An innovative electrohydrodynamics-driven SERS platform for molecular stratification and treatment monitoring of lung cancer
Abstract
The advancement of molecular diagnostics for lung cancer stratification and monitoring is essential for the strategic planning and prompt modification of treatments, aiming to enhance clinical results. To address this need, we suggest a nanocavity structure designed to sensitively analyze the protein signature on small extracellular vesicles (sEVs). This approach facilitates precise, noninvasive staging and treatment monitoring of lung cancer. The nanocavity is created through molecular recognition, involving the interaction of sEVs with nanobox-based core–shell surface-enhanced Raman scattering (SERS) barcodes and asymmetric, mirrorlike gold microelectrodes. By applying an alternating current to the gold microelectrodes, a nanofluidic shear force was generated, promoting the binding of sEVs and the effective assembly of the nanoboxes. This interaction induced a nanocavity between the nanobox and the gold microelectrode, which significantly amplified the electromagnetic field. This amplification enhanced Raman signals from four SERS barcodes simultaneously, allowing the generation of patient-specific molecular sEV signatures. When tested on a cohort of clinical samples (n = 76) using the nanocavity architecture, these patient-specific sEV molecular signatures accurately identified, stratified, and monitored lung cancer patients' treatment, demonstrating its potential for clinical application.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles