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Birefringent crystals play a crucial role in regulating the polarization of light and are widely used in opto-
electronic fields. However, the effective design of novel infrared (IR) birefringent crystals with large bire-
fringence (An) still face significant challenges. In this study, we present the rational design and successful
synthesis of two novel quinary oxychalcogenides with the formula BazM"Ges0,Sg (M"" = Mn, Cd), employ-
ing a heteroanion-introduction strategy via high-temperature solid-state reactions. BazM"Gez0,Sg (M =
Mn, Cd) crystallized in the monoclinic space group P2:/n (no. 14) and the structures comprised one-
dimensional (1D) [M"Ge3Sg0,]®~ chains arranged in an antiparallel manner and separated by Ba®* cations.
The coexistence of multiple heteroanionic ligands (IM"OSs] octahedra, [GeOSs], and [GeO,S,] tetrahedra)
in one material was surprisingly discovered for the first time in the realm of oxychalcogenides. It was
revealed that the heteroanion-introduction strategy not only leads to a reduction in the structural dimen-
sionality but also enhances the optical anisotropy significantly. Notably, BazM""Gez0,Sg (M = Mn, Cd)
demonstrated large An values of 0.11 and 0.14, which represent a remarkable improvement compared to
the three-dimensional (3D) parent AE3M”M2’Q8 system (An = 0). Furthermore, theoretical calculations
suggest that the significant An of BazM""Gez0,Sg (M = Mn, Cd) resulted primarily from the combination
of polarizabilities from the various heteroanionic groups. Overall, these results highlight the potential of
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1. Introduction

Birefringent crystals play a crucial role in high-performance
optics, especially in polarization apparatus, phase-matching
elements, and laser processing.' Currently, the majority of the
commercially available birefringent crystals are inorganic
oxides, such as YVO,,” CaCOj3,® and a-BaB,0,.* However, these
materials have their limitations. For instance, they suffer from
detrimental metal-oxygen (M-O) bond absorptions, which
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restrict their usage in the infrared (IR) region. Conversely, the
current commercially available birefringent crystals are suit-
able for the ultraviolet and visible region, and few birefringent
crystals has been explored for the IR region. In addition, the
excellent birefringence (An) of crystals enables the downsizing
of crystal optical devices.” Consequently, there is an increasing
demand for high-performance IR birefringent crystals in both
the scientific research and technological development fields.
The analysis of the structure—property relationships of bire-
fringent crystals revealed a positive correlation between the An
and anisotropy.® In other words, a larger anisotropy corres-
ponds to a greater An. Effective structural design strategies can
be employed to modulate the An, such as introducing
n-conjugated units,” stereochemically active lone pairs
(SCALPs),® and functional building units (FBUs) with large
polarizability anisotropy.” Recently, the heteroanion-introduc-
tion strategy has been proved to be an effective and direct
approach for boosting the An, such as Rb,VO(O,),F (An =
0.189 @ 546 nm),'* Sn,BO;I (An = 0.393 @ 546 nm), Sn,PO,I
(An = 0.664 @ 546 nm),"' RbTeMo0,0sF (An = 0.263 @
546 nm),"”*> and K,Sb(P,O,)F (An = 0.157 @ 546 nm)."’
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Oxychalcogenides with rich structures, varying from isolated
zero-dimensional (0D) to dense three-dimensional (3D) frame-
works, are an exciting class of heteroanionic system that have
attracted significant attention in recent years owing to their
high An, which can obtained by partial anion substitution
from the parent structure.'® Some examples include
BazGe,0,Te; (0.14 @ 2090 nm, maternal structure:
Ba,ZnGe,0,),"> SrGeOSe, (0.16 @ 2050 nm, maternal struc-
ture: SrGeO,),'® Sr,CdGe,0S, (0.193 @ 2050 nm, maternal
structure: Sr,CdGe,0,),"” Nd;[Ga;05S;][Ge,0,] (0.091 @
2050 nm, maternal structure: Cs;[Sb;06][Ge,0-]),'® and
Sr,ZnSn,0S¢ (0.12 @ 2050 nm, maternal structure:
SrZZnSiZO7).19 The parent structures mentioned above are all
oxides. However, no examples have been reported using
chalcogenides as parent structures to generate new oxychalco-
genides by introducing oxygen atoms.

The quaternary AE;M"MYQg (AE = Sr, Ba; M" = divalent
transition metals; M"Y = Ge, Sn; Q = chalcogen) family is a
complex system that distinguishes itself as an intriguing non-
linear optical (NLO) system owing to its structural flexibility at
every crystallographic site.”® However, its crystallization in the
cubic space group results in the An values of 0, rendering it
incapable of achieving phase-matching in NLO applications.
Inspired by the previous strategy of introducing heteroanions,
we successfully obtained two new oxychalcogenides, ie.
BazM"Ge;0,S; (M™ = Mn, Cd). In this study, the syntheses,
structures, optical properties, and birefringent characteristics
of the title compounds are described. Furthermore, theoretical
calculations were conducted to achieve a better understanding
of the structure-activity relationships.

2. Results and discussion

In the structure of AE;M"™ML Qg, the [M™Q,] tetrahedron links
3 [M"Q,] tetrahedra while [M"Q,] links 4 [M'VQ,] tetrahedra to
build up a 3D framework. Inside this framework, charge-
balanced AE>" cations are located in the cavity (Fig. 1a and c).
Unfortunately, the dense 3D structure, which crystallizes in the
cubic system (space group 143d (no. 220)), has an inappropriate
anisotropy, resulting in a An value of 0 for AE;M"MYQg, and
thereby rendering phase-matching impossible. It is widely
recognized that the anisotropic polarization of a structure sig-
nificantly impacts its An. Hence, the search for low-dimen-
sional structures exhibiting significant anisotropy is con-
sidered one of the most effective means to obtain materials
with a large An.>'

The oxychalcogenides Ba;M"Ge;0,S; (M" = Mn, Cd) rep-
resent a novel type of quinary compound discovered in AE/M"/
M"™/Q/O systems. These compounds crystallize in the centro-
symmetric monoclinic space group P2,/n (no. 14); their
detailed crystallographic information is shown in Table 1. The
asymmetric unit consists of three independent Ba sites, one
independent M" site, three independent Ge sites, two inde-
pendent O sites, and eight independent S sites. All the inde-
pendent atom sites are located in the Wyckoff position 4e. The
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Fig. 1 Structural evolution from 3D AEsM"MY Qg to 1D BazM'Ges0,Ss:
(@ and b) ball-and-stick models viewed from the ac-plane; (c and d)
schematic diagram of equivalent models; (e) projection of the 1D
[MGez0,S51®~ chain along the bc-plane; (f) coordination environment
of [GeOSs], [GeO,S;], and [M"OSs] (M" = Mn, Cd) FBUs with the atom
numbers marked.

basic structure of BazM"Ge;0,S; can be seen as composed of
1D [M"Ge;0,S:]° infinite chains, while AE** cations fill the
space to balance the charge (refer to Fig. 1b and d). The
coordination environments of Ge and M" atoms are shown in
Fig. 1f, and the key bond distances and angles are given in
Table S1.17 Gel and Ge3 atoms are linked to 1 O atom and 3 S
atoms, forming heteroanionic [GeOS;] FBUs with Ge-S bond
lengths in the regular range of 2.174-2.205 A and Ge-O bond
distances of 1.806-1.838 A. The Ge2 atom, on the other hand,
is linked to 2 O atoms and 2 S atoms, forming heteroanionic
[GeO,S,] FBUs with Ge-S bond lengths in the range of
2.137-2.178 A and Ge-O bond lengths in the range of
1.779-1.787 A. The M" atom is coordinated with 1 O and 5 S
atoms to form a highly distorted [M"0S;] octahedron, with
M"-S and M"-O bond lengths falling within the normal
ranges.”> Two [GeOS;] FBUs and one [GeO,S,] FBU form a
[Ge;0,S;] cluster through bridging O atoms. These clusters are
then interconnected with octahedral [M"0S;] FBUs, resulting

This journal is © the Partner Organisations 2023


https://doi.org/10.1039/d3qi01456h

Published on 24 August 2023. Downloaded on 29/10/2025 23:21:40.

Inorganic Chemistry Frontiers

Table 1 Crystal structural refinement details for

BasM'"Ges0,Sg (M" = Mn, Cd)

Empirical formula Ba;CdGe;0,Sg Ba;MnGe;0,Sg

CCDC 2234469 2234468

Formula weight 1030.67 973.21

Temperature (K) 293(2) 293(2)

Crystal system Monoclinic Monoclinic

Crystal color Light yellow Light yellow

Size (mm?) 0.08 x 0.10 X 0.07 X 0.10 X
0.10 0.11

Space group P24/n (no. 14) P24/n (no. 14)

a(A) 8.8294(10) 8.8298(7)

b(A) 11.9334(13) 11.8254(11)

c(A) 15.2993(17) 15.2442(11)

B ) 90.839(2) 90.548(7)

V(A% 1611.8(3) 1591.7(2)

zZ 4 4

D, (g em™) 4.247 4.061

u (mm™) 15.037 14.684

GOOF on F* 1.139 1.119

Ry, WR, (I > 20(D))"

0.0265, 0.0720

0.0456, 0.1248

Ry, WR, (all data)
Largest diff. peak and hole (e
A

aRl = Z| |F0| - |FC| I/ZIFOL WR; = [ZW(FOZ - FCZ)Z/ZW(FOZ)Z]UZ-

0.0290, 0.0725
1.512, —-1.727

0.0483, 0.1233
2.520, —1.257

in the formation of 1D [M"Ge;0,S;]°” infinite chains through

face-sharing (Fig. 1e). The Ba atoms also have different coordi-
nation behaviors. For instance, Bal and Ba3 atoms are sur-
rounded by 8 S atoms, forming a [BaSg] bicapped trigonal
prism. On the other hand, the Ba2 atom is surrounded by 1 O
atom and 7 S atoms, resulting in a more twisted [BaOS;]
bicapped trigonal prism (Fig. S1 and S27).

The detailed structural evolution from 3D AE;M"MY Qs to
1D BazM"Ge;0,S; is depicted in Fig. 1. The introduction of O
atoms, which have a different electronegativity (yo = 3.44 vs. xs
=2.58), can be viewed as acting like structural scissors to break
the dense high-dimensional framework structure, resulting in
the formation of a loosely connected low-dimensional chain
structure. Consequently, a significantly anisotropic structure
was obtained. This could be further confirmed by the experi-
mental results and theoretical research on birefringence dis-
cussed in the following section.

Furthermore, through comparing and analyzing the
reported oxychalcogenides, we discovered that Baz;M"Ge;0,Sg
(M" = Mn, Cd) demonstrated structural novelty in three dis-
tinct aspects. First, the heteroanionic [GeO,Q,_,] FBUs can
only exist in a singular form in oxychalcogenides,** *® such as
[GeOTe;], [GeO,S;], and [GeOsSe], identified in
AE;Ge,0,Te;,">** AEGeO0S,,” and Sr;Ge,0,Se;,>” respectively.
However, the title compounds simultaneously contained two
[GeO,S,_,] FBUs, namely, [GeOS;] and [GeO,S,]. Second, it has
been reported that there are relatively few oxychalcogenides
with transition-metal-based [TMO,Q,] FBUs,> but some
examples include [Zn0,S,] in BaZnOS,*° [ZnOS;] in
SrZn,S,0,*' [C00,S,] in BaCo0S,** and [Co0S;] in CaCo0S.*
Notably, in contrast to the previously reported four-co-
ordinated [TMO,Q,], two new heteroanionic FBUs, [MnOSs]
and [CdOS;], were successfully observed in Ba;M"Ge;0,S (M"
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= Mn, Cd) for the first time, which enhances the diversity of
oxychalcogenides. Third, compounds with two or more hetero-
anionic FBUs are currently very rare, with the few examples
limited to BagV40sS;; ([VOS;] + [VO,S,])** and (BajoCly)
(GagSi1,04,8s) ([Ga0S;] + [Ga0,S,]).>* The coexistence of mul-
tiple heteroanionic FBUs (octahedral [M"0S;], tetrahedral
[GeOS;] and [GeO,S,]) in the title compounds was surprisingly
discovered for the first time in the realm of oxychalcogenides.
The compounds BazsM"Ge;0,S; (M" = Mn, Cd) were syn-
thesized using a traditional high-temperature solid-state
method. Single crystals with a millimeter-size were carefully
selected for characterization and measurement (Fig. 2). The
elemental analysis of Ba;M"Ge;0,Ss (M" = Mn, Cd) confirmed
the symmetrical distribution through EDX mapping, and the
Ba:M":Ge:0:S ratio was found to be highly consistent with
the results obtained from single-crystal XRD (Fig. S3 and S47).
The purity phase of Ba;M"Ge;0,S; (M" = Mn, Cd) was exam-
ined by powder XRD measurements (see Fig. 2a and b). The
experimental results matched well with the simulated patterns
derived from the single-crystal XRD measurements. The UV-
Vis-NIR diffuse reflectance spectrum revealed optical energy
gap (E,) values of 3.82 and 3.39 eV for Ba;CdGe;0,Ss and
BazMnGe;0,Sg (Fig. 2c and d), respectively, using the
Kubelka-Munk function.?® These values are higher compared
to other reported TM-based oxychalcogenides, such as
Sr6Cd,Sbs0,S;, (1.89 eV),”” Sm;NbS;0, (2.68 €V),*® and
[Sr;VO,][InSe;] (2.62 eV).>® Additionally, Ba;M"Ge;S;0, (M =
Mn, Cd) exhibited high thermal stability up to 1100 K under a
N, atmosphere based on the thermal analysis (Fig. S51). There
were no melting or phase transition behaviors observed in the
corresponding DSC curves, which was consistent with the
powder XRD results (Fig. S61). Furthermore, Ba;CdGe;0,Sg
(M" = Mn, Cd) demonstrated a broad IR transmission cut-off

(a) — Experimental (b) —— Experimental
El El

A L

2 2

2 2 —Simulated

] 8

E —simulated | £

10 20 30 40 50 60 70 10 20 30 40 50 60 70
20(degree) 2¢(degree)
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F(R) (a.u.)
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Fig. 2 Characterization of BazM"Gez0,Sg (M" = Mn, Cd): experimental
and simulated powder XRD patterns for the as-synthesized (a)
BazCdGezSgO, and (b) BazsMnGezSgO,; optical Eg for (c) BazCdGesSgO,
and (d) BazsMnGesSgO, (inset: optical images of the target single
crystals).
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region from 2.5 to 13.3 pm (Fig. S71), indicating their potential
as IR birefringent candidates.

Inspired by oxychalcogenides that exhibit an appropriate
An value,” the An of Ba;CdGe;0,Ss (M" = Mn, Cd) was also
measured using a ZEISS Axio A1l cross-polarizing microscope.
The retardations (R values) and crystal thicknesses (T values)
were tested as 1.073 pm and 9.8 pm for BazMnGe;0,Ss, and
0.85 pm and 5.9 pm for Ba;CdGe;0,Sg respectively. Notably,
the measured An values for Ba;MnGe;0,Sg and Ba;CdGe;0,Sg
were found to be 0.11 and 0.14, respectively, using the formula
An = R/T (Fig. 3).*" These values are larger than those of com-
mercial materials like MgF, (0.012 @ 632 nm)** and LiNbO;
(0.08 @ 632 nm),** as well as many recently reported chalco-
genides, such as [Bay(S,)][ZnGasS1o] (0.053 @ 1064 nm),**
LiBaSbS; (0.045 at 532 nm),* and K,Na,Sn;Sg (0.070 at
546 nm).*® This indicates that the target compounds have
potential as birefringent materials. Moreover, it is noteworthy
that compared to the 3D AE;M"ML Qg with a An value of 0, the
1D BazM"Ge;0,S5 (M = Mn, Cd) oxychalcogenides displayed
appropriate An values. These findings indicate that the hetero-
anion-introduction strategy is effective in increasing optical
anisotropy and boosting Az in the oxychalcogenide family.

For a more comprehensive understanding of the electronic
structures and optical performances of Ba;M"Ge;0,S; (M" =
Mn, Cd), detailed theoretical calculations were conducted
using the DFT method. As depicted in Fig. S8f and Fig. 4a,
Ba;MnGe;0,Sg and Ba;CdGe;0,S; exhibited direct band gaps,
with calculated E, values of 1.53 and 2.47 eV, respectively.
These values were notably different from the tested values
obtained from the UV-vis-NIR spectra (3.39 and 3.82 eV). This

(a) (b)

(d)

Fig. 3 (a and b) BazMnGe30,Sg and (c and d) BazCdGezO,Sg crystals
for birefringence determination and the interference colors observed
before and after complete extinction.
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Fig. 4 Theoretical calculated results of BazCdGezO,Sg: (a) electronic
band structure; (b) PDOS curve.

discrepancy may be attributed to the limited accuracy of the
conventional DFT functional in describing band gaps.”” A
detailed Brillouin zone plot with high symmetry points is pro-
vided in Fig. S9.7 Since the Baz;MnGe;0,Sg and Ba;CdGe;0,Sg
compounds demonstrated similarities in the partial density of
states (PDOS) curves (Fig. 4b and S8%), Ba;CdGe;0,Ss was
chosen as the representative compound for further elucida-
tion. In the PDOS graphs, the valence band maximum (VBM)
was defined by the S-3p and O-2p nonbonding states, while
the conduction band minimum (CBM) was dominated by the
unoccupied Cd-4s, Ge-3s, and Ba-4p orbitals. Thus, the E, of
Ba;CdGe;0,Sg was primarily determined by the heteroanionic
[GeOS;], [GeOS;] and [CAOS;] FBUs, namely, 1D [CdGe;0,S;]°~
chains.

Besides, based on DFT calculations, the An of
BazM"Ge;0,Ss (M" = Mn, Cd) was also calculated (Fig. 5a and
S10f). The results reveal that the calculated An of
Ba;CdGe;0,Sg was 0.15 @ 2050 nm. Additionally, when com-
bined with the analysis by the partial charge density graphs in
the VBM and CBM ranges (Fig. 5b), it was evident that the het-

This journal is © the Partner Organisations 2023
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Fig. 5 (a) Calculated refractive index dispersion curves and birefrin-
gence of BazCdGesO,Sg; (b) distribution of the partial charge density
maps in the VBM and CBM parts. Black atoms: Ba; pink atoms: Cd; blue
atoms: Ge; yellow atoms: S; red atoms: O.

eroanionic FBUs play a significant role in achieving a large An.
This implies that the introduction of heteroanions into the
structure is favorable to the structural anisotropy.

3. Conclusions

With the aim of obtaining new IR birefringent materials in the
AE-TM-M"V-0-Q system, two novel oxychalcogenides
BazM"Ge;0,S; (M" = Mn or Cd) were successfully synthesized
by employing a heteroanion-introduction strategy of replacing
part of the Q atoms from the parent AE;M"™™L Qg. This is the
first case that contains multiple heteroanionic ligands in oxy-
chalcogenides, and the 1D anionic [M"Ge;0,S5]°" chain is
exclusively constructed by three heteroanionic units, that is,
octahedral [M"0S;], and tetrahedral [GeOS;] and [GeO,S,].
Both compounds exhibited a large E, (3.39 and 3.82 eV), a
broad IR transparency region (2.5-13.3 pm), and good thermal
stability (approximately 1100 K). Specifically, Baz;M"Ge;0,S;
(M" = Mn or Cd) demonstrated a large An (0.11 and 0.14 @
549 nm), implying its potential application as an IR birefrin-
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gent candidate. Analysis of their structure-property relation-
ships displayed that the 1D chains in a reversed arrangement
is favorable for generating a large An. Overall, this study rep-
resents significant progress in the field of IR birefringent
materials and presents a new paradigm for developing crystal
structures with enhanced An that are suitable for opto-
electronic applications.
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