Support-facet-dependent morphology of small Pt particles on ceria†
Abstract
Direct atomic scale information on how the structure of supported nanoparticles is affected by the metal–support interaction is rare. Using scanning transmission electron microscopy, we provide direct evidence of a facet-dependent support interaction for Pt nanoparticles on CeO2, governing the dimensionality of small platinum particles. Our findings indicate that particles consisting of less than ∼130 atoms prefer a 3D shape on CeO2(111) facets, while 2D raft structures are favored on CeO2(100) facets. Measurements of stationary particles on both surface facets are supplemented by time resolved measurements following a single particle with atomic resolution as it migrates from CeO2(111) to CeO2(100), undergoing a dimensionality change from 3D to 2D. The intricate transformation mechanism reveals how the 3D particle disassembles and completely wets a neighboring CeO2(100) facet. Density functional theory calculations confirm the structure-trend and reveal the thermodynamic driving force for the migration of small particles. Knowledge of the presented metal–support interactions is crucial to establish structure–function relationships in a range of applications based on supported nanostructures.
- This article is part of the themed collections: 2023 Nanoscale HOT Article Collection and Nanoscale Most Popular 2023 Articles