Recent advances in phenotypic antimicrobial susceptibility testing enabled by microfluidic technologies

Abstract

Antimicrobial resistance (AMR) poses an urgent global health threat, driving the need for rapid and accurate antimicrobial susceptibility testing (AST). Traditional phenotypic AST methods remain the clinical gold standard but are hindered by prolonged turnaround times and labor-intensive procedures. Microfluidic technologies have emerged as transformative platforms, enabling miniaturized, high-throughput, and integrated phenotypic AST workflows with accelerated result delivery. This review comprehensively summarizes recent advances in microfluidic phenotypic AST, categorizing platforms by cultivation strategies—such as static chambers, flow chambers, SlipChip variants, and hybrid droplet-chamber systems—and surveying diverse signal detection modalities including fluorescence, label-free imaging, Raman, electrical, and mechanical readouts, each offering distinct advantages and limitations. Key innovations such as concentration gradient generation, digital single-cell manipulation, and AI-enhanced image analysis have significantly improved sensitivity, speed, and clinical applicability. However, widespread adoption remains challenged by sample-to-result integration, slow-growing pathogens, interference from residual antibiotics, and the lack of robust standardization. We further discuss emerging solutions, including automated sample preparation, multimodal detection, and computational data fusion, and outline future opportunities for translating microfluidic phenotypic AST into routine diagnostics. Collectively, these advances hold substantial promise for combating AMR by enabling personalized, rapid, and actionable antimicrobial therapy.

Graphical abstract: Recent advances in phenotypic antimicrobial susceptibility testing enabled by microfluidic technologies

Article information

Article type
Critical Review
Submitted
01 Jul 2025
Accepted
17 Oct 2025
First published
03 Nov 2025
This article is Open Access
Creative Commons BY-NC license

Sens. Diagn., 2026, Advance Article

Recent advances in phenotypic antimicrobial susceptibility testing enabled by microfluidic technologies

M. Shen, Q. Wang, Q. Luo, J. Zhao and F. Shen, Sens. Diagn., 2026, Advance Article , DOI: 10.1039/D5SD00118H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements