalate ester oligomer, a fluorescent dye
(rubrene) and photosensitiser TPP within PEG-PCL copolymer
micelles. Peroxalate in POMs reacted specifically with the
enriched-H,0, around the tumour area and formed 1,2-
dioxetanedione, which emitted light to excite rubrene and
TPP. This system was shown to exhibit significant anti-cancer
efficacy against C4 and Lovo cells lines in vitro. To ensure more
specific tumour targeting, Zhang et al. reported an active-
targeting nanosystem (POCL) that uses folate as a targeting
ligand.*® They co-delivered bis(2-carbopentyloxy-3,5,6-trichloro-
phenyl)oxalate (CPPO) and the photosensitizer tetraphenyl-
porphyrin (TPP), where the CL from the reaction between CPPO
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and H,0, excited TPP, generating '0,. In vivo studies demon-
strated a higher accumulation of this nanosystem in the
tumour area, which was 3-fold greater compared to POCL
without folate. After 21 days of treatment on tumour-bearing
mice, the average tumour weight in the POCL group was
significantly reduced by 85% compared to the untreated group.

However, the efficacy of CL-triggered PDT was still limited by
the intracellular H,O, level, which is often less than 100 um.
Hence, Li et al proposed a CPPO-based nanoplatform
(C:@M@C,G) that could self-generate H,O, to improve treat-
ment efficacy.”® The nanoplatform consisted of CPPO and the
photosensitizer porphyrin encapsulated by Fe-MOF nano-
particles and glucose oxidase (GOD). GOD catalysed the decom-
position of glucose from the tumour area, generating H,0, and
gluconic acid, which created a H,O,-rich and acidic microen-
vironment. A portion of the increased H,0, underwent Fenton
reaction catalysed by Fe in the MOF under a low pH environ-
ment, generating oxygen to combat hypoxia in the tumour area
(Fig. 6a). The remaining H,O, reacted with CPPO to produce CL
that excited the porphyrin photosensitizers in the MOF, result-
ing in the generation of 'O, (Fig. 6a). The incubation of the
nanoplatform with more glucose resulted in higher H,0,
production, accompanied by a drop in pH from 6.8 to 2.6 after
10 minutes (Fig. 6b and c). In addition, 'O, production
was enhanced around 2-fold in the presence of glucose at
1 mg mL ™', accompanied by the greatest tumour inhibition
compared to the control groups without GOD (Fig. 6d and e).
Other than relying on glucose to generate H,0,, a recent study
demonstrated the possibility to generate H,O, by reacting with
intracellular water.>® A nanosystem (mSCCC@SA) combining
Ca0,, CPPO and the photosensitiser Ce6 was introduced, where
CaO, reacted with intracellular water to generate H,O, and O,,
resulting in stronger CL and enhanced PDT efficacy. This
nanosystem reduced the cell viability of HepG2 cells to 40%
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Fig. 6 (a) Schematic illustrations of the enhanced PDT by C;@aM@C,G

through enhanced generation of H,O, combined with other therapies. (b)
Absorption spectra of C;@M@C,G particles and glucose, where higher
absorbance refers to higher H,O, content. (c) pH measurement of the
C,@M@C,G particle following addition of glucose (1 mg mL™) over time.
(d) Fluorescence spectra of SOSG (*O, indicator) added to C;@M@C,G
after mixing with H,O, and glucose, where higher fluorescence indicates
higher 1O, production. (e) In vivo tumour growth curves of mouse groups
with different treatments. Reproduced with permission from ref. 54.
Copyright 2021, Royal Society of Chemistry.
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while the control groups without CaO, maintained a cell
viability close to 90%.

2.4.2 Photothermal therapy. Photothermal therapy (PTT)
involves the use of an NIR laser to activate nanoparticles
delivered to the tumour area, which results in a temperature
increase in the tumour and possibly tumour ablation.>®
Chemiluminescent nanoparticles are usually applied to enhance
the photothermal effect or provide imaging guidance for the
therapy.

Gold nanoparticles (AuNPs) have been applied for photo-
thermal therapy due to their ability to generate heat upon NIR
activation. However, these small AuNPs are easily excreted from
the body, resulting in low tumour accumulation and poor
therapeutic efficacy. A recent study by Shi et al. demonstrated
the possibility of photo-cross-linking small Au NPs by CL to
prevent rapid clearance from the tumour area.>” Small AuNPs
(25 nm) were covalently conjugated with photolabile molecules
and luminol (t&mAuNP/Lu). Under the reaction between
luminol and H,O0,, the luminescent nanoparticles emitted
chemiluminescence and induced cross-linking of the AuNPs,
forming covalently cross-linked AuNP aggregates (Fig. 7a).
Tumours treated with t&mAuNP/Lu nanoparticles showed a
local temperature increase to 55.4 °C following 10 minutes of
808 nm laser irradiation, while other treatment groups without
luminol remained below 45 °C (Fig. 7b). In vivo studies with
mice bearing 4T; tumours showed significant growth inhibi-
tion following PTT with t&mAuNP/Lu (Fig. 7c). Apart from
improving therapeutic efficacy, chemiluminescent nano-
particles could also provide image guidance to PTT. Li et al.
developed a nanoplatform (ALPBs) that incorporates luminol
and PCPDTBT, which is a photothermal agent with NIR
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Fig. 7 (a) Schematic illustration showing the chemiluminescence reaction

between luminol on Au NPs that led to photoclicking of Au NPs.
(b) Temperature changes following 808 nm irradiation on PBS, t&mAuNP
and t&mMAuUNP/Lu. (c) Change in tumour volume of mice following 21 days
of photothermal treatments with different systems. Reproduced with
permission from ref. 57. Copyright 2021, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim.
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emission.>® The CL generated from the luminol-H,0, reaction
activated PCPDTBT to produce NIR luminescence, which exhib-
ited a strong intensity of several magnitudes higher than the CL
in vivo. In addition, CL diminished after 5 hours while the NIR
luminescence still exhibited high intensity after 7 hours. This
enabled the monitoring of photothermal therapy in deep
tissues using CL.

2.4.3 Drug delivery. Chemiluminescent nanomaterials
could offer therapeutic choices by triggering drug delivery at
specific locations or providing imaging-monitored drug deliv-
ery. For example, a target-catalysed DNA nanohydrogel loaded
with a drug relied on chemiluminescence for imaging/monitor-
ing of the drug release location.*® The DNA nanohydrogels have
a high drug loading capacity, with each unit providing approxi-
mately 30 specific loading sites for Dox. Once the target micro-
RNA binds to the DNA structure, the structure collapses and
generates DNAzyme that catalyses the CL between luminol and
H,0,. This results in targeted drug release and enhanced CL for
the monitoring of drug release. In vitro confocal fluorescence
showed that sgc8-DNA nanohydrogels loaded with Dox only
caused chemiluminescence in the target cells CCEF-CEM, but
not in the control cells Ramos.

Chemiluminescent nanomaterials could also trigger the
release of light-sensitive drug for the treatment of inflammatory
diseases. Wang et al. devised a ROS-responsive drug delivery
system using covalently self-assembled polymer nanocapsules
(Azo-NCs), which were formed through the cross-linking of
macrocyclic cucurbit[6]urils with a photosensitive azobenzene
derivative (Azo).>® Luminol was co-loaded into the Azo-NCs
along with a therapeutic payload. Under inflammatory condi-
tions, the upregulated H,O, reacted with luminol to produce
enhanced CL which induced photoisomerization of the Azo
groups within the Azo-NCs, releasing the encapsulated payload.
In vivo studies with a zebrafish model demonstrated a 5.5-fold
higher CL intensity accompanied by enhanced drug release in
the inflammatory regions compared to the healthy regions.

2.5 Strengths and weaknesses of chemiluminescence-
mediated light therapy

Chemiluminescence-mediated light therapy has emerged as an
intriguing therapeutic approach that offers deep tissue light-
based therapies without the need for external light irradiation.
Unlike traditional light-based therapies, light penetration depth
is no longer a concern as it harnesses intrinsic chemilumines-
cent properties to generate light. Moreover, chemiluminescence-
mediated light therapy could passively target inflammation-
related diseases, including cancer, cardiovascular diseases, and
autoimmune conditions. In most inflammatory conditions,
reactive oxygen species like H,0, are upregulated, which can
react more rapidly with the chemiluminophores to generate
stronger CL.

However, there are several limitations to chemiluminescence
that should be considered. For example, chemiluminescence-
mediated light therapy lacks external control over CL generation.
Unlike other light-based therapies excited with external sources,
controlling the intensity and duration of chemiluminescent
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reactions is difficult. Furthermore, the therapeutic efficacy is
highly dependent on the availability of intracellular ROS, which
could be insufficient to generate a strong CL. Hence, the
produced CL is usually too weak to serve as an effective therapy
alone or to be detected in vivo. Although certain approaches have
been developed to generate ROS endogenously, it highly depends
on the reaction rate and kinetics. Moreover, the lack of NIR-
emitting chemiluminophores also limits the imaging and track-
ing of deep tissue therapy.

3. NIR-excited luminescence

Using an external excitation source gives better control over
the intensity and duration of the light generated in vivo. As
mentioned before, both UV and visible light possess low tissue
penetration and would not be suitable for deep tissue therapy.
However, biological tissues possess an ‘“optical transparency
window” for light with wavelength ranging from 800-1000 nm,
where they experience less light scattering and attenuation.®
Hence, studies have been conducted to engineer nanosystems
that could be activated by NIR-I light (700-1000 nm), especially at
808 nm or 980 nm.*"** Typically, NIR light excites nanomaterials
to emit luminescence through 4 major mechanisms: two-photon
excitation (TPE), energy transfer upconversion (ETU), downcon-
version (DC) and persistent luminescence (PersL) (Fig. 8).

Upconversion nanomaterials exhibit anti-Stokes behaviour
and are activated by NIR light to emits light at a shorter
wavelength.®® They emit in the UV/visible wavelength range to
activate various light-sensitive molecules, such as photosensi-
tizers, for light-mediated therapy. More recently, it was realised
that NIR-II light (1000-1700 nm) possesses even less scattering in
biological tissues and demonstrates deep tissue imaging ability at
higher resolution than NIR- light.” Hence, downconversion
nanomaterials were also engineered to be excited by NIR-I light
to emit in the NIR-II region for deep tissue imaging and monitor-
ing of therapeutic process.”®> Due to the low tissue attenuation
of NIR-II light, they were also used to excite certain upconversion
nanosystems to increase the tissue depth for therapy.’

In this section, we will discuss the utilisation of NIR light
located in the range of 700-1700 nm on activating upconver-
sion or downconversion nanosystems and their application in
deep tissue light-mediated therapy. Moreover, we will also
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summarise the strategies to enhance the luminescence pro-
duced by various nanosystems.

3.1 Upconversion luminescence

Upconversion luminescence typically refers to the anti-stoke
shifts in emission, where the emission wavelength is always
shorter than the excitation wavelength.®® Many mechanisms of
upconversion luminescence exist, including two-photon excitation
(TPE), frequency upconversion (FU) and energy transfer upconver-
sion (ETU) (Fig. 8a-c).**"® In the following section, we will review
nanomaterials that exhibit upconversion luminescence and their
corresponding mechanisms.

3.1.1 Metal-based nanomaterials. Metal-based nanomaterials
are known to possess upconversion properties with two-photon
excitation, where 2 photons of the same energy excite the atom
simultaneously to a higher energy level and emit photons of a
shorter wavelength (Fig. 8a).°® For example, Ag-TiO, compo-
sites could be excited by two 800 nm NIR photons to emit
upconversion luminescence at 552 nm.%® This is due to the
band-to-band radiative transition in Ag,O with a band gap of
2.25 eV. In addition, gold nanoshells could also be excited at
780 nm by 2-photon excitation and emit upconversion lumi-
nescence at 610 nm.*’

3.1.2 Organic nanomaterials. Certain inorganic nanomaterials
also exhibit upconversion properties through two-photon exci-
tation. Examples include carbon nanotubes emitting upconver-
sion luminescence at 980 nm following 1100 nm excitation, and
helicine-based nanographene emitting light at 680 nm following
900 nm excitation.”””" With Eu®*" doping, the organic complex
[Eu(THA);(phen)] (HTHA = 4,4,4-trifluoro-1-(9-hexylcarbazole-3-yl)-
1,3-butanedione, phen = 1,10-phenanthroline) also exhibited
upconversion luminescence at 612 nm following 808 nm
excitation.”

However, the efficiency of two-photon excitation is low due
to the low probability of 2 photons exciting the nanomaterial
simultaneously. Hence, Peng et al. developed an organic upcon-
version nanomaterial that depends on single-photon excitation.®®
The organic nanomaterial (FUCP-1) contains a rhodamine
derivative (FUCP-1) and produces upconversion luminescence
through frequency upconversion (Fig. 9a). FUCP-1 was first excited
from the ground electronic state (S,) to thermally vibrational-
rotational states (S;) with the heat derived from the Boltzmann
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Fig. 8 Schematic illustrations of the energy transfer mechanisms of (a) two-photon excitation (TPE), (b) energy transfer upconversion (ETU), (c)
downconversion luminescence (DC) and (d) persistent luminescence (PersL) in NIR-excitable nanomaterials.
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Fig. 9 (a) Schematic diagram of upconversion luminescence and PDT
mechanism of FUCP-1. (b) Schematic energy level demonstration of the
mechanisms of traditional Stokes luminescence and frequency upconver-
sion luminescence (FUCL). (c) Upconversion luminescence intensity
changes of FUCP-1 at different temperatures. Higher temperature results
in stronger UCL due to more S; states. Reproduced with permission from
ref. 68. Copyright 2019, Royal Society of Chemistry.

distribution of molecules (Fig. 9b). Therefore, a higher tem-
perature enhances upconversion luminescence intensity
(Fig. 9c¢). Following 808 nm excitation, FUCP-1 is excited from
S; to S; and returns to the ground state, producing emission at
750 nm. FUCP-1 was shown to effectively sensitize O, to 'O,
and presented superior inhibition of 4T; cells. Although this
nanosystem exhibited higher efficiency than most two-photon-
excited nanomaterials, the emission wavelength was located
near the excitation wavelength. This is due to the small energy
level difference between S; and S,, which limits its upconver-
sion ability for application in deep tissue therapy.

3.1.3 Lanthanide-based nanomaterials. Lanthanide-doped
upconversion nanoparticles (UCNPs) make use of the energy
transfer upconversion (ETU) mechanism, which is more efficient
and enables stronger upconversion ability. The trivalent lantha-
nide ions incorporated in the host crystal have long lifetime and
distinct energy levels, enabling the sequential absorption of
multiple excitation photons (Fig. 8b).”* In addition, they possess
strong upconversion abilities and can generate upconversion
emission in the visible or even UV wavelength range.”*””
Lanthanide-based nanomaterials predominantly occur as fluor-
ides, oxides, or oxofluorides. Among these materials, NaLnF,
(Ln =Y, Gd, Yb, Lu, and Er) was the most studied upconversion
nanosystem.

Upconversion NaYF4:20% Yb**,2% Tm®" nanocrystals were
first reported by Chow et al in 2006.”° Yb®>" acted as the
sensitiser, absorbing NIR photons at 980 nm a