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The preparation of optically pure fine chemicals is among the most important and challenging tasks met
by organic chemists. Recently, significant efforts have been focused on the development of green and sus-
tainable procedures for the synthesis of these high value-added compounds. Asymmetric heterogeneous
catalysis has provided efficient solutions to these challenges. The application of heterogeneous chiral cata-
lysts in one-pot processes combines the advantages of use of these materials with time, material, and en-
ergy savings associated with cascade or sequential procedures. This review surveys these asymmetric one-
pot reactions reported until July 2017, in which a heterogeneous chemical catalyst has been applied either
as a single multifunctional catalyst or in combination with a second catalytically active material. These pro-
cesses include one-pot procedures catalysed by carefully designed solids obtained by the immobilization
of chiral metal complexes, by anchoring chiral organocatalysts, or by modifying catalytic surfaces with opti-
cally pure compounds, which may also incorporate uncatalyzed and homogeneously catalysed steps.
Methods applying achiral heterogeneous catalysts in combination with soluble chiral chemical catalysts or
biocatalysts are also presented. Sophisticated, finely tuned materials have been applied in most of these re-
actions, which have been discussed along with the main requirements necessary to perform these trans-
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Introduction

Presently, the most important challenge in organic chemistry is
to develop procedures having low environmental impact, which
are able to produce target compounds in the desired quantities.
Recent synthetic procedures have focused on green and sus-
tainable alternatives for synthesizing complex organic com-
pounds by innovative approaches. The widespread application
of catalysis by metal complexes over the last few decades, the
remarkable development of organocatalysis in this century, the
introduction of alternative reaction media (water or supercriti-
cal fluids), the utilization of novel activation methods (ultra-
sound, microwave, and mechano-chemistry), and exploitation
of the special properties of materials developed by material sci-
entists (ordered micro- or mesoporous materials, layered mate-
rials, inorganic-organic hybrids, nanomaterials, and carbon al-
lotropes, such as nanotubes or graphene) have contributed to
the improvement of chemical processes, which tend to satisfy
the increasingly strict environmental regulations.™”

Most of the modern methods of preparing organic fine
chemicals incorporate catalytic reactions as key synthetic
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steps. In the last few decades, development of novel catalysts
or finding new catalytic applications for materials reported
previously attracted significant attention.®> The trends of re-
placing the widely applied soluble catalysts with insoluble,
heterogeneous materials, were motivated by the simplicity of
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removal, regeneration and reuse of the latter.* Nowadays, sus-
tainability is hardly imagined without applying heterogeneous
catalysts, which also allow process intensification in flow sys-
tems, accompanied by space, time and energy savings.>®

The increased demand for optically pure chiral intermedi-
ates of the pharmaceutical industry and the introduction of
green and sustainable chemistry concepts in the preparation
of high value-added fine chemicals have accelerated the devel-
opment of asymmetric catalytic procedures.”® Several types
of chiral catalysts allowing high stereocontrol have been
reported to date. Besides biocatalysts such as enzymes,>"”
metal complexes bearing chiral ligands and organic mole-
cules used as asymmetric organocatalysts have found numer-
ous applications in organic synthesis. However, in many
cases, the cumbersome and costly preparation of these cata-
lysts have motivated studies aimed at preparing similarly effi-
cient and selective heterogeneous catalytically active chiral
solids."”*°

A simple method for obtaining chiral solid catalysts that
were found to be surprisingly efficient in a limited number of
reactions, is the surface modification of heterogeneous cata-
lysts such as metals or metal oxides, by optically pure, prefer-
ably cheap, natural compounds.””>* In the asymmetric hy-
drogenation of certain unsaturated compounds, exceptionally
high enantioselectivities were attained over chirally modified
metal catalysts. However, widespread application of these cat-
alysts in the fine chemical industry was hampered by their
narrow substrate scope.

Another general approach to preparing chiral, catalytically
active solid materials is the immobilization of efficient homo-
geneous catalysts, whether chiral complexes, organocatalysts
or enzymes, on solid support by various methods.'®**>3
The large variety of highly efficient chiral homogeneous cata-
lysts warrants the possibility of developing solid catalysts for
numerous applications. Furthermore, the selection of an ap-
propriate anchoring method and choosing supports with spe-
cial properties designed for specific purposes have often led
to enhanced results, as compared to those obtained using
the corresponding soluble catalytic species. These types of
immobilized chiral catalysts wusually possess all the
favourable properties of the heterogeneous catalysts. Still,
their application is obstructed by their tedious preparation
procedures and by preserving some drawbacks of the corre-
sponding homogeneous catalysts, which are often expensive
materials; many of them are highly sensitive to manipula-
tions and require high purity reaction components. However,
oftentimes by appropriate material design, robust and stable
chiral catalysts have been obtained, which allow preserved
performances upon recycling, and the possibility of applica-
tion in flow systems.***

Further increase in the sustainability of the catalytic reac-
tions may result from carrying out several reactions in a sin-
gle vessel, without isolation of the intermediate products in a
so-called one-pot procedure.**** One-pot reactions that allow
two or more bond-forming transformations under the same
conditions without intervention and with subsequent trans-
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Fig. 1 Schemes of the stop-and-go and one-pot domino, cascade or
tandem synthesis procedures.

formations occurring at the functionalities resulting from a
previous step, are designated domino or cascade reac-
tions.*>*® Contrary to the stop-and-go methods, during these
reactions, all components are introduced from the onset and
only the purification of the final product is necessary, as
shown in Fig. 1. Difficulties in designing cascade processes
are attributable to requirements including the following: all
reagents and catalysts needed in different steps must tolerate
each other's presence; all reactions must occur under the
same conditions; functional groups present in the molecules
should participate only in the desired steps. However, due to
their operational simplicity and enormous advantages pro-
vided by the material, energy, space and time savings, as
compared with the classical stop-and-go methods, extensive
efforts are devoted to the development of such synthetic
procedures.*’*°

During the last decade, the availability of a large variety of
chiral catalysts”'® has been the driving force for the develop-
ment of asymmetric catalytic one-pot procedures.’®>® Such

This journal is © The Royal Society of Chemistry 2018
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reactions could be applied in the synthesis of optically pure
building blocks and active pharmaceuticals.>*° Enzymes,
chiral metal complexes and organocatalysts, either as single
catalysts or their various combinations with achiral or a sec-
ond chiral catalyst, have been used in these reactions,
allowing the preparation of complex organic molecules such
as natural products and other bioactive compounds by signif-
icantly simplified procedures.>”">°

Although extraordinary complexity may be easily achieved
in these reactions, the recovery of the expensive chiral cata-
lysts remain a major task. Accordingly, asymmetric catalytic
one-pot reactions using recyclable heterogeneous catalysts
have also been investigated. Among these were reactions
catalysed by heterogeneous achiral materials in combination
with chiral soluble catalysts and procedures in which the
stereoselective step itself was promoted by a chiral solid cata-
lyst and was mostly combined with another catalyst or with a
spontaneous, uncatalysed reaction step. Nowadays, the num-
ber of reported asymmetric heterogeneous catalytic one-pot
reactions utilizing chemical catalysis is growing rapidly. How-
ever, an overview of these reactions is still lacking. Some of
these have been incorporated in monographs or reviews hav-
ing broader scope, such as asymmetric reactions catalysed by
transition-metal functionalized supports, domino or cascade
reactions catalysed by heterogeneous catalysts®"*>°°"®* or re-
cently, in surveys covering a narrower area or a different seg-
ment of such reactions, i.e. processes catalysed by combina-
tions of enzymes and inorganic heterogeneous catalysts, by
bio-nanocatalysts, or aminocatalysts combined with
metals.”®%%%*

The aim of the present review is to give a comprehensive
survey of the asymmetric one-pot reactions in which hetero-
geneous chemical catalysts have been applied. Those proce-
dures are included in which in a catalysed step stereo-
selective formation of at least one new chiral centre occurs.
Reactions are classified according to the nature of the chiral
catalyst used in the enantioselective step, i.e. homogeneous,
heterogeneous and biocatalytic. Biocatalysts, especially en-
zymes, are among the most often used stereoselective cata-
lysts,®'*%9% which have also been applied in asymmetric
one-pot processes,’*®® often in combination with chemical
catalysts.*>%***%971 The scope of the present review is lim-
ited to asymmetric one-pot processes utilizing heterogeneous
chemical catalysis; accordingly, only those reactions will be
included in which biocatalysts are used along with such ma-
terials. Dynamic kinetic resolutions (DKR) unite the kinetic
resolution (KR) of racemic substrates, often catalysed by en-
zymes, with racemization of the unreacted enantiomers, and
are therefore considered biocatalytic cyclic cascade reac-
tions.®” Although the racemization step may be carried out
using homogeneous or heterogeneous chemical catalysts,”> >
unless other heterogeneous catalytic steps are included in
the process, these will be omitted, as only a part (ideally
half) of the chiral compounds are involved in both steps.
Procedures utilizing heterogeneous chiral chemical catalysts
will be further divided according to the catalyst type, ie.
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immobilized metal complexes, heterogeneous
organocatalysts and chirally modified catalytic surfaces. The
reaction pathways making possible these processes will be
briefly discussed.

Before reviewing the asymmetric heterogeneous catalytic
one-pot transformations, definitions of terms and classifica-
tion of the one-pot processes is necessary. Without debate,
one-pot reactions are defined as processes that allow more
than one reaction to occur in a single flask, without isolation
of the intermediate products. Introduction of reagents or cat-
alysts between steps, or changes in the reaction conditions,
may be necessary during these processes. Domino or cascade
reactions are considered one-pot transformations in which
all components, such as substrates, reagents, catalysts, auxil-
iaries, solvents etc., are introduced in the system at the onset
and the reaction conditions are not altered during the pro-
cess. Accordingly, two or more bond forming transformations
occur without any intervention.*® In most of the catalytic cas-
cade reactions reported recently, more than one catalyst or
multifunctional catalysts are used. These reactions are de-
fined as tandem catalytic processes: auto-tandem, assisted
tandem (when a single catalyst is applied) or orthogonal cata-
lytic processes (using more than one catalysts).*" According
to a different approach, domino or cascade reactions are
those one-pot transformations in which the intermediates
cannot be isolated and the individual steps cannot be
performed separately. One-pot reactions performed sequen-
tially and with intervention between steps were denoted as
tandem reactions.®* However, this latter definition diverges
from the most often used terminology. Recently a novel clas-
sification of the catalytic one-pot reactions was proposed to
suit better discoveries in this field.** The so-called tandem re-
actions were divided into cooperative and relay catalytic pro-
cesses, whether the catalysts share the same catalytic cycles
or not (Fig. 2). Relay catalysis was further divided into self-
relay and orthogonal relay reactions, depending on the types
and number of catalysts. Unlike sequential catalytic processes
during which intervention between steps is necessary, all
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Fig. 2 Scheme of classification of the catalytic one-pot processes.
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catalysts are present at the onset of the cooperative and relay
catalytic procedures.®*

In spite of these classifications and denominations, often
the general term “cascade reaction” is used for one-pot cata-
lytic processes. In order to avoid confusion, in this review de-
nominations met in the original reports are used, even if they
are not in agreement with the above taxonomies. For clarity,
intermediates that could not be or were not isolated are in-
cluded in square brackets in schemes.

1. Heterogeneous catalytic one-pot
reactions including homogeneous
asymmetric steps

The last two decades of developments in organic chemistry
resulted in the discovery of a large structural variety of highly
efficient soluble chiral catalysts. Still, only few asymmetric
catalytic one-pot reactions are known, which apply heteroge-
neous achiral solids combined with chiral soluble catalysts. A
possible explanation of the scarcity in reports could be the of-
ten observed undesired interaction of the two types of cata-
lysts leading to diminished performances of at least one of
the active species, which compromises the formation of the
target compounds. Besides, another, more practical reason is
that the chiral catalysts are usually the more expensive, which
should be recovered; thus the use of an achiral reusable
heterogeneous catalysts is less attractive or important, than
applying a chiral solid. Consequently, such reactions are by
far less studied, as one would expect based on the vast num-
ber of efficient chiral homogeneous catalysts.

In their pioneering studies Hénin, Muzart and co-workers,
described the hydrogenation of unsaturated benzyl carbon-
ates or benzyl p-keto esters over Pd/C in the presence of chi-
ral amino alcohols, which afforded optically enriched

a-substituted ketones (Scheme 1).**®” In the early reports,

o}
Pd/C, bubbling H, R
—_—>

CA1* or CA2, N

CHCN. It 3 11 = 1. ee 52% (CAT¥)
4, n =2; ee 50% (CA2*¥)

R
o,
(6]

4; ee 64%

Pd/C, bubbling H,
—_—

CA2*, CHACN, rt

ca2+ OH

CA1*

Scheme 1 Enantioselective cascade reactions of f-keto esters or ben-
zyl carbonates initiated by Pd/C leading to optically enriched 2-alkyl

ketones; Bn: benzyl.8>-88
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2-methyl-1-indanone (3) and 2-methyl-1-tetralone (4) were
obtained in up to 52% and 50% enantiomeric excesses (ee)
from the corresponding B-keto esters 1 or 2,%° whereas the
benzyl carbonate 5 gave the optically enriched ketone 4 in
64% ee.®” Several chiral diamines and amino alcohols were
tested,*®®® and the best results were obtained with (+)-endo-2-
hydroxy-endo-3-aminobornane (Scheme 1, CA2*). Optimiza-
tion of the reaction conditions using this chiral amine
afforded 3 in up to 99% ee in the cascade reaction of 1.5
Later, the scope of the reaction was extended to various
o-substituted-B-keto esters and enol carbonates. Representa-
tive substrate structures along with the best results obtained
are summarized in Fig. 3.°*°° In most of these reactions,
high yields were reached accompanied by good ees (70 + 5%).
Prominent ee was reported only in the reaction of 1.%% It is
noteworthy that with alterations in the structure of the sub-
strate, the most efficient chiral amino alcohol was also var-
ied, and thus in some reactions cinchona alkaloids CA4* or
CA5* outperformed CA2* with respect to the attained ee.
Therefore, the most efficient chiral base is also given next to
the results (Fig. 3).

The heterogeneous Pd catalyst initiates the above cascade
reactions through hydrogenolysis of the benzyl esters or car-
bonates. This step is followed by decarboxylation and

o o
92 o R
\\ OBn
OBn |
n R “ o

R: H; ee 73% (CA2*)

R: 6-tBu; ee 75% (CA2*)
R: 6-OMe; ee 69% (CA2*)
R: 7-OMe; ee 64% (CA2*)
R: 8-OMe; ee 69% (CA2*)

: Ph; ee 71% (CA4*)
ee 67% (CA4*)

: 4-F-Ph; ee 66% (CA4*)
R: Me, n = 1; ee 64% (CA2*)

: 4-Me-Ph; ee 71% (CA4*)
= 0, %
: 4-MeO-Ph; ee 75% (CA4*) R: Me, n =2; ee 77% (CA2¥)
R: iBu, n = 1; ee 66% (CA2*)

R: Me, n = 1; ee 99% (CA2*)
R: Me, n = 2; ee 72% (CA3*)
R: iBu, n = 1; ee 68% (CA2*)
R: F, n =2; ee 70% (CA5%)

A OO

cinchonine, CA4*

quinine, CA5*

Fig. 3 Structure of benzyl B-keto esters and benzyl carbonates trans-
formed in the Pd initiated heterogeneous enantioselective cascade re-
action to a-substituted ketones and chiral amino alcohols used in
these reactions.®89%
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enantioselective protonation, with both steps possibly
assisted by the chiral amine. Thus, the first step of the cas-
cade takes place on the Pd surface, leading to the formation
of the corresponding B-keto acids as was indicated by UV
spectroscopy.”® For a long time, it was uncertain whether the
second and third steps occur in solution as organocatalysed
processes or as a surface reaction over the Pd catalyst modi-
fied by the chiral amine.>® Later, based on results obtained
using cinchona alkaloids and other chiral amino alcohols of
different adsorption strengths, it was suggested that the de-
carboxylation is catalysed by the chiral base in solution,
followed by the stereoselective protonation also directed by
the amino alcohol.”” Kinetic studies of decarboxylation by
NMR, IR and UV spectroscopy using cinchona alkaloids con-
firmed that following hydrogenolysis the dominant reaction
route was catalysed by the chiral compound in the liquid
phase as a homogeneous asymmetric organocatalytic reaction
(Scheme 2).°°

Recently, asymmetric cascade reactions using combina-
tions of a soluble chiral organocatalyst and supported Pd cat-
alysts were developed for the preparation of chiral five mem-
bered unsaturated cyclic compounds.®” Good yields and high
stereoselectivities were obtained in reactions of cinnam-
aldehyde derivatives (6) with propargylic C-, O- or
N-nucleophiles (7, 9, 11), leading to the formation of cyclo-
pentene, dihydrofuran or pyrroline derivatives (Scheme 3).
Combinations of two catalysts were used in these reactions.
One is a soluble pyrrolidine derivative chiral organocatalyst
(CA6%) reported initially by Jorgensen and co-workers®® and
Hayashi and co-authors,” efficient in several organocatalysed
reactions, including cascade reactions.'” "% The second
achiral heterogeneous catalyst was home-made, with either
Pd(u) or Pd(0) nanoparticles (NPs) anchored on aminopropyl-
functionalized silica-based mesocellular foam (the latter ma-
terial being prepared by mild reduction of the former). Inter-

H2, Pd/C R)-3

CA2*

o

Scheme 2 Asymmetric catalytic cascade transformation of 1 using
heterogeneous Pd catalyst and chiral amine organocatalyst; HL:
hydrogenolysis, DC: decarboxylation and El: enantioselective
isomerization; the catalysts that promote the steps are given in the
circles.

HZ, Pd,
cA2*
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dr 15-21:1; ee 91-99%

CA6*, CHClj3,
HO
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—_—
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/ 7 + rt 20-23 h /\ AN y7
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R: H (6a); 4-Cl; 4-NO,; 3-NO, X
Id 53-67%; ee 92-96%
Ts: 4-Me-CgH,-SO,- vie o 8¢ °
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NH; ™ NH;“NH ™ NH,
“PA(Il) Pa(ll)
Pd(ll)/support

NH; “NHp "NH; “NH,
Pd NPs/support
Scheme 3 Asymmetric cascade reactions of unsaturated aldehydes

and nucleophiles bearing the propargylic group, catalysed by chiral
amine and heterogeneous Pd catalysts.®”

estingly, the Pd NPs/support usually provided slightly better
diastereomeric ratio (dr) and ee than the immobilized Pd
complex Pd(u)/support. By recycling of the immobilized Pd(m)
catalyst, improved activity and stereoselectivity were
obtained, as a consequence of the adsorption of CA6* on the
solid material, which increased the organocatalyst amount in
the successive runs (additionally to the freshly added
amount).

The cascade reaction included a homogeneous enantio-
selective organocatalysed Michael addition and a supported
Pd(u) or Pd(0) NPs catalysed intramolecular carbocyclization,
as shown in Scheme 4. The authors demonstrated that the
second cyclization step proceeds via a heterogeneous path-
way. Accordingly, the reaction is a heterogeneous variant of
the earlier reported homogeneous one-pot dynamic kinetic
asymmetric transformation.’®*'%® The initial amine-catalysed
reversible asymmetric Michael addition is followed by Pd
catalysed intramolecular stereoselective irreversible cycliza-
tion of the two diastereomeric enamine intermediates. The
different cyclization rates of the stereoisomers determined
the stereochemical course of the reaction.

The scope of the above reaction was also extended to the
preparation of saturated carbocyclic compounds by the

Catal. Sci. Technol.,, 2018, 8, 389-422 | 393
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Scheme 4 Mechanism of the asymmetric cascade reaction of
unsaturated aldehydes and alkyne nucleophiles using chiral

organocatalyst CA6*
preparation of the aldehydes by oxidation (OX);
Michael addition, IC: intramolecular cyclization.

and Pd catalyst coupled with sequential
AMA: asymmetric

reaction of olefin nucleophiles containing leaving groups in
allylic position."®® Later, the cascade reaction was
complemented by the in situ preparation of the a,B-unsatu-
rated aldehyde in a one-pot manner by oxidation of the corre-
sponding allylic alcohols (13) with 0,.°77'% Although the
supported Pd catalysed both the oxidation and the final
carbocyclization steps, the reaction temperature was modi-
fied and 7 and CA6* was introduced following the oxidation
of the allylic alcohol, leading to sequential one-pot reactions
coupled with the above cascade process, as illustrated in
Scheme 4. Heterogeneous catalysts prepared by immobiliza-
tion of Pd(u) species over polyimine or azolinked porous poly-
mer supports were also successfully used.''**"!

The same chiral organocatalyst (CA6*) was also applied in
the tandem asymmetric Michael addition, followed by the
asymmetric photocatalytic oxamination process. In the latter
visible light-induced step, a heterogeneous TiO,-bound Ru
photocatalyst (N719/TiO,) was employed in order to increase
the catalytic activity of the photoredox material."** By this un-
precedented tandem iminium/heterogeneous photoinduced
catalytic reaction, a,B-substituted aldehydes (16) were
obtained in reactions of aromatic unsaturated aldehydes 6,
diethyl malonate (14) and 2,2,6,6-tetramethyl-1-piperidinyloxy
free radical (15) in good yields, high diastereomeric excesses
(de) and excellent ees, as shown in Scheme 5. Recycling of
the solid photocatalyst resulted in a gradual decrease in the
yield of 16. The role of the heterogeneous photocatalyst in
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. 0,
4-OMe; 4-NO, de >95; ee 98-99%

O OTBuA

TBUA: tetrabutyl
ammonium

N719/TiO, OTBUA

AIMA %Jys,k)-m
AOA

Scheme 5 Asymmetric tandem AMA and asymmetric oxamination
(AOA) of unsaturated aldehydes using CA6* and heterogeneous
photocatalyst N719/TiO,. "2

6+14+15
CA6* + N719/TiO,

this process was to generate the radical cation from the en-
amine of the Michael adduct, which reacts with 15 in the sec-
ond step.

Besides the above cascade reactions, sequential one-pot
transformations using combinations of homogeneous chiral
and heterogeneous achiral chemical catalysts have also been
described. Asymmetric allylic alkylation and the Pauson-
Khand reaction sequence was catalysed by the successive ad-
dition of the homogeneous Pd complex formed with the chi-
ral ligand CL1* and the Co/C heterogeneous catalyst
(Scheme 6a). The second step of this one-pot reaction also re-
quired changes in the conditions, such as increase of the
temperature and introduction of CO. Interestingly, the use of
Co,(CO)g for catalysing the second step was inefficient.'"
Similarly, during the one-pot asymmetric epoxidation
followed by reductive ring opening of o,p-unsaturated amides
(20), catalysed by chiral Sm-(S)-BINOL-Ph;P—O complex
(BINOL: 1,1-bi-2-naphthol) and Pd/C catalyst, the addition of
the latter catalyst and introduction of H, and MeOH were
necessary between the two steps (Scheme 6b)."**

Interestingly, until now only the above discussed heteroge-
neous asymmetric catalytic cascade or sequential one-pot re-
actions have been reported with the stereoselective steps
catalysed by soluble chiral catalysts. The most important ad-
vantage of using the heterogeneous catalysts, i.e. their easy

This journal is © The Royal Society of Chemistry 2018
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Scheme 6 Asymmetric one-pot sequential processes using achiral
heterogeneous and soluble chiral catalysts.}*>

separation from the product, was the main reason for devel-
oping these systems. In one-pot reactions including the re-
ductive step application of heterogeneous catalysts such as
supported Pd was a convenient choice; thus, comparison with
homogeneous catalysts was omitted. Still, the rarity of these
one-pot reactions may be due to more efforts being dedicated
to the recycling of the chiral catalysts and less elegance of
methods in which a chiral catalyst is sacrificed, whereas the
achiral heterogeneous catalyst, even if is a noble metal, is re-
covered and reused.

2. One-pot reactions including a
heterogeneous catalytic asymmetric
step

In contrast to the above reactions, much effort has been de-
voted lately to developing efficient one-pot processes using
heterogeneous chiral catalysts. Chiral modification of cata-
Iytic solid surfaces would be the simplest approach to prepar-
ing such catalysts, however, the limited applicability of such
systems has directed the attention of the researchers to using
more arduously prepared homogeneous chiral catalysts an-
chored on solid supports. The latter, due to the large variety
of available soluble chiral catalysts, solid supports and immo-
bilization methods, may warrant efficient solutions to many
challenges. However, the undesired interactions of reagents,
catalysts needed in different steps and the often-necessary

This journal is © The Royal Society of Chemistry 2018
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changes in reaction conditions have many times resulted in
the development of sequential one-pot catalytic methods.

2.1. One-pot reactions with asymmetric steps catalysed by
anchored chiral metal complexes

Widespread application of metal complexes formed with chi-
ral ligands in asymmetric catalytic processes have made their
immobilization over insoluble supports an attractive way to
obtain efficient heterogeneous enantioselective
catalysts.>* 2! However, in most instances, following immo-
bilization, many of the unfavourable properties of the parent
complexes were kept. Most importantly, their sensitivity to
the impurities of the reactants and solvents and to the pres-
ence of other reagents and catalysts was the main obstacle to
their application in one-pot reactions. Accordingly, only a few
one-pot catalytic processes were reported using surface
bonded chiral metal complexes, and part of these were ap-
plied in sequential procedures. With few exceptions, these
materials were prepared by covalent bonding of the chiral li-
gand to insoluble supports followed by ex or in situ prepara-
tion of the anchored chiral complex employing an appropri-
ate metal precursor.

2.1.1. Cascade reactions employing immobilized metal
complexes. Choudary and co-workers reported the develop-
ment of a trifunctional heterogeneous catalyst used in the
Heck reaction and asymmetric dihydroxylation sequence.'®
PdCl,*", 0s0,>” and WO,>~ were simultaneously exchanged in
a layered double-hydroxide (LDH) anion-exchanger to obtain
LDH-PdOsW catalyst, which allowed the use of H,0, as the
terminal oxidant. This catalyst also promoted the tandem oxi-
dation of N-methylmorpholine (22) to the actual oxidant
N-methylmorpholine N-oxide (23), which was consumed in
the dihydroxylation of the olefin catalysed by the in situ
formed chiral surface Os-complex (Scheme 7). The quinidine
derived chiral ligand (CL3*), previously used in homogeneous

dihydroxylations,"*"'"” afforded vicinal diols in high yields
R
| ]
R R 1) LDH-PdOsW,
N X \\ OH

| . | Et3N, 70°C, 8-16 h

=

2) CL3*, 22, ‘BUOH/H,0, HO R

24, X: 1; 25, X: Br 26 H,O,in 12h, 1t, 1h

27
R = H (24a), 4-OMe, 4-Me, 4-Cl;

: _ 010/
R' = H (26a), 4-OMe, 4-Me yield 83-91%;

ee 97-99%
LR\S/>
N—N
o—(/ N

\ L

OMe

CL3*

Scheme 7 Heterogeneous sequential Heck reaction and asymmetric
dihydroxylation coupled with tandem generation and consumption of

the oxidant.**®
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and excellent optical purities. Exceptionally, all catalytic spe-
cies needed in both the sequential and the tandem catalytic
transformations were immobilized on a single solid support.
The catalyst could be reused five times efficiently, though the
addition of chiral ligand during each run was necessary. It
was suggested that the Os and W remained bonded to the
support throughout the reaction, whereas Pd leached into so-
lution and was redeposited on the LDH at the end of the
process.' '

Substituents on both the aryl halide 24 or 25 and the ole-
fin 26 had only limited influence on results; moreover, acrylic
esters also afforded optically pure diols. Steps of the reaction
are illustrated in Scheme 8. The catalytic system was applied
for the preparation of the dithiazem intermediate ethyl
(2R,3S)-2,3-dihydroxy-3-(4-methoxyphenyl)propionate.’*® Other
supports, such as nanocrystalline MgO or a quaternary am-
monium cation functionalized resin were also successfully
applied for preparing bifunctional catalysts, such as MgO-
OsW, resin-OsW and MgO-PdOs, resin-PdOs. The former
two were used in the oxidation-asymmetric dihydroxylation
tandem process, whereas the latter two in the Heck reaction-
asymmetric dihydroxylation sequence in combination with 23
or K;zFe(CN)s co-oxidants used in over stoichiometric
amounts.''%*2°

The same authors immobilized the ligand CL3* on SiO,
surface by -O,(OMe),,Si-(CH,);-S- linker and used the chiral
solid for the in situ preparation of the SiO,-CL3*-0sO, com-

LDH-PdOsW
.
EtsN, 70°C

\N/ LDH-PdOsW
CL3% 1t
BUOH + H,0

24+26 |
LDH-PdOsW -

(R,R)-27

. |
\\sequentlalreactlons A L

Scheme 8 Heck reaction and asymmetric dihydroxylation using 23,
obtained in situ from 22 over a trifunctional catalyst containing
immobilized Os-CL3* chiral complex; HR: Heck reaction, AD:
asymmetric dihydroxylation.
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plex. This material was efficient in the asymmetric dihydroxy-
lation of olefins in a relay catalytic process, in which H,0,
was used as the terminal oxidant, and the oxidation of 22 to
23 was assisted by titanium silicalite heterogeneous cata-
lyst."””* Furthermore, deposition of PdCl, on unreacted
0,Si-(CH,);-SH surface groups of the functionalized support
and reduction of the metal ions led to a catalyst containing
both the anchored chiral ligand and Pd NPs. The material
was used in the one-pot Heck reaction followed by the asym-
metric dihydroxylation sequential process."*>

Polymer supported chiral dirhodium(u)-complex [resin*-
Rh,-(CL4*);]  was  prepared  from  tetrakis[N-tetra-
chlorophthaloyl-(S)-tert-leucinate  and  N-phthaloyl-(S)-tert-
leucine functional groups containing monomer copolymerized
with achiral monomers (Scheme 9).">* This heterogeneous Rh
complex provided similar results to its soluble dirhodium
counterpart in the tandem carbonyl ylide formation and intra-
molecular cycloaddition reaction of 2-diazo-3,6-diketo esters
(29) with 26a or phenylacetylene (30a). The reactions were
highly stereocontrolled, both in batch and in flow systems.

Periodic mesoporous organosilica (PMO) functionalized
with (R,R)-1,2-diphenyl-1,2-ethylenediamine (R,R-32) through
sulphonamide linker (CL5*) was used as a chiral insoluble li-
gand to immobilize a Rh complex formed from (CpRhCL,),
precursor (Cp: pentamethylcyclopentadiene). This heteroge-
neous catalyst in combination with FeCl; catalysed the hydra-
tion of 30a and the enantioselective transfer hydrogenation
of the intermediate acetophenone (33a) in a cascade reaction
providing similar results to the corresponding homogeneous
Rh complex (Scheme 10)."** The heterogeneous chiral

+ Q
30a @7
ON, resin*-Rh,-(CL4%); ‘~o
B
cootgy PhCFs 23°C COOtBu
(e}
o O /
COOtBu
31
o o}
yield 75%, ee 98% (in flow system) ~

resin
o

+Rh—0O N
Aﬁ% Y o

N O+Rh—0O
Cl o

resin*-Rhy-(CL4*)3
Cl Cl
Cl 3

Scheme 9 Heterogeneous tandem carbonyl ylide formation and
cycloaddition reactions using immobilized dirhodium complex bearing

tert-leucine derived chiral ligand.*®*
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Scheme 10 Preparation of chiral alcohol 34a from 30a by a
heterogeneous catalytic cascade reaction using FeCl; and chiral Rh
complex catalyst immobilized on PMO; AH: alkyne hydration, ETH:
enantioselective transfer hydrogenation.'?4

FeCI3,
CpRh-CL5*

o)
COOEt COOEt
HCOONa @[/\
— T e s — 0]
A CPRN-CL6 S~ S
CTMABr :
o} : OH
3 H,0 36 3 A

conversion >99%;
ee 95-99%

Ar: Ph, 4-FPh, 4-CIPh, 4-BrPh
4-MePh, 4-MeOPh, 4-CF3Ph,
3-MeOPh, 3-CF3Ph, ...

CpRh-CL6*
(5)-37

Scheme 11 Heterogeneous catalytic preparation of phthalides by
tandem ETH and spontaneous intramolecular cyclization (IC) using
HSS-PMO immobilized chiral Rh complex; CTMABr:
cetyltrimethylammonium bromide.*?®

catalyst was recycled four times without significant loss in
the activity or enantioselectivity.

Liu and co-workers, prepared hollow-shell-structured
(HSS) PMO nanospheres-bonded S,S-32 heterogeneous chiral
ligand (CL6*), which was used for immobilization of Rh, Ir or
Ru complexes.'”” These materials were applied as catalysts in
the tandem enantioselective transfer hydrogenation and
lactonization of 2-acylarylcarboxylates 35 to chiral phthalides
37 using HCOONa hydrogen donor and water as solvent. The
best results were obtained with the immobilized Rh catalyst

This journal is © The Royal Society of Chemistry 2018
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(Scheme 11). During this process, the heterogeneous catalytic
asymmetric transfer hydrogenation step preceded the intra-
molecular spontaneous cyclization of the reduced chiral in-
termediates 36. Remarkably, the solid catalyst was more ac-
tive and enantioselective, than the corresponding soluble
CpRh-S,5-Ts-32 complex (Ts: para-toluenesulfonyl), which was
explained by the high hydrophobicity of the hollow-shell-
structured nanospheres and the increased activity of the con-
fined, uniformly dispersed chiral Rh species. Similarly high
enantioselectivities were obtained in this tandem reaction by
using a silica-supported catalyst prepared by sequential
grafting of $,5-32 through benzenesulfonamide linker and
acrylamide-acrylonitrile copolymer on SiO, NPs, followed by
complexation using (CpRhCl,), precursor. The resulting
surface-bonded thermoresponsive polymer formed a closed
shell, which locked the catalytically active sites at low temper-
ature (15 °C), whereas at 40 °C the polymer turned into an ex-
tended form, making the chiral complex accessible.'*® The
above two heterogeneous catalysts were recycled without de-
crease in activity or enantioselectivity after 10 and 8 uses,
respectively.

Heterogeneous bifunctional PMO-supported catalysts were
obtained by co-condensation of appropriately functionalized
Pd and Ru comple