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Transition metal oxides have attracted growing attention for application in energy storage and
conversion technologies. In particular, spinel-based materials, such as ZnCo,O,4, exhibit structures
suitable for performing as multifunctional electrodes in energy devices. In fact, great efforts have been
dedicated to the design of micro- and nanomaterials based on ZnCo,0,4, using different synthesis
approaches and controlled conditions. Consequently, interesting morphologies and structures have
been recently obtained, exhibiting outstanding electrochemical performance. Hence, in this review we
report a comprehensive survey of the progress of multifunctional ZnCo,04-based materials, focusing on

Received 5th May 2022, the development of supercapacitor devices and batteries. The top 10 electrode materials for each

Accepted 2nd October 2022 application are highlighted, including key findings in the development of slurry-cast or binder-free
electrodes. In addition, the main strategies in the design of ZnCo,04-based electrocatalysts for the

oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are reviewed, including
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1. Introduction

Clean, sustainable and efficient technologies for energy pro-
duction, conversion, and storage are becoming crucial for the
energy crisis which is confronting the world. In this regard, the
development of new electrode materials may play a primary
role, impacting the performance of these energy systems.'
Therefore, materials chemistry is becoming the key to the
design of systems that can overcome the current challenges
of our modern society. Among the emerging challenges, one
can highlight the development of electrode materials capable of
using solar energy and/or electricity to promote the oxygen
evolution reaction (OER) and the hydrogen evolution reaction
(HER) by electrochemical and/or photochemical water-splitting
processes, respectively. This corresponds to the conversion of
renewable energy into a high-energy-content chemical species,
approaching the ultimate clean energy resource due to the zero
emission of carbonaceous species.> Another challenging step is
how to store energy more efficiently, especially in a faster way,
e.g., by assembling devices with high energy and power density.
This is the case of hybrid supercapacitors (HSCs) combining
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electrocatalysts capable of performing tetra-electron oxygen reduction reactions (ORRs).

the outstanding power density of supercapacitive materials
with the high-energy density of battery-type materials.’

Among the emerging materials recently studied, transition
metal oxides (TMOs) deserve special consideration because of
their rich redox chemistry and abundant density of active sites,
in addition to their low cost, environmental friendliness, and
excellent electrochemical performance.*® In fact, special atten-
tion has been given to spinel materials with a bimetallic oxide
structure of the typical chemical formula AB,O,. Spinels consist
of cation A, typically charged as 2+, in tetrahedral sites (Tq), and
cation B charged as 3+ occupying octahedral sites (Oy).® The
interest in this type of material is justified by its higher
electrochemical activity, electrical conductivity, and more
abundant redox reactions, compared with monometallic oxides
of the types A;04 and B;0,.”®

It is also important to mention that among various spinel-
type oxides, structures based on bimetallic cobaltite (MCo0,0,,
where M = Mg, Ni, Zn, Cu, Fe, and Mn) have been most widely
reported,” as recently summarized in several review articles.
In particular, one can highlight the use of nickel cobaltite
spinel (NiCo,0,) in different applications such as in super-
capacitors,”'® batteries'' and sensors.'” Similarly, Goncalves
et al.® summarized the main advances in MnCo,O,-based
materials for energy applications and the main strategies used
for the design of these materials, including HSCs, LIBs and
MABsS, as well as the advancements achieved as electrocatalysts
for water-splitting, more specifically for the HER and OER.
Similarly, Wu and colleagues™® highlighted the current research
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progress regarding synthetic strategies for MgCo,0,-based
electrode materials and their applications in supercapacitors,
Li-ion batteries, Mg-ion batteries, and some other rechargeable
ion batteries. J. Sun, C. Xu & H. Chen'* reviewed the synthesis
of CuCo,0,-based electrode materials and their applications in
supercapacitors, while Gao et al'® briefly summarized the
recent applications of FeCo,0, (and CoFe,0,) in energy storage
and conversion, as well as the current understanding of the
mechanisms and especially the relevance of morphologies and
structures and composites to the electrochemical performance.

As shown above, several review articles show the progress
made for Mg, Mn, Fe, Cu and especially Ni cobaltite. However,
to our knowledge, more than 800 papers report the syntheses
and/or use of ZnCo,0, spinel for various applications, including
sensor, and energy conversion and storage applications. Its multi-
functionality and excellent electrochemical properties are closely
related to its structure which presents a regular spinel structure
where Zn** only replaces Co** in the Ty sites in Co;0y, leaving the
Co® content in the O, sites unchanged, while Ni and Mn mainly
occupy Oy, sites in NiCo,0, and MnCo,0,.* In fact, the effect of
the oxidation state and cation distribution in the spinel on the
electrocatalytic activity for the OER in an alkaline solution has
been studied, and a comparison of the electrochemical and
physicochemical behavior of MCo,0, (where M = Mn, Fe, Co,
Ni, and Zn) was made by M. Harada, F. Kotegawa, & M. Kuwa.®
Interestingly, their catalytic activity for the OER follows the order:
ZnCo,0, > NiCo,0, > FeCo,0, > C03;0, > MnCo,0,. According
to the authors, the active sites for the OER are M>" species in the
octahedral site, and their activities are significantly dependent on
the Co**/Co*" and M**/M*" content ratios in the octahedral site as
demonstrated according to XPS and in situ X-ray absorption fine
structure (XAFS) measurements, demonstrating the importance of
the presence of Zn>" ions in ZnCo,0,."® Complementarily, ZnCo,O,4
is a promising energy storage material which shows advantageous
properties, including low cost, low-toxicity, different morphologies,
high electrical conductivity,"”*® and high theoretical capacity in
comparison with unitary ZnO and CoO and binary Co;0,."”

Inspired by the above considerations, and despite being the
second most reported cobaltite, as far as we know, there is no
review work summarizing recent progress in ZnCo,O, in energy
applications. Therefore, in this review article we focus on
ZnCo,0, and its composites as electrode materials for energy
technologies, including the main strategies used for the design
(Scheme 1) of HSCs, LIBs and MABs, as well as the advance-
ments as electrocatalysts for water-splitting (HER and OER) and
the ORR. The pros and cons of using this spinel in the different
devices are critically discussed, encompassing the perspectives
and possible future directions.

2. Water-splitting and electrochemical
energy storage systems
2.1. Water-splitting

Electrocatalytic water-splitting is an effective way to produce
hydrogen with high purity.>* The overall reaction includes two
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Scheme 1 Applications of ZnCo,0,4-based materials. Reproduced with
permission.® Copyright © 2018, The Author(s). Creative Commons CC
BY license. Reproduced with permission.?° Copyright Royal Society of
Chemistry, 2017. Reproduced with permission.?* Copyright: © 2021 by the
authors. Licensee MDPI, Basel, Switzerland (CC BY).

half reactions, e.g., HER and OER, taking place, respectively, at
the cathode and the anode,* as shown in Fig. 1A. In addition,
the water splitting reactions are dependent on the pH, as
expected for reactions involving protons,> as demonstrated
by the equations presented in Fig. 1B. For instance, for the
HER, there are two main steps on the electrode surface,
described by the Volmer-Heyrovsky and Volmer-Tafel mechan-
isms proposed for acidic and basic solutions®* (Fig. 1C). On the
other hand, the OER is a more complex, requiring a high energy
to overcome the sluggish kinetic barrier associated with the
four-electron transfer process, and involves a larger over-
potential®® (Fig. 1C).

The electrocatalytic performance is usually measured by linear
sweep voltammetry (LSV), cyclic voltammetry (CV)*® and electro-
chemical chrono-methods where several parameters are used to
classify catalysts according to their performance, and even to
unravel the reaction mechanisms. Among the electrochemical
activity criteria, the overpotential (i), Tafel slope and stability are
the most used ones to study the performance of electrocatalysts
based on metal oxides/hydroxides.

The overpotential () is one of the essential criteria to
evaluate the activity of electrocatalysts. It represents the differ-
ence between the potentials for achieving a specific current
density and the onset potential to start the reaction (HER =0V
and OER = 1.23 V).?® Generally, the overpotentials at a current
density of 10 mA cm™? (1,,) are used to compare the electro-
catalytic activity between different catalysts. This corresponds
to the equivalent efficiency of 12.3% for photoelectrochemical
water splitting.>® In practice, a catalyst providing an overpoten-
tial in the range of 300-400 mV is considered to be an excellent

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(A) Scheme of a conventional water electrolyzer. (B) Water splitting reactions under acidic and alkaline conditions. (C) Proposed mechanisms of

the HER and OER in an acidic aqueous solution. Reproduced with permission.?® Copyright Marketplace™, Royal Society of Chemistry.

catalyst for the OER.>”*® However, 11, has a great influence on
the loading mass even considering the same geometrical area;
thus it cannot be the only criterion to evaluate the activity.®
In this regard, Tafel analysis provides additional information to
understand the reaction kinetics and mechanism, such as the
magnitude of the slope, which helps in establishing the rate-
determining step and the response sensitivity.>” For instance,
Tafel slopes of 120, 40 and 30 mV dec ' were observed,
respectively, for the Volmer, Heyrovsky and Tafel determining
rate steps. The smaller value of the Tafel slope means a faster
electron-transfer kinetics of the electrocatalyst.>*>*>°

In addition to low overpotential and Tafel slope values,
a good electrocatalyst should also be stable for long periods
of time, under operating conditions. This evaluation can be
performed by different techniques, including continuous CV
cycling and LSV. The measurements allow comparing the over-
potentials before and after cycling.”® Another way to obtain
information about the stability of electrocatalysts is by galvano-
static or potentiostatic electrolysis, registering the variation of
potential or current density.”®

In summary, the overpotential (), Tafel slope and stability
are the main criteria to categorize electrocatalysts based on
ZnCo,0,, for the OER and HER.

2.2. Electrochemical energy storage systems

In an effort to overcome past limitations, recent years have seen
intense research efforts in energy storage areas, such as fuel

© 2022 The Author(s). Published by the Royal Society of Chemistry

cells, capacitors, supercapacitors, and batteries. Electrochemi-
cal energy storage systems (EESSs) play a critical role in renew-
able energy integration applications. They serve as energy
sources to provide power supply and/or energy buffers to
improve efficiency and the overall economy. This has triggered
intensive research efforts in the past three decades, which have
resulted in the advent of modern EESSs such as batteries and
supercapacitors.”?3!

2.2.1. Supercapacitor materials and devices. An important
point that should be clarified in the initial evaluation of
electrode materials is whether their electrochemical data
correspond to a battery or a supercapacitor. Electrodes with a
capacitor-like behavior present cyclic voltammograms (CVs)
and linear potential responses during constant-current dischar-
ging (Fig. 2A-C). In contrast, the battery-type electrode presents
CVs with defined oxidative and reductive peaks (Fig. 2G and H)
and flat (plateau) galvanostatic charge/discharge (GCD) profiles
(Fig. 2I). One criterion that could help the identification of the
electrode’s nature is the analysis of current versus scan rate
curves. For battery-type materials, the peak current (i) will be
proportional to the square root of the scanning rate (i ~ v*/?),
whereas for a capacitor-like electrode the current will be
proportional to the scan rate (i ~ v).*?

Distinct from conventional capacitors, supercapacitors store
charges electrochemically but show high-energy density com-
pared to the former, with high rate capability and excellent
cycling stability. According to their charge storage mechanisms,

Energy Adv,, 2022,1, 793-841 | 795


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ya00106c

Open Access Article. Published on 03 October 2022. Downloaded on 2025-10-16 7:18:37 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

View Article Online

Energy Advances

A B
. |2 ®
= < < .
< = = £ . e
o - = EDLC = Pseudocapacitor S
> | i ey o = oo ()
*_ 8 dh) 9_) \\\
- 5
(6] O Sso
\\\
Potential (V) Potential (V) Time (s)
o D) () (F)
= - 3
o= < 2 - \
g E E N S N
o = . Intercalation wit — S
S8 = P S —— AN
> - =
FSll & 5™ 51 e
> 5 . o Tteal
o o 3 o ~
~
[oX \\\
Potential (V) Potential (V) Time (s)
G) (H) ()
< | Faradaic < : —
€| dominated g| Typical — . (h)
= = | Batteries & Dl LT -
(&) - N = S ——— \
% s 5 5 N (9) "~ \
csfl 5 5 & \
- ® O O \ i
(T ‘\ |
Potential (V) Potential (V) Time (s)
Fig. 2 Illustrative cyclic voltammograms (A, B, D, E, G and H) and the corresponding GCD curves (C, F and 1) for different types of energy-storage

materials. Electrochemical double-layer capacitors: CV profile (A) and the corresponding discharge curve (C). A pseudocapacitive electrode could present an

electrochemical response of one, or a mix, of the following categories

. (B and C) surface redox materials and (D—F) intercalation-type materials.

Electrochemical profiles in (G-I) correspond to battery-like materials. Reproduced with permission.> Copyright © 2018 American Chemical Society.

supercapacitors are divided into two categories, namely, electro-
chemical double-layer capacitors (EDLCs) and pseudo-
capacitors.®® In EDLCs, the electrochemical behavior is due to
the storage of charges at the electrode/electrolyte interface by
establishing electrochemical double layers through a non-
faradaic process (Fig. 2A and C.a). In pseudocapacitors, the
electrochemical behavior in terms of current is neither totally
capacitive nor entirely faradaic (like batteries). These electrodes
present fast and reversible oxidation/reduction reactions through
either intercalation or surface ion processes and quasi-rectangular
CVs and quasi-linear GCD curves.*® In surface-redox pseudo-
capacitors, the charge storage is mostly assigned to the charge
transfers occurring at the surface of the material. As can be seen
in Fig. 2B and C.b, the CV and the GCD characteristics for surface-
redox pseudocapacitors present the linear dependency of the
charge storage over the entire potential window, storing charges
through surface faradaic and double layer mechanisms.
Intercalation-type materials involve the core of the electrode
materials and are expressed by the intercalation of charges
between layers or in channels originating from the faradaic
reaction and lack of phase changes during cycling (Fig. 2D-F).>*

EDLCs can reach fast charging/discharging rates and high
cycling stability. However, the energy density of this type of
material is relatively low, due to the deficient contact at the

796 | Energy Adv, 2022, 1, 793-841

electrode/electrolyte interface. On the other hand, the capaci-
tance of pseudocapacitors is attributed to the fast and rever-
sible redox process of materials, such as some transition metal
oxides/hydroxides and conducting polymers. Hence, pseudo-
capacitors can provide higher specific capacitance but present
lower power density,” due to the low conductivity of pseudo-
capacitive materials. In this way, one strategy to increase the
performance of electrodes is the preparation of nanocompo-
sites containing carbon structures.*®

The configuration of conventional supercapacitors is based on
button cells or spiral-wound designs, which are composed of
two collectors, two electrodes, and a separator, all soaked in
electrolyte.”” Distinct from the case of conventional supercapaci-
tors, the development of materials in smart configurations (films,
fibers, and micro-scale supercapacitors) has increased, aiming for
the construction of thin, flexible, and even foldable devices. Thin-
film electrodes are prepared with a layer of active material with its
thickness varying from nanometers to micrometers, resulting in
short charge and ion transport distances, and thus promoting fast
physical or chemical processes during charge storage.*® Fiber
supercapacitors are commonly designed like 1D wires with dia-
meters varying from micrometers to millimeters and constructed
based on parallel, twisted, coaxial, or woven structures.*® Micro-
supercapacitors generally consist of a vertical structure composed

© 2022 The Author(s). Published by the Royal Society of Chemistry
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of two electrodes and electrolyte sandwiched in the middle of
both or, in the case of the in-plane interdigital device architecture,
electrodes are separated by an insulated gap, with no need
for separators in the construction of the device. The electrolyte
is subsequently deposited on the top of devices to guarantee
ion transport between electrodes. The total size of micro-
supercapacitors could be in the order of millimeters.>**°

2.2.2. Rechargeable batteries. Unlike capacitors and super-
capacitors, battery cells have high specific capacity values and
high volumetric and gravimetric energy density values. In
battery electrodes, during charging, ions are deintercalated
(extracted) from the cathode and diffuse into the anode via
the electrolyte medium, which is a conductor for ions and an
insulator for the electrons generated at the cathode, while the
electrons reach the anode via an external circuit, whereas
discharging reverses this process. This is followed by faradaic
charge transfer processes to generate the energy capacity (mA h
kg™ ). Thus, the specific capacity obtained in battery electrodes
is limited by solid-state ion diffusion, exhibiting relatively poor
kinetics; however, the use of the entire bulk of the electrode for
charge storage leads to very high energy density.>**'™*3

Among a number of different energy storage technologies,
metal-ion batteries, in particular lithium-ion batteries (LIBs), have
recently been accepted as the leading candidate for commercial
EESSs. LIBs, as the main power source, dominate the portable
device market due to their high energy density, high output
voltage, long life and environmentally friendly operation.™** 1t is
important to mention that many review works already published
highlighting recent progress,*>™” issues and challenges facing
rechargeable LIBs,"® as well as rechargeable sodium-ion batteries
(SIBs) as potential alternatives to current LIBs,*® which can be used
to obtain more detailed information about these EESSs.

On the other hand, metal-air batteries (MABs) are a family
of electrochemical cells powered by metal oxidation and oxygen
reduction; in this system oxygen is used as the active cathode
material. This oxygen is obtained from air, which diffuses into
the electrolyte from the atmosphere and undergoes reduction
at the cathode, exhibiting a great advantage regarding theore-
tical energy density, which is about 3-30 times higher than
those of commercial LIBs.”™

In typical continuum-based models, the cathode material is
considered as a porous medium and the structure is repre-
sented by several parameters, such as porosity, permeability,
and tortuosity.>® In addition, it is necessary to design oxygen
electrode catalysts with special structures for use in MABs to
overcome the sluggish kinetics of the oxygen reduction reaction
(ORR) and the oxygen evolution reaction (OER).>*™>

3. ZnCo,0,4-based materials for
energy storage applications

3.1. ZnCo,0,4-based electrode materials for supercapacitive
applications

One of the best electrochemical performances is observed for
RuO, as a supercapacitor electrode material, exhibiting a high

© 2022 The Author(s). Published by the Royal Society of Chemistry
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specific capacitance of 1580 F g~ '. However, because of its
high cost and element scarcity, it becomes necessary to seek
environmentally friendly and low-cost alternative electrode
materials. Recently, transition metal oxides (TMOs) such as
MnO,, NiO, and Co;0, have been studied as promising elec-
trode materials for supercapacitor applications,*® especially
those based on doped-Co;0,. The bimetallic oxide ZnCo,0,
has recently attracted much attention because of its excellent
electrochemical properties, with lower activation energy, higher
conductivity and electroactivity in comparison with pristine
Co;0,. It also exhibits high theoretical capacitance (2604 F g™ ),
and is environmentally compatible and a cost-effective and abun-
dant material. In addition, ZnCo,O, presents a p-type semi-
conducting nature, which influences the electrical conductivity
of the material, and shares the same Coz;0, spinel crystal struc-
ture. The replacement of Co®>" ions with Zn>" ions, with Zn
occupying the tetrahedral sites and Co occupying the octahedral
sites, results in much richer redox reactions. However, ZnCo,0O,
has the disadvantage of exhibiting an intrinsically poor electrical
conductivity, involving large volume changes through the charge/
discharge processes. This leads to some intrinsic electrical insula-
tion, showing rapidly fading capacitance at higher current den-
sities and during charge/discharge cycles, thus usually presenting
low rate-capability and cycling stability.>”>®

Therefore, to overcome these limitations, rational design
of suitable electrode materials is imperative, since the electro-
chemical performance strongly depends on their mechanical
properties. To surpass the limitations of ZnCo,0O,-based elec-
trodes for supercapacitor applications, it is important to seek
for an optimized morphology that can provide high active
surface area, short lengths and high rates of ion and electron
diffusion. Plenty of redox sites should be available. For this
reason, pristine ZnCo,O, has been synthesized as micro-
particles,”® microsheets,*® microspheres,®'** microflowers,®>*®
nanoparticles (NPs),°”*® nanocubes,®® nanosheets,””” nano-
plates,>® nanoflowers,”* nanorods,”> nanospheres,”® and nano-
tubes”’ to produce slurry-cast supercapacitive electrodes (Table 1).

Other strategies rely on the production of hybrid materials,
such as composites and core@shell structures, which will
be discussed later, and/or combining the morphology design
and hybrid materials engineering with binder-free and self-
supporting architectures. The use of binders to produce slurry-
cast electrodes for supercapacitor applications significantly
reduces the electronic conductivity, limits the active material
availability, hinders the ion-diffusion, and increases the mass
density as ‘“‘dead-mass”. Additionally, after repetitive redox
reactions, the material can lose the integrity and/or peel-off
from the substrate, reducing the capacitance retention through
several charge/discharge cycles. Therefore, the above-mentioned
downsides can be resolved by the growth of ZnCo,0, electroactive
materials directly on the surfaces of electrode substrates, such as
nickel foam (NF), carbon foam (CF) and carbon cloth (CC). These
strategies not only avoid “dead-mass” but also greatly improve the
electroactive surface area, and offer fast electron transportation
and short ion diffusion paths. In addition, these strategies will
decrease the resistance between the electroactive material and

Energy Adv, 2022,1,793-841 | 797
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current collector, provide efficient ion-diffusion channels, ensure
excellent mechanical strength, enhance the electrical conductivity
and accommodate the volume changes through cycling. There-
fore, the challenge to fabricating highly efficient binder-free
electrode materials capable of storing rapidly larger amounts of
energy, at low cost, can be solved by using ZnCo,0,-modified
electrodes. Hence, binder-free electrodes based on pristine
ZnCo,0, nanorods,”®”® nanobelts,®® nanoribbons,®* nano-
flowers,®? nanoflakes,®*®* nanosheets,®**° nanomuscles,”® nano-
wires,®>°! nanoleaves,”® nanocubes,” micro-urchins,’**> and
nanoneedles®® were also reviewed for supercapacitor applications
(Table 2) and will be discussed along with slurry-cast electrodes
according to their morphology.

3.1.1. Pristine ZnCo,0, electrode materials. The micro/
nano-structured ZnCo,0, electrode materials discussed in this
review article have been prepared via different synthetic strate-
gies and, therefore, present distinct electrochemical perfor-
mances according to their morphologies in both slurry-cast
and binder-free electrodes. As expected, in general, less bulky
morphologies with higher surface area and lower thickness
present higher supercapacitive performance, due to the
improved availability of active sites and thus the reduced
amount of “dead-mass” of ZnCo,0,. Furthermore, the produc-
tion of 2D, 1D, hollow and/or porous pristine ZnCo,0O, struc-
tures is another important factor, increasing the surface area
and cycle stability. It allowed enhancing even further the active
site availability and specific surface area and mass ratio,
resulting in high charge/discharge capacitances even at high
current densities.

In the case of Co;04-based materials, the direct comparison
between different MCo,0, materials can only be understood by
further analyzing their morphologies instead of just their
composition, as reported by Merabet et al.>° (M = Zn, Ni, Mn,
and Cu) and Alqahtani et al.® (M = Zn, Ni, Mn, Cu, and Fe).
Both author groups synthesized sphere-like ZnCo,0, micropar-
ticles for slurry-cast electrodes, but different morphologies were
obtained for other MCo,0, species, impacting their perfor-
mance. Since their sphere-like ZnCo,0, microparticles pre-
sented bulkier morphologies and lower electroactive surface,
they exhibited the lowest electrochemical performance, deliver-
ing158 Fg 'at5mvVs '*and 126 Fg 'at1Ag %

Notwithstanding, there are some structural strategies that
can be applied to optimize 3D ZnCo,0, morphologies for slurry-
cast electrodes, e.g., nanocubes (434 F g~ " at 5 mV s~ '),* sphere-
like NPs (843 F g~ " at 1 A g~ ")*” and rod-like NPs (135 F g~ " at
1 A g7 ").”° However, even though nanocubes® and sphere-like
NPs®” presented cycling stability (97% after 5000 cycles) and
relatively good specific capacitance in comparison to bulk
microspheres®® and nanorods,” they showed poor rate cap-
ability. Nonetheless, the overall stability can be further
enhanced by producing hollow (78.89 mA h g ' at 1 A g™ ')®
and porous microspheres (460 Fg ' at1Ag '* and 420 Fg "
at 0.5 A g '7°). Differently from bulk and smooth micro-
particles®® (Fig. 3A), which presented 75% of their initial
specific capacitance after 1000 cycles, the initial specific capa-
city of hollow ZnCo,0, microspheres®® (Fig. 3B) increased to

83,84
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145% after 2000 cycles, while porous microspheres®® (Fig. 3C)
delivered 165% of their initial specific capacitance after 1000
cycles. These results suggest that porous and hollow particles
show superior cycling performance due to the facile mass
transfer from the interconnected structure of NPs and the
void/space in between the particles, alleviating the strain effects
of the volume changes during charge/discharge processes.
As for binder-free electrodes, there are ZnCo,0, connected
nanomuscle network microstructures uniformly grown onto
NF (1156.3 F g " at 1 A g "),°° which originate from agglomer-
ated nanosheets and present a highly porous 3D structure. This
can partially buffer the strain effect through the charge-dis-
charge processes, improve the specific surface area and active
site availability, and lower the interior resistance, facilitating
electron transfer and resulting in such high specific capacitance.

Aside from 3D ZnCo,0, NPs, the literature has reported a
series of 2D-structured ZnCo,0O,4, such as micro-** and nano-
sheets,”7%7%% nanoplates,”® nanoflakes,*** nanoleaves,”
nanobelts,*® nanoribbons,*! and those based on radial growth
of nanosheets, i.e., micro-*>*® and nanoflowers.”**? In addition,
there are 1D-structured ZnCo,0O,, such as urchin-like micro-
spheres,® nanorods”’®”® and nanotubes.” Two-dimensional
sheet-like morphologies are known to be generally more suitable
than traditional bulk (3D) materials for supercapacitor applica-
tions, once they present high specific surface area, higher surface
area-to-volume ratios, and shorter ion transportation channels
due to their greatly reduced thickness in one dimension, thus
improving the availability of electroactive sites for redox
reactions, electrical conductivity, cycling stability and ion-
diffusion rates.>*%%7%73

All sheet-like ZnCo,0, materials for slurry-cast electrodes
encountered in this review had superior capacitance retention
through cycling in comparison to bulk spherical and cubic
ZnCo,0, nanoparticles due to their more stable morphology.
However, they also presented some limitations in rate capability,
with a significant decrease in specific capacitance at increasing
current density. Presumably, the electrolyte ions have insufficient
time to diffuse into the electrode material and to access the active
sites at higher scan rates. Even though the highest specific
capacitance between slurry-cast electrodes of 835.26 F g~ ' at
1 A g ' was achieved by mesoporous ZnCo,0, nanosheets
produced by Xiao et al.”® (Fig. 4A), similar results were achieved
with porous Zn; 36C0; 6,0, nanoplates (805.3 Fg 'at1Ag "),>°
as well as with mesoporous ZnCo,04 nanosheets (3.3 F cm™ > at
1.01 mA cm ™ %) and porous ZnCo,0, nanosheets (3.07 F cm ™ > at
1.04 mA cm ?).”> In fact, these results are attributed to
their porosity and nanosized morphology. Smooth ZnCo,0,
nanosheets”! delivered only 290.5 F g ' at 0.5 A ¢! and
ZnCo,0, microsheets®® delivered the poorest areal capacitance
(16.13 mF cm ™2 at 10 pA cm ™ ?) among all materials, along with
rather low rate-capability, owing to their inferior specific
surface area and the lower availability of electroactive sites,
especially at higher current densities.

When assembled in binder-free electrodes, on the other
hand, sheet-like ZnCo,0, materials present superb specific
capacitance, rate capability and cycling stability and are quite
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Fig. 3 (A) SEM image of bulk ZnCo,Q,4 microparticles. Reproduced with permission.>® Copyright © 2018 Elsevier Ltd and Techna Group S.r.l. All rights
reserved. (B) SEM image of hollow ZnCo,O,4 microspheres. Reproduced with permission.®? Copyright © 2018 Elsevier Ltd. All rights reserved. (C) SEM
image of porous ZnCo,0O4 microspheres. Reproduced with permission.® Copyright © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

2 pm

Fig. 4 (A) SEM image of mesoporous ZnCo,O4 nanosheets. Reproduced with permission.” Copyright © 2017, Springer-Verlag GmbH Germany, part of
Springer Nature. (B) FESEM image of ultra-thin ZnCo,O4 curved nanosheets/NF. Reproduced with permission.8> Copyright © 2019 Elsevier Ltd. All rights
reserved. (C) SEM image of porous ZnCo,0, nanoribbons/NF. Reproduced with permission.8! Copyright © 2017 Elsevier Ltd. All rights reserved. (D) SEM
image of porous ZnCo,O,4 microflowers. Reproduced with permission.®® Copyright © 2019 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

(E and F) SEM images of ZnCo,0, nanoflowers/NF. Reproduced with permission.82 Copyright © 2017 Elsevier Ltd. All rights reserved.

competitive.*>#18378%92 Nanosheets are the most studied 2D

morphology of ZnCo,0,,%®® featuring porous nanosheet net-
works on NF (3.19 F cm > at 2 mA cm ?),%® intertwined
nanosheet arrays on CC (1750 F g~ at 1.5 A ¢ ")¥ and NF
(400 F g " at 1 A g 1),®® ultra-thin curved nanosheet arrays on
NF (1848.9 F g ' at 5 A g )* (Fig. 4B). These materials
presented high rate-capabilities and cycling stabilities, besides
porous nanosheet networks on NF,*® with a capacitance reten-
tion of 72.5% after 2500 cycles. Such good rate capabilities are
achieved owing to the nanosheet array arrangements with
adequate space between individual nanosheets, composed of
many NPs and pores®**%% or intertwined nanosheets,®” which
facilitates the transport path for ion-diffusion in charge/
discharge processes.

Other binder-free electrodes based on 2D ZnCo,0, materials
were also produced in recent years, i.e. nanobelts (1197.14 Fg~*
at 2 A g "),* nanoribbons (1957.7 F g~ ' at 3 mA cm 2),*"

© 2022 The Author(s). Published by the Royal Society of Chemistry

flake-like nanostructures (~41 mA h g ' at 2 A cm ?),*
nanoflakes (1170 F g~ ' at 2 A g~ "),* nanoleaves (1700 F g~
at 1 A g "),°*> and porous Al, 5Zn, ;C0,0,4 nanosheet arrays on
NF (~1200 Fg ' at 20 A g™ ).%°

ZnCo,0, nanobelt-decorated CC®® had a similar structure to
interconnected nanosheets and thus provided similar perfor-
mance to ZnCo,0, nanosheet materials,?*®® while flake-like
ZnCo,0, nanostructures on CC,* leaf-like ZnCo,0, nanostruc-
tures on NF°> and Al,5Zn, sC0,0, nanosheet arrays on NF*°
presented poor rate capabilities despite their high cycling
stabilities. The trimetallic oxide-based electrode delivered
slightly better performance than pristine ZnCo,O, micro-
urchin arrays on NF produced in the same work (approximately
1000 F g ' at 20 A g ') due to the incorporation of a third
metallic center that can enhance even further the ZnCo,0,
electrochemical behavior. The leaf-like ZnCo,0, nanostruc-
tures on NF°? delivered high initial specific capacitance, due

Energy Adv., 2022,1, 793-841 | 801
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to their high specific surface area and electroactive site avail-
ability, but limited morphology for fast ion-diffusion. The poor
specific capacity of flake-like ZnCo,0, nanostructures on CC%*
seems to be caused by their smooth surface and low specific
surface area.

On the other hand, porous ZnCo,0, nanoribbon arrays on
NF®' (Fig. 4C) not only delivered the highest specific capaci-
tance among binder-free 2D ZnCo,04-modified electrodes, but
also demonstrated a good rate capability of 61.7% upon a
20-fold current density increase. In this case, good cycling
stability was noticed, maintaining 84% of the initial specific
capacitance after 3000 cycles, attributed to the appropriately
spaced and highly porous nanoribbon arrays, which provided
multiple and facile channels for fast ion-diffusion.

Compared with 2D nanomaterials based on radial growth
of nanosheets, i.e., micro-°>°® and nanoflowers,”* slurry-cast
electrodes presented even better rate capability, high specific
capacitance and cycling stability. Mesoporous ZnCo,0, micro-
flowers®® (680 F g~ ' at 1 A g~ "), porous ZnCo,04 microflowers®®
(689 Fg " at 1 A g~ ') and porous Zn, sCo, s0,_; nanoflowers”
(763.32 F ¢ ' at 1 A g*") (Fig. 4D) presented 89.4% (0.35 to
1Ag"), 81.3% (1 to 15 A g7*) and 55.31% (1 to 30 A g™ )
capacitance retention, respectively.

Micro- and nanoflower NPs combine the benefits of strongly
interconnected sheet-like structures with a highly porous and
hierarchical structure. They also present high specific surface
area, promoting reduced mechanical stress. This arises from
the huge volumetric expansion during the charge/discharge
processes, facilitating electrolyte penetration and ion diffusion
into the electroactive material. There is a high availability of
electroactive sites even at high current densities and numerous
charge/discharge cycles. The binder-free electrode with radial
growth of ZnCo,0, nanoflowers on an NF electrode®” (Fig. 4E

View Article Online

Energy Advances

and F) delivered 1657 F g~ " at 1 A g~ ', and was designed along
with a flake-like ZnCo,0,-modified NF electrode, which deliv-
ered 1803 F ¢ ' at 1 A g~ '. They presented, respectively, ~45%
and ~ 33.3% rate capability at 16 A g~ *, which makes ZnCo,0,4
nanoflowers on the NF electrode a better candidate for super-
capacitive applications even though they still present low
specific capacitance retention at higher current densities. Pre-
sumably, nanoflower structures are more stable under high
current conditions and repeated charge/discharge cycles. The
abundance of ion-diffusion channels can improve the electro-
lyte and electron transport. However, it is still very limited, and
the parallelly grown structures can be more suitable for binder-
free electrodes in comparison to those radially grown.

There are also some recent works about pristine 1D struc-
tured ZnCo,0,. These structures can have some advantages,
exhibiting optimal specific surface area and material mass
ratios which are only surpassed by typical 0D materials, such
as quantum-dots. In this case, it is important to mention their
extremely reduced length in two dimensions, shorter ion diffu-
sion lengths and facile electrical transport exclusively in the
axial direction. Also relevant are the quantum confinement
effects, altering the material properties in such a way that
photons can be absorbed at one wavelength and transmitted at
another.”” These advantages can be further enhanced in slurry-
cast electrodes by producing hollow nanotubes (362 F g~ ' at
0.5 A g~ ")’7 (Fig. 5A), with low density, superior specific surface
area and shorter ion transport path. Alternatively, urchin-like
microspheres (677 F g~' at 1 A g~ )** (Fig. 5B) with radially
grown porous nanorods have almost the same benefits of
porous microflowers, both with high rate capability and capa-
citance retention through cycling for slurry-cast electrodes.

Binder-free electrodes, ZnCo,0, nanorods/CC (5.18 F cm ™
at 5 mA cm ™ 2),”® nanorods/flexible stainless-steel mesh (FSSM)

2

Fig. 5 SEM images of (A) hollow ZnCo0,04 nanotubes,”” (B) urchin-like ZnCo,O4 microspheres,®* (C) ZnCo,04 nanorods/CC,”® (D) ZnCo,04 nanowire
arrays/NF,°¢ (E) porous ZnCo,O4 micro-urchins/NF°* and (F) ZnCo,0, intertwined heterostructured nanocubes/NF.°® Panel A: Reproduced with
permission.”” Attribution 3.0 Unported (CC BY 3.0), Royal Society of Chemistry. Panel B: Reproduced with permission.®* Copyright © 2018 Elsevier Ltd
and Techna Group S.r.l. All rights reserved. Panel C: Reproduced with permission.”® Copyright © 2018 Elsevier B.V. All rights reserved. Panel D:
Reproduced with permission.®® Panel E: Reproduced with permission. Copyright © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Panel F: Reproduced with permission.®® Copyright © 2019 Korean Physical Society. Published by Elsevier B.V. All rights reserved.
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(315 Fg " at 2 A g7 "),”° nanowires (2049 F g ' at 2 A cm ™ ?),*
micro-urchins/FSSM (127.8 F g~' at 1 mA cm™>),”* micro-
urchins/NF (390 F g ' at 1 A g ),”® and two porous ZnCo,0,
micro-urchins on NF electrodes (1000 F g~ ' at 20 A g ;*°
1527.2 F g ' at 1 A g7 "°") were also assembled. The ZnCo,0,
nano-rod arrays on CC’® (Fig. 5C) presented one of the highest
rate capabilities based on 1D-morphology, with 59.8% capaci-
tance retention and a 20-fold current density increase, along
with a good areal capacitance. The other nanorod-modified
electrode, ZnCo,0, nano-rod arrays on FSSM,”° delivered not
only low specific capacitance but also good rate-capability. This
is attributed to the uniform thickness, length, and parallel
oriented distribution of ZnCo,0,4 nanorods with suitable spaces
between them, allowing rapid ion-diffusion and active site
availability. Nanowire arrays of ZnCo,0, on NF°® (Fig. 5D) share
almost the same properties of nanorod-modified electrodes,
but instead they deliver one of the highest specific capacitances
and rate-capabilities among all pristine 1D ZnCo,0,-modified
binder-free electrodes, with 83.6% capacitance retention after
a 15-fold increase in current density. They also exhibit the
unusually high cycling stability observed for binder-free elec-
trodes (88.8%, 3000 cycles). This superior performance is
inferred to be caused by the higher length of the nanowires
in comparison to nanorods. As a result, an interconnective
mesoporous structure with very high specific area, abundant
available electroactive sites, and shortened distances of elec-
tron transportation is obtained. There are also suitable spaces
between nanowires for allowing fast and effective ion-diffusion.

Interestingly, two of the reported micro-urchin architectures
deliver relatively low specific capacitances for a binder-free
ZnCo,0,-based electrode,’>** although much higher than
those of slurry-cast micro-urchin electrodes produced by a
similar synthesis route.’® Porous ZnCo,04 micro-urchins on NF
electrodes®*" deliver good specific capacitances, due to their
larger spatial and porous structure (Fig. 5E), which greatly
improves electroactive site availability and promotes better
charge transport and ion-diffusion. However, all these mentioned
materials presented limited rate-capability as 2D-morphology-
based microflowers, due to the lack of parallel orientation. There
is no adequate space between the nanostructures for optimizing
the electrolyte penetration. Additionally, by combining 1D and 2D
features in cubic structures, ZnCo,0, intertwined heterostruc-
tured nanocubes on an NF electrode® (Fig. 5F) were produced.
They encompass mixed nanowires and nanosheets directly grown
onto NF, with connective channels for electron transfer and
suitable pores facilitating rapid ion-diffusion. This results in a
high specific capacitance, e.g,, 2040 F g ', at a high current
density of 20 A g™,

3.1.2. ZnCo,0,/transition metal-based material composite
electrodes. Although pristine ZnCo,0,-based electrodes pre-
sented relatively good performance due to the increase in
supercapacitive performance by morphology design, another
strategy to improve their electrochemical performance is by
increasing the electroactive site abundancy and the specific
surface area, combining ZnCo,0, with other TMOs materials,
such as MnO,,”® Zn0,’* %% MnCo,0,,'** NiC0,0,'°* % and
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NizV,04"%” for slurry-cast electrodes (Table 3) or MnO,,"%®"*°
Zn0,"° Nio,""* Co05S,,'"** ZnCo,S,'"* and Zn-Co-S'* for binder-
free electrodes (Table 4). These heterojunction-structured materials
are composed of a base material that can provide better conduc-
tivity for charge and electron transfer and another material that can
provide more active sites.'® Following a similar strategy, great
attention has been directed to core@shell architectures in binder-
free electrodes, with ZnCo,0, acting principally as the core mate-
rial, due to its high electrical conductivity and facile morphological
design using MnQ,,**'**> Cds,"° Ni;S,,""” Ni-Co-S,'"® ZnCo,S,,""?
Zn-Co-S,"** NiMoO,,"**** CoMo00,,'** ZnWO0,,'* NiwO,,'**
Ni(OH),,"*>"*® and Co-Al LDH" as shell materials, and Co;0,4
as a core material'?® (Table 5).

MnO, has been considered to be an ideal electrode active
material owing to its superior electrochemical activity and high
theoretical capacitance (about 1370 F g~ '); however, its poor
conductivity still precludes practical application in high-
performance energy storage devices. Nevertheless, the addition
of MnO, NPs and nanostructures onto more conductive
materials, such as ZnCo,0,, can further enhance the electro-
chemical performance of nanocomposite-based electrodes. As a
result, a MnO, NP-decorated ultrathin ZnCo,0, nanosheet
slurry-cast electrode (286 F g~ at 1 A g~ ')°® presents more
electroactive sites and specific surface area in comparison to
pristine ZnCo,0,4. Consequently, it provides better transmis-
sion channels for electrons due to the superior electrical
conduction and suitable morphology of ZnCo,0, support,
while the appropriate content of MnO, NPs further improves
its electrochemical properties, acting as a highly active co-
catalyst. Similarly, concerning binder-free electrodes, porous
ZnCo,0, nanoflakes of interconnected NPs, with sufficient
space to serve as the backbone for the growth of MnO,
nanosheets, were used to produce a ZnCo,0,/MnO, hetero-
structure on NF'%® (Fig. 6A). This drastically increased the
availability of electroactive sites and specific surface area, but
maintained the space needed for electrolyte diffusion at
higher current densities. This new structure was able to deliver
2057 F g~ at 1 A g~" with a cycling stability of 96.5% after
5000 cycles and a rate capability of 65% after a 15-fold current
density increase.

In fact, heterostructured nanosheet architectures are among
the best for ZnCo,0, composite-based binder-free electrodes
due to their electrochemical stability, large specific surface area
and optimal space between the nanosheets, which maximizes
the availability of electroactive sites even at high current
density. Therefore, ZnCo,0,@MnO, hierarchical nanosheet
arrays on NF (2170 F g~ * at 3 mA cm ™ ?),*® based on the growth
of MnO, nanosheets onto porous ultrathin ZnCo,0, nano-
sheets, delivered a high specific capacitance similarly to the
7ZnCo,0,/MnO, heterostructure on NF.'°® The capacitance
retention was 117.5% after 2500 charge/discharge cycles, and
the rate capability was 50.4% at 40 mA cm 2, due to the slow
diffusion of electrolyte between the spaces of abundant MnO,
nanosheets. Moreover, such core@shell materials were also
studied in 1D morphology as ZnCo,0,@MnO, nanowire arrays
on NF (4.98 F cm™ 2 at 2 mA cm™ %)'*® (Fig. 6B), encompassing
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Fig. 6 SEM images of (A) porous ZnCo,04/MnO, heterostructures/NF,'°8 (B) ZnCo,0,@MnO, nanowires/NF, > (C) mesoporous ZnCo,O4/NiO flower-
like clusters/NF,*'* (D) ZnCo,04@CdS nanoflowers/NF ¢ (E) hydrangea-like ZnCo,04/NisV>0g nanostructures/NF%” and (F) ZnCo,0,@NisS, hetero-
structured nanowires/NF.*” Panel A: Reproduced with permission.’°® Copyright © 2018 Elsevier Ltd. All rights reserved. Panel B: Reproduced with
permission.*> Copyright Marketplace™, Royal Society of Chemistry. Panel C: Reproduced with permission.*'* Copyright © 2018 Elsevier Ltd. All rights
reserved. Panel D: Reproduced with permission.*® Copyright © 2020 Korean Physical Society. Published by Elsevier B.V. All rights reserved. Panel E:
Reproduced with permission.X®” Copyright © 2019 Elsevier Ltd and Techna Group S.r.l. All rights reserved. Panel F: Reproduced with permission.**”

Copyright © 2017 Elsevier B.V. All rights reserved.

smooth ZnCo,0, nanowires uniformly covered with a porous
MnO, thin film. This largely increased the specific surface area
of the electrode, delivering 5 times more specific capacitance
than that of pristine ZnCo,0, nanowires, in addition to exhibiting
much better cycling stability (106.2% vs. 87.7% after 10 000 cycles)
and rate capability (~78.9% vs. 57.4% at 16 mA cm ™ 2).
Binder-free electrodes were studied in recent years, using
the same strategy of designing decorated nanocomposites,
ZnCo,0,/Co3S, nanowire arrays on NF (2.02 C gfl at
0.8 A g~")""* and mesoporous ZnCo,0,/NiO flower-like clusters
on NF (2797 Fg 'at 1 Ag "),""" as well as slurry-cast electrodes
and ZnCo,0,@CdS nanoflowers on NF (591 F cm 2 at
25 mA)."'® Mesoporous ZnCo,0,/NiO flower-like clusters on
NF''" (Fig. 6C) make use of highly electroactive NiO nano-
sheets, with a theoretical specific capacitance of 3750 F g,
assembled onto ZnCo,0, microspheres. In this case, the NiO
nanosheets form flower-like clusters, and relieve the internal
stress and restrain the capacitance decay through the charge-
discharge processes. In addition, they help in reducing the
ion-diffusion path length and increasing the specific surface
area. As a result, very high specific capacitance and overall
stability are achieved, with a retention of 81.8% upon a 10-fold
current density increase and ~100% after 3000 cycles. CdS
is another highly electroactive semiconductor candidate for
supercapacitive applications due to its excellent conductivity
and high theoretical capacity of 1675 F g~ '. Therefore, it is
assembled with CdS nanoparticles as the coating shell and
ZnCo,0, nanoflowers as the core (Fig. 6D),''® delivering more
than 10 times the specific capacitance of pristine ZnCo,0,
nanoflowers. There is a low rate capability, mainly due to the
intrinsically low electrolyte diffusion at higher current densi-
ties for the flower-like structured binder-free electrode, and

© 2022 The Author(s). Published by the Royal Society of Chemistry

also some limitation of ion-diffusion through the CdS nano-
particle shell.

In addition, Ni;V,0g and Ni;S, have also been used for
supercapacitive applications owing to their high performance
and capacity. In fact, slurry-cast hydrangea-like ZnCo,0,/
NizV,0g nanostructures composed of ZnCo,0O, nanospheres
and NizV,05 nanosheets'®” (Fig. 6E) present nanoflower-like
heterostructures that can provide open space for ion-diffusion
pathways, exposing various redox active sites for electrochemi-
cal reactions and electron transport, delivering 1734 F g~ ' at
1 A g ' It also presents superior cycling stability and rate
capability, retaining 96% of its initial specific capacitance after
8000 cycles and 90% from 1 to 10 A g '. The binder-free
core@shell ZnCo,0,@Ni;S,//NF electrode (2200 F g™ ' at
2 A g )" (Fig. 6F) exhibits interconnected Ni;S, nanosheets
coated on the surfaces of the highly ordered and dense
ZnCo,0, nanowire arrays. It delivered high specific capacitance
because of the two-dimensional (2D) nanosheet coating, which
largely increases the specific surface area. However, 55.7% rate
capability at 5-fold current density is due to the reduced space
between nanowires that limits the electrolyte diffusion at
higher current densities.

Zinc oxide (ZnO), an n-type semiconductor with a wide band
gap (~3.37 eV), can synergize well with ZnCo,0,, a p-type
semiconductor, to produce ZnCo,0,/ZnO heterostructures with
p-n junctions. The n-type region has a high electron concen-
tration and the p-type, a high hole concentration; so electrons
diffuse from the n-type side to the p-type side. Therefore, the
electrons generated at ZnO sites in charge/discharge cycles can
rapidly diffuse into the ZnCo,0, matrix, potentially enhancing
the overall electronic conduction of the composite. All ZnCo,0,/
ZnO composites used in slurry-cast electrodes found in the
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Fig.7 (A) SEM image of snowflake-like ZnC0,04/ZnO microstructures.’® (B) TEM image of nanosheet-based hollow ZnO/ZnCo,04/NiO
microspheres,’°2 and SEM images of (C) ZnCo,04/ZnO heterostructured nanorods/ITOM° (D) porous NiC0,04/ZnCo,04/Coz04 hollow
nanocages,'®® (E) flower-like ZnC0,0,@ZNC0,S,4 nanostructures/NF,*** and (F) ZnCo,04@Ni-Co-S$ nanosheet-based microspheres/NF .18 Panel A:
Reproduced with permission.®® © 2019 Elsevier Ltd and Techna Group S.r.l. All rights reserved. Panel B: Reproduced with permission.1°? Copyright
Marketplace™, Royal Society of Chemistry. Panel C: Reproduced with permission.'® Copyright © 2018 American Chemical Society. Panel D:
Reproduced with permission.}®> Copyright © 2018 Elsevier B.V. All rights reserved. Panel E: Reproduced with permission.* Copyright © 2020,
Springer Science Business Media, LLC, part of Springer Nature. Panel F: Reproduced with permission.'® Copyright © 2020 Elsevier B.V. All rights

reserved.

literature presented very high specific surface area, due to radially
grown structures such as snowflake-like ZnCo,04/ZnO (826.7 F g~
at 1 A g1 and marigold-like ZnO/ZnCo,0, (705.1 F g ' at
0.3 A g "),'" or hollow structures, such as nanosheet-based
hollow Zn0O/ZnCo,0,/NiO microspheres (1136.4 F g ' at
1 A g ").' Snowflakelike ZnCo,0,/ZnO microstructures®
(Fig. 7A) presented superior performance not only in specific
capacitance but also in rate capability. They delivered 69.6% of
their initial capacitance after a 15-fold increase in current density,
due to the more suitable open space for the ion-diffusion
pathway in comparison to tight nanosheets in marigold-like
Zn0/ZnCo,0, (89.4%, 0.3-1 A g~ *).'*"

Hollow Zn0/ZnCo,0,/NiO microspheres'®> are covered
with numerous ultrathin nanosheets and decorated with tiny
pores (Fig. 7B), which provide optimized specific surface area
and access to plenty of electrolyte. Such characteristics are
beneficial for the exposure of electroactive sites, buffering
the effect of volume changes and promoting suitable channels
to facilitate rapid ion/electron diffusion during the charge/
discharge processes. The result encompasses 86.5% capaci-
tance retention after 5000 cycles and, due to the tiny pore
sizes and spaces within the ultrathin nanosheets, rate cap-
abilities of ~31.2% and 54.9% with 30- and 10-fold current
density increases, respectively. As for binder-free electrodes,
there are ZnCo,0,/ZnO heterostructured nanorods on an ITO
electrode (150 pF em ™2 at 1.2 pA cm™ > with UV-radiation)"*°
(Fig. 7C), which feature both the photoelectric effect and
direct electron transportation pathway. Photoinduced elec-
trons and holes, under UV radiation, participate directly in
the electrolyte ion separation process to boost the overall
capacitive response, thus delivering 174% (2.7 times) more

808 | Energy Adv, 2022,1, 793-841

specific capacitance under UV illumination as compared to
the absence of UV.

Differently from the mentioned core@shell materials, the
mesoporous Co;0,@ZnCo,0,/NF electrode (2255.5 F g’1 at
2 mA cm™?)"?® features ZnCo,0, as the shell material, due to
its excellent rate capability and cycling stability. In this way it
could improve the practical application of the electrode; even
so, it has better electrical conductivity than its core. The directly
grown needle-like Co;O0, nanowire arrays are composed of
numerous polycrystalline interconnected nanoparticles, which
provides good roughness, increasing the specific surface area
and facilitating the uniform coating with the ZnCo,0, thin film
composed of multiple nanoparticles. As a result, the electrode
delivers high specific capacitance, about 3-times more than
that of Co3;0,/NF, with a capacitance retention of 59.0% and
90.9% after a 15-fold current density increase and 3000 cycles,
respectively.

Composites based on heterojunctions of ZnCo,0, and other
MCo,0, usually present: (i) richer and more abundant redox
reaction sites and, thus, higher specific capacitances; (ii) more
stability, since both have high contents of C0,0,>7; and
(iii) similar lattice parameters, in which the internal resistance
of the adjacent interfaces is greatly reduced during the charge/
discharge processes and facilitates the electron transport.
In this context, ZnCo,0,/MnCo,0, heterojunction nanosheets
(254 Fg 'at 1A g ") and NiC0,0,/ZnCo,0, heterostructures
(18709 F g ' at 1 A g )'** composed of ZnCo,0, nanosheets
and urchin-like NiCo,0,, and porous NiC0,0,/ZnCo0,0,/C030,
hollow nanocages (1892.5 F g~ " at 1 A g~ ')'% (Fig. 7D) formed
by interconnecting ultra-small nanoparticles with many voids
that results in porous multiple shells have been reported.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Despite delivering relatively low specific capacitance, slurry-cast
ZnCo,0,/MnCo,0, heterojunction nanosheet electrodes'®? pre-
sented higher specific capacitance and overall stability than
pristine ZnCo,0, and MnCo,0,. In fact, the other two compo-
sites also presented much better performance than their coun-
terparts in slurry-cast electrodes NiC0,0,/C030, and ZnCo,0,/
C0304, with NiC0,0,4/ZnC0,04/Co;0, hollow nanocages,"*> and
urchin-like NiCo,0, and sheet-like ZnCo,0, for NiCo0,0,/
ZnCo,0, heterostructures. Notwithstanding, these NiCo0,0,/
ZnCo,0,-based composites exhibit the second and third high-
est specific capacitances among all reported slurry-cast electro-
des. They also show superior electrical conductivity, rich and
abundant electrochemically active sites, high specific surface
area, and good rate capability and cycling stability,'***°* with a
capacitance retention of 58.4% and 91% after a 20-fold current
density increase and 10 000 cycles, respectively.

Transition metal sulfides display higher electrical conduc-
tivity than their oxide counterparts because the replacement of
oxygen with sulfur allows easier electron transport, lower
electronegativity and smaller band-gaps, making them good
candidates for supercapacitive applications and thus improving
the energy storage properties of ZnCo,0O, in composite archi-
tectures. From this perspective, there are binder-free electrodes
based on core@shell ZnCo,0,@Zn,Co;_,S, materials, such as
those based on flower-like ZnCo,0,@ZnCo,S, arrays//NF
(1057.78 F g~ at 1 A ¢ 9)'* and ZnCo,0,@Zn-Co-S hybrid
arrays//CNTFs (~1.35 F cm > at 0.5 mA cm™>)"** and micro-
sphere-structured ZnCo,0,@Ni-Co-S nanosheets (1762.6 F g~ "
at 1 A g~ ")."*® The flower-like ZnCo,0,@ZnCo,S,//NF'** elec-
trode (Fig. 7E) delivered good specific capacitance and, even so
the hierarchical micro-nanostructured features could further
improve the electrochemical properties of the electrode by
offering larger spacing for the penetration of electrolyte into
the structure. Thus, it could increase the availability of electro-
active sites at higher current densities and electron transfer.
A capacitance retention of 54.6% was achieved by a 10-fold
increase in current density, as expected for a flower-like
structure-based binder-free electrode.

Among bimetallic sulfides, nickel-cobalt sulfides have
attracted a lot of attention due to their excellent conductivity,
superior to nickel and cobalt sulfide counterparts and about
100 times higher than those of the corresponding oxides, and
better capacitance performance compared with other metallic
sulfides, such as NiS, Ni3S,, and CoS. In this context, slurry-cast
core@shell ZnCo,0,@Ni-Co-S microspheres composed of
radially grown ZnCo,0, nanosheets, with a rough surface of
electrodeposited Ni-Co-S"'® (Fig. 7F), delivered higher specific
capacitance, rate capability and cycling stability than their
pristine ZnCo,0, and Ni-Co-S counterparts. The increase
of capacitance occurs mainly due to their hierarchical micro-
nanostructure that has an open network of individual nano-
sheets. They facilitate ion-diffusion and help in maintaining
the structural integrity. The highly conductive Ni-Co-S shell
can efficiently decrease the charge transfer resistance, leading
to a fast reversible redox reaction, ample redox active site
availability and short ion diffusion pathways, thus resulting

© 2022 The Author(s). Published by the Royal Society of Chemistry
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in a capacitance retention of 81.3% at a 50-fold increase in
current density and 81.4% after 5000 cycles.

Notwithstanding, other materials have also attracted great
attention as promising electrodes for energy storage devices,
such as molybdenum- and tungsten-based metal oxides, nickel
hydroxides and layered double hydroxides (LDHs). Core@shell
structures along with ZnCo,0, have been studied as shell
materials, to achieve competitive supercapacitive performance.
Molybdenum-based metal oxides such as NiMoO,'**™**' and
CoMo00,'*? in core@shell architectures with ZnCo,0, were
studied, due to their high theoretical specific capacity attrib-
uted to Ni and Co ions, and excellent electrical conductivity,
attributed to the multiple redox reactions of Mo ions.**7*2?
All three reviewed core@shell ZnCo,O,@NiMoO, materials
had hierarchical nanowire and nanosheet architectures grown
on NF, although with some differences that were relevant to their
electrochemical performance, respectively: intercrossed ZnCo,O,
nanowires covered with NiMoO, nanosheets (2316 F g™ ' at
10 mA cm ™ %)'*® (Fig. 8A); ZnCo,0, nanowires covered with an
ultrathin porous NiMoO, nanosheet network (1912 F g ' at
1 A ¢7)"*° (Fig. 8B); and smooth reduced-ZnCo,0, nanowires
covered with NiMoO,4 nanosheets (3.53 F cm™> at 1 mA cm™%)"**
(Fig. 8C). Comparing all three electrodes, the first one'"® not only
had the best cycling stability and specific capacitance, but
also presented hierarchical heterostructures for the nanowires
with the smallest diameter, which facilitated ion-diffusion. The
rate-capability was the best one, although it was still rela-
tively low as a nanowire-based binder-free electrode. On the
other hand, the core@shell ZnCo,0,@CoMoO,/NF electrode
(2192.2 F ¢ ' at 10 mA cm™ %) presented smooth honeycomb-
like ZnCo,0, nanosheets covered with interconnected rough
CoMoO, nanosheets. In this way, it could effectively shorten
the ion transport distance and increase the availability of
electroactive sites, thus delivering high specific capacitance
and excellent cycling stability, along with good rate-capability.

Tungsten-based metal oxides with wolframite structure,
such as ZnWO0,'** and NiwO,,"** are promising materials for
sensor, photocatalyst and energy storage systems. They allow
supercapacitive applications, with high theoretical specific
capacitance, where both Zn/Ni and W elements participate
in the faradaic redox reactions and have high electrical con-
ductivity. Core@shell ZnCo,0,@ZnWO, (13.4 F cm > at
4 mA cm ?)"* (Fig. 8D) and ZnCo,0,@NiW0, (1782 F g~ "
and 2.14 F cm > at 1 mA cm %)"* (Fig. 8E) present hetero-
structured ultrathin and interconnected nanosheet-covered
nanowires on NF architecture. They can deliver high specific
and areal capacitance, especially in the case of ZnCo,0,@ZnWO,
where the highly conductive ZnCo,0, nanowire arrays ration-
ally overcome the poor conductivity of ZnWO, nanosheets
which could shorten the ion-diffusion and electron transport
pathways. Additionally, both electrodes present relatively poor
rate-capability as nanowire-based binder-free electrodes, with a
capacitance retention of 28.1% at 64 mA cm ™ >'*® and 35.5%"**
at 10 mA cm™ 2, respectively.

Considering hydroxide-based shell materials, recent reports
can be found in the literature for Ni(OH),">>'*® and Co-Al
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Fig. 8 SEM images of (A) ZnCo,04@NiMoO, heterostructured nanowires/NF° (B) ZnCo,0,@NiMoO, heterostructured nanowires/NF,*2°
(C) r-ZnC0,04@NiMo0,4-H,O heterostructured nanowires/NF,*?* (D) ZnCo,04,@ZNWO, heterostructured nanowires/NF?* and (E) ZnCo,0,@NiWO,4
heterostructures/NF.12* Panel A: Reproduced with permission.!*® Copyright © 2020 Elsevier Ltd. All rights reserved. Panel B: Reproduced with
permissionA120 Copyright © 2020 Elsevier Ltd. All rights reserved. Panel C: Reproduced with permission.121 © 2018 Elsevier B.V. All rights reserved.
Panel D: Reproduced with permission.*?®> Copyright © 2018 Published by Elsevier Inc. Panel E: Reproduced with permission.*?* Copyright © 2020,

Springer-Verlag GmbH Germany, part of Springer Nature.
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Fig. 9 SEM images of (A) porous ZnCo,0,@Ni(OH), nanosheets/NF,*2¢ (B) ZnO-ZnCo,0,4@Ni(OH), heterostructured nanowires/NF,**> and
(C) ZnCo,04@Co-Al LDH nanowires on NF.'?” Panel A: Reproduced with permission.’?® Copyright © 2018 Wiley-VCH Verlag GmbH & Co. KGaA,

Weinheim. Panel B: Reproduced with permission.?> Copyright © 2020 Elsevier Ltd. All rights reserved. Panel C: Reproduced with permission.
Copyright © 2019 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

LDH."?” The ZnCo0,0,@Ni(OH),/NF electrode (1021.1 F g~ ' and
3.06 F cm > at 1 mA cm ™ %)"*° (Fig. 9A) based on crosslinked
ultrathin nanoflakes, covering porous nanosheets with a thick
triangular shape, delivered good specific capacitance but low
rate-capability and cycling stability. They have been ascribed to
the bulkiness of the ZnCo,0, nanosheets and reduced space
between them, which hinders the ion-diffusion and electron
transfer. This also reduces the control of the strain effects
due to volume changes through cycling. Conversely, ZnO-
ZnCo,0,@Ni(OH),/NF (1901.6 F g * at 2 A g )'*° (Fig. 9B)
delivered not only higher specific capacitance, but also high
rate-capability for a heterostructured nanowire-based binder-
free electrode, with 85.7% capacitance retention at 20 A g™/,
along with high cycling stability, retaining 98.7% of its initial
capacitance after 5000 cycles. Additionally, the ZnO-ZnCo,0,@
ZnO/NF, ZnO-ZnCo,0,@Co0/NF and ZnO-ZnCo,0,/NF elec-
trodes have been studied for comparison purposes, delivering

810 | Energy Adv., 2022,1, 793-841

127

approximately 54%, 40% and 31%, respectively, of the specific
capacitance of ZnO-ZnCo,0,@Ni(OH),/NF. The superior per-
formance of ZnO-ZnCo,0,@Ni(OH),/NF is attributed to the
nanoflake-covered interconnected nanowires forming a hier-
archical porous 2D network on top of the NF. This provides a
high surface area, with plenty of space for electrolyte diffusion,
which in conjunction with the available electroactive sites
facilitates the electron transport through the ZnO-ZnCo,0,
nanowires.

Layered double hydroxides (LDHs) have high theoretical
capacity, low cost and environmental compatibility. However,
their inherent low conductivity and aggregation effects hinder
charge transportation, leading to low electrochemical perfor-
mance. However, when an LDH is assembled as a shell material
combined with a highly conductive core, such as ZnCo,O,,
superior performance is expected. In fact, ZnCo,0,@Co-Al
LDH nanowires on NF (2041 F g " at 1 A g~ 1)"*’ (Fig. 9C),

© 2022 The Author(s). Published by the Royal Society of Chemistry
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composed of urchin-like porous ZnCo,0O, nanowires, which
were uniformly covered with Co-Al LDH nanosheets, delivered
higher specific capacitance and rate-capability than pristine
ZnCo,0,, Ni-Al LDH and Co-Al LDH, and core@shell
ZnCo,0,@Ni-Al LDH electrodes, retaining 70% of the initial
capacitance at 10 A g~ " due to the increase in specific surface
area, the high electroactivity of the Co-Al LDH shell, and band
alignments between ZnCo,0, and Co-Al LDH, thus facilitating
the charge transfer.

3.1.3. ZnCo,04/carbon material composite electrodes.
Several carbonaceous materials can be derived from ZnCo,0,
as composites encompassing carbon nanotubes (CNTs),'>%*3*
carbon nanoparticles,””'* N-doped carbon,’** reduced gra-
phene oxide (rGO),"**"*%'** polyaniline (PANI)"*"'*® and
graphitic-carbon nitride (g-C;N,)"*® in slurry-cast electrodes,
and carbon,'*® N-doped carbon, 34 tGO,0%137:139,141,142 5y
vinylpyrrolidone (PVP)®® and polypyrrole (PPy) in binder-
free electrodes. Accordingly, is should be possible to explore the
combined effects of electric double-layer capacitance (EDLC)
from carbonaceous materials, and pseudocapacitance from
transition metal oxide materials. In this way, one could over-
come the inherent limitations of these carbon materials, e.g.,
low specific capacitance, and of ZnCo,0,, e.g., low electronic
conductivity. They can hinder charge transfer, resulting in low
capacitance and poor rate capability, including cyclability, in
accordance with theoretical expectations.'*°

Polymers, e.g., PANL"""%® ¢-C;N,"*> and PVP,*® can act as
support materials for ZnCo,O,, while PPy>”'** has been
explored as a shell material in core@shell architectures.
Embedding ZnCo,0, in g-C;N,4, a mesoporous sheet-like soft
polymer, can produce g-C;N,@ZnCo,0, (1386 F g~ ' at 4 A g~ 1)**°
(Fig. 10A) with the benefit of the highly active nitrogen sites, large
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specific surface area and good overall stability, in addition to low-
cost. However, in comparison to pristine ZnCo,0,4, only 66% of
the initial specific capacity was maintained for a 2-fold density
current increase. PVP is a bulky, non-toxic, non-ionic polymer
containing carbonyl, amine, and alkyl functional groups that can
be used as a surfactant, reducing agent, shape controlling agent,
and dispersant in nanoparticle synthesis. The self-assembly of
PVP was used to produce binder-free hierarchical microflowers of
ZnCo,0,/PVP composites (761 F g~ at 0.35 A g~ ")* (Fig. 10B) via
an assisted hydrothermal method. These materials presented
relatively poor rate capability, as expected for a flower-like
structured material-based binder-free electrode. Notwithstand-
ing, PANI, a semi-flexible rod-like polymer, exhibits a good
electrical conductivity with multi-redox activity involving pro-
tonation, and can modify ZnCo,0, particles’ sizes and shapes
thanks to its strong interactions, shortening electron/ion path-
ways and increasing surface area due to interconnective rod-
like structures. As a result, nanosheet-like ZnCo,0,/N-GO/PANI
(720 F g ' at 1.5 A g~ )"*" (Fig. 10C), based on ZnCo0,0,/N-GO
coverage with multifaceted PANI, and PANI/ZnCo,0, nanopar-
ticle (867 F ¢~ ' at 0.5 A g~ ")"3® (Fig. 10D) slurry-cast electrodes
exhibited significant changes in size, shape, specific surface
area, bond length, electron density, and other parameters.
Both delivered excellent cyclability and specific capacitance
in comparison to the ZnCo,04/N-GO nanocomposite’*' and
pristine ZnCo,04 NPs."*®

PPy is considered to be a promising electrode material
owing to its high electrical conductivity, greatly improving the
specific capacitance and cycle performance as well as decreas-
ing the overpotential attributed to the promotion of electron
transport and reduction of internal resistance.’”'** ZnC0,0,@
PPy/NF (1210 F g ' at 1 A g ')°” (Fig. 10E), architectured as

Fig. 10 SEM images of (A) nanosheet-like g-CsN4/ZnCo,04° (B) 3D flower-like ZnCo,04/PVP,%® (C) nanosheet-like ZnCo,04/N-GO/PANI !
(D) PANI/ZnC0,0,4 nanoparticles,**® (E) ZnCo,0,@PPy nanostructures/NF>” and (F) core@shell ZnCo,04@NiC0,5,@PPy.*** Panel A: Reproduced with
permission.**° Copyright © 2020, The Author(s). Panel B: Reproduced with permission.®® Copyright © 2020 John Wiley & Sons Ltd. Panel C: Reproduced
with permission.’®® © 2020 Elsevier B.V. All rights reserved. Panel D: Reproduced with permission.?*® Copyright © 2019, Springer-Verlag GmbH
Germany, part of Springer Nature. Panel E: Reproduced with permission.57 CC BY 3.0. Royal Society of Chemistry. Panel F: Reproduced with

permission.'** Copyright Marketplace™. I0OP Publishing.
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ultrathin PPy film-coated ZnCo,0, nanowires, delivered about
9 times more specific capacitance than pristine spinel species.
On the other hand, the core@shell ZnCo,0,@NiCo,S,@PPy/NF
electrode (2507.0 F ¢ ' and 3.75 F cm ™ ? at 0.5 A g ')'**
(Fig. 10F) presented much better rate-capability, with 69%
capacitance retention after a 40-fold increase in current density.
This result is associated with its composition, since NiCo,S,
exhibits abundant valence states and high theoretical specific
capacitance in addition to the more suitable architecture. It
resembles porous leaf-like ZnCo,0, nanosheets covered hier-
archically with thin and abundant NiCo,S, nanosheets and a
thin PPy film. This core@shell structure formed by three
materials created a bi-interface that can promote the contact
with the electrolyte and facilitate ion-diffusion, accelerate the
electron transfer, and increase the availability of electroactive
sites. However, PPy can contribute to the pseudocapacitance
through doping and de-doping redox reactions, increasing the
volume changes along the cycling and thus reducing the
mechanical stability of the material. Slightly poorer cycling
stability than that of ZnCo,0,@NiCo,S,/NF was observed, with-
out PPy coating, but, in contrast, the specific capacitance
almost doubled after the coating.

Carbon (C) is also considered to be a promising candidate to
form a composite material for ZnCo,0,4-based electrodes in
supercapacitive applications, due to its good volume expansion
tolerance and excellent electron transport. The use of C can
effectively improve the overall electrical conductivity of the
material, decrease the volume expansion, and inhibit the
agglomeration of ZnCo,0, in the redox reaction process, thus
improving the specific capacitance and cycling stability. This is
the case of the core@shell ZnCo,0,@C/NF electrode (2340 F g’1
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and 7.02 F em 2 at 1 mA cm ™ %),"** composed of agglomerated
ZnCo,0, nanoparticles as porous nanowire arrays, covered with a
thin amorphous carbon layer, leading to high specific capacitance
and good cycling stability (capacitance retention of 92.6% after
10000 cycles).

Notwithstanding, N-doped carbon (NC) supported P-
ZnCo,0, nanosheets (1581.5 F g~ " at 1 A g~ ")"*? (Fig. 114), in
which the NC acted as a 3D continuous network, provided a
highly electrically conductive support with large surface area
for the growth of P-doped ZnCo,0, nanosheets. They showed
much better results, with 90.6% rate capability after a 10-fold
current density increase. The triangular-shaped P-doped
ZnCo,0, nanosheets are rich in oxygen vacancies, due to their
substitution for phosphorus ions. In this way, ion-diffusion and
the absorption of OH™ are facilitated. There are a large inter-
face contact area and shortened electron/ion diffusion paths,
which is an interesting strategy to improve ZnCo,O, electro-
chemical performances in slurry-cast electrodes.

As for binder-free electrodes, in recent years the relevant
systems studied were ZnCo,0,/NC hollow nanowall arrays/
flexible carbon textiles (CT) (~2003.8 F g~ at ~1.79 A g~ ')**®
and NC/ZnCo,0, honeycomb-like nanostructures (1289 F g~ " at
3.5 A g 1. The first one'*® (Fig. 11B) is based on NC hollow
nanowall arrays that serve as the backbone and conductive
connection for porous ultrathin ZnCo,O, nanoflakes. They
increase the contact area with the electrolyte and enable fast
redox reaction, featuring high specific surface area and short
ion diffusion paths. This leads to high rate-capability and
cycling stability, with 74.7% and ~99.4% capacitance reten-
tion, when increasing the current density to 57.14 A g~" and
after 10000 cycles, respectively. The second one'*° (Fig. 11C)

Fig. 11 (A) SEM image of N-doped C supported P-ZnCo,0, nanosheets.**? (B) TEM image of ZnCo,0,/N-doped carbon hollow nanowall arrays/CT.**®
SEM images of (C and D) N-doped carbon/ZnCo,O, honey nest nanostructures,*° (E) cauliflower-like AUNP/rGO-ZnCo0,04*** and (F) NiCo,04—

ZnCo,0,4/rGO nanosheets 1°® Panel A: Reproduced with permission.**? © 2020 Elsevier B.V. All rights reserved. Panel B: Reproduced with permission.
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Copyright © 2020 American Chemical Society.
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shows less competitive performance, but it involves an inter-
esting strategy for the production of NC using high fructose
corn syrup as a green, abundant, and inexpensive carbon
source for producing 3D porous ultrathin nanoflakes in a
honeycomb-like morphology. The arrangement facilitates
the penetration of the electrolyte, providing small contact
impedance, and improved ion and electron transportation,
yielding relatively good rate capability and cycling stability,
with 70% and 86% capacitance retention at 20 A g~ and after
2000 cycles.

As for carbon nanoparticles (CNPs), there are examples in
which they were dispersed onto ZnO/ZnCo,O, nanosheets
to produce CNP/ZnO/ZnCo,0, derivatives (593.6 F g~' at
0.25 A g 1)."° Electrospun 1D ZnCo,0,/C nanofibers, consist-
ing of a ZnCo,0, and carbon nanoparticle mixture (327.5 F g~ *
at 0.5 A g~ '), have also been reported.”” Both materials don’t
use carbon as a conductive support, but in the form of
dispersed nanoparticles. Therefore, the ions should diffuse
through them to reach the electroactive material. As a result,
they present low specific capacitances and very poor rate
capabilities, despite the high cycling stability due to their
optimized morphologies and CNP incorporation.®”*°

Other highly conductive carbon materials, such as CNTs
and rGO,*®"'** have also been studied as supports for ZnCo,0,
in slurry cast electrodes, and both presented remarkable
results. It should be noted that rGO has a large specific surface
area, high electrical conductivity, good thermal stability, and
excellent mechanical flexibility, displaying all benefits of 2D
morphologies and superb possibilities as a support material.
Nonetheless, n-n interactions and van der Waals forces
between graphene sheets cause a restacking effect of rGO at
higher current densities. This can limit its electrochemical
performance, due to reduction in the specific surface area and
creation of difficult channels for electrolyte ion transportation.
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The cauliflower-like AuNP/rGO-ZnCo,0, (54.1 mA h g~ ' at
25 mA cm?)"*? (Fig. 11D) was based on the incorporation of
AuNPs within rGO nanosheets to prevent the restacking effect.
However, rGO nanosheets were coated with flower-like ZnCo,0,
in order to increase their specific surface area. Therefore, this
material did not work as a support material. The electrode
delivered low specific capacity although it presented high
cycling stability. In contrast, heterostructured NiC0,0,-
ZnCo,04/rGO nanosheets (2176.4 F g ' at 1 A g 1)
(Fig. 11E), composed of spherical NiCo,0,@ZnCo,0, hetero-
structures (urchin-like NiCo,0, and sheetlike ZnCo,0,) that
were supported on rGO nanosheets, delivered the highest
specific capacitance among all reviewed slurry-cast electrodes.
This material afforded 58.2% rate capability after a 20-fold
current density increase and 93.8% capacitance retention after
5000 charge/discharge cycles. Not coincidentally, the three best
slurry-cast electrodes were those based on NiCo,04-ZnCo,0,
composites supported onto rGO.

Binder-free electrode materials based on ZnCo,0, and rGO
composites have also been studied in recent years,'0%137:139:141,142
ZnCo,0,/rGO intertwined sheets on NF (3222 Fg 'at 1 Ag )"
(Fig. 12A) presented specific capacitance superior to other ZiCo-
based composite materials containing rGO such as ZnCo-layered
double hydroxide@rGO/NF (2142.0 F g~"),'*® ZnCo-sulfide-rGO
3D hollow microsphere flowers (1225.1 F g~)"*® and CoO-ZnO/
rGO/NF (1951.8 F g~ 1),""” but with poor rate capability and cycling
stability, retaining only 26.7% and 65% after a 20-fold current
density increase and 5000 cycles. This is due to the slow ion-
diffusion rates induced by the fused porous ultrathin ZnCo,0,
curl nanosheets coated onto the vertically interconnected rGO
nanosheets, limiting the penetration of electrolyte. Porous
ZnCo,0, nanosheets directly grown on rGO-coated NF
(680 F g " at 1 A g ')*** presented the poorest specific capaci-
tance among all reviewed electrodes, but it is inferred that the

Fig. 12 SEMimages of (A) ZnCo,04/rGO intertwined sheets/NF,**” (B) sandwich-like ZnCo,Q,4 hollow spheres/rGO lamellar film,**® (C) heterostructured
ZnCo,04/N-rGO/NF,**! and (D and E) MnO,-decorated ZnCo,0,4 nanosheets on rGO-doped NF.1%° (F) TEM image of ZnCo,04/CNT nanoflowers.*?°
Panel A: Reproduced with permission.**” Copyright © 2018 Elsevier B.V. All rights reserved. Panel B: Reproduced with permission.**® Copyright © 2020
Published by Elsevier B.V. Panel C: Reproduced with permission.**" CC BY-NC 3.0. Royal Society of Chemistry. Panels D and E: Reproduced with
permission.’°® CC BY-NC 3.0. Royal Society of Chemistry. Panel F: Reproduced with permission.*?® Copyright © 2019 Elsevier B.V. All rights reserved.
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rGO can effectively buffer ZnCo,0, nanosheets’ volume
changes through cycling and enhance the electrical conductiv-
ity. It can act as bridges for electron transfer, but the rGO-
coated NF seems to not actively promote the ion-diffusion rates,
exhibiting 88% capacitance retention after just a 5-fold current
density increase. Lamellar films of ZnCo0,0,/rGO hollow
spheres (1075.4 F g~ at 1 A g 1)"° (Fig. 12B) present a
sandwich-like structure. The sandwiched hollow nanospheres
can expand the inner-space and minimize the aggregation of
rGO, facilitating and accelerating the electrolyte diffusion and
increasing the cycling stability. On the other hand, heterostruc-
tured ZnCo,0,/N-rGO on NF (1600 Fg " at 1 A g~ )™ (Fig. 12C)
features ultrathin and porous honeycomb-like nanosheets and
nanofeathers, with a hierarchical double-morphology. These
characteristics, respectively, increase the active surface area
and hinder the volume change through cycling. The N-doped
rGO seems to parallelly orient the growth of ZnCo,0,
nanosheets, thus delivering 78.1% of the initial capacitance
even after a 30-fold current density increase. Finally, MnO,-
decorated ZnCo,0, nanosheets on rGO-doped NF (3405.2 F g "
at 2 A g~ )'% (Fig. 12D and E) feature the combined benefits of
composites based on MnO, and rGO. They were electrodepos-
ited onto porous ZnCo,0,4 nanosheets and on rGO-coated NF,
thus delivering very high specific capacitance and good cycling
stability (91.2%, 5000 cycles) but relatively poor rate capability
(64.9%, 10-fold increase). In this way, they behave as porous
ZnCo,0, nanosheets on rGO-doped NF,'*> because the rGO
coating limits the ion-diffusion at higher current densities.
CNTs present all advantages of 1D materials along with the
increased conductivity of a carbon material. Therefore, when
used as a support and connective material, they provide improved
charge and electron transfer pathways.'?>'** A MWCNT/ZnCo,0,
slurry-cast electrode (64 mA h g~ " at 1 A g ')"** presented nearly
double the specific capacity of pristine ZnCo,0O, due to its
hexagonal nanoplates connected by multiwalled carbon nano-
tubes, even though it delivered very low specific capacity and rate
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capability. On the other hand, ZnCo,O,/CNT nanoflowers'>’
(Fig. 12F) delivered a high specific capacitance of 1203.8 F g~ *
at 1 A g%, in which CNTs interpenetrate the ZnCo,O, flowers
acting as both a conductive additive and a buffer material. This
facilitates ion diffusion rates and rapid electron transfer and
reduces interior stress and volume expansion during electro-
chemical reactions, increasing the cycling stability and electro-
chemical performances of the electrode.

3.1.4. The top 10 highest specific capacitances for electrode
materials based on ZnCo,0,4. The highest specific capacitances
among pristine ZnCo,0, and ZnCo,04-based composites as
slurry-cast or binder-free electrodes are illustrated in Fig. 13A.
The best pristine ZnCo,0,-based slurry-cast electrode delivered
much lower specific capacitance in comparison to the other
electrodes. It is interesting to note that the highest specific
capacitances of pristine binder-free and composite slurry-cast
electrodes are quite similar, even though each one of these
strategies is uniquely effective. Thus, the best way to improve
ZnCo,0,-based electrodes is to combine the rational design of
composites and the production of binder-free electrodes. In
fact, among the top 10 electrode materials, 9 of them are
composite binder-free electrodes (Fig. 13B). In fact, the highest
specific capacitance was achieved by MnO,-decorated ZnCo,0,
nanosheets on rGO-doped NF. The improved specific capaci-
tance was provided by the additional MnO,-decorated electro-
active material and the electrical conduction associated with
the rGO-doped NF substrate used for the growth of ZnCo,0,
nanosheets.

Notwithstanding, there is still a possible limitation to be
taken into consideration: in such architectures, the space
between the nanostructures plays an important role in the
ion-diffusion rates and in the availability of electroactive sites
at higher current densities. This is pretty evident in binder-free
electrodes based on ZnCo,0, nanowires that can present very
high specific capacitance, but low rate-capability. As a result,
the best rate-capabilities are achieved by these binder-free
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(A) Best specific capacitance for each ZnCo,04-based electrode type: pristine slurry-cast; pristine binder-free; composite slurry-cast and

composite binder-free (ref. 11, 26, 58 and 62, respectively). (B) Top 10 specific capacitances delivered by ZnCo,O4-based electrodes (ref. 62, 43, 38, 90,

84, 67, 75, 79, 58 and 89, respectively).
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electrodes with suitably spaced nanostructures and high avail-
ability of ion-diffusion channels.

3.2. Batteries

3.2.1. Lithium-ion batteries. Rechargeable Li-ion batteries
(LIBs) received extensive investments because of their excellent
cyclability, good safety performance, and high-energy density.
Since the early 1990s, LIBs have been widely used in portable
electronic and electric vehicles.'* A LiCoO, cathode and a
graphite anode are some of the most well-known commercial
LIB material pairings."*®*"*° Unfortunately, so far, the tradi-
tional intercalation-type material, graphite, generally has suf-
fered from its low theoretical specific capacity (372 mA h g™)
and poor rate performance, which hinders the large-scale
application of LIBs.'*! Other potential anode materials, such
as spinel-structure mixed transition metal oxides, have
emerged as ideal candidates due to their higher lithium storage
capacity (500-1500 mA h g ')."™'*> Among various spinel
oxides, ZnCo,0, has captured great attention due to its special
lithiation properties, environmental benignity, affordable
price, good conductivity, and high theoretical specific capacity
(900 mA h g ').">*™* Up to now, many types of ZnCo,O,
materials with different morphologies, such as
ribbons,®! nanoboxes,'®® nanosheets,'****'>” microcubes,
nanocubes,"®® nanospheres,'®* %" nanotubes,'®® and nano-
cages,'®® have been applied in LIBs.

To increase mass transfer and contact between electrodes
and electrolyte, Zhang et al.">” reported nickel foam supported
hierarchical ZnCo,0, nanosheets prepared by the solution-
based method. A reversible specific capacity of 773 mA h g~*
at 0.25 A g~ " over 500 cycles was found for the porous ZnCo,0,
nanosheets. Song et al'®” also reported the synthesis of
ZnCo,0, nanosheets; when evaluated as an anode material
for LIBs, the electrode showed an initial specific capacity of
1979 mA h g~ ' and a stable discharge capacity of 688 mA g~ * at
0.5 A g~ after 1000 cycles. Another ZnCo,04 nanosheet mate-
rial reported in the literature delivered a reversible capacity of
1640.8 mA h g~' at a current density of 100 mA g~ ' after
50 cycles.'>®

The morphology of the material plays a crucial role in the
overall electrochemical performance, and thus, various morpho-
logies have been intensively pursued and well designed. For
example, Chen et al'® synthesized ZnCo,0, nanospheres
with the desired shape via a one-step solution method. The
ZnCo,0, nanospheres showed an initial discharge capacity of
1320 mA h g~ at a current density of 100 mA g~ and a capacity
retention rate of 76.22% after 50 charge and discharge cycles.
Cheng et al'® synthesized 1D porous ZnCo,O, tailored
cuboids with green natural soybean oil by a micro-emulsion
strategy. This material exhibited an initial coulombic efficiency
of 80.6% and a specific capacity of 1029.3 mA h g ' at
1000 mA g ' over 400 cycles. Lately, Li et al.'> synthesized
3D mesoporous ZnCo,0, architectures by the ethylene glycol
combustion strategy. The average specific capacity of the
ZnCo,0, electrode can return to about 778.7 mA h ¢ ' at a
current density of 200 mA g~ ' over 50 cycles. 3D hierarchical
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ZnCo,0, nanocubes prepared by a hydrothermal method
delivered a reversible specific capacity of 775 mA h g~* after
100 cycles at 500 mA g~ *.**°

Hollow nanostructures have attracted considerable atten-
tion; their unique structure enables a high specific surface area,
tunable chemical composition, and short charge transport
pathway. Xue et al'®* developed a universal self-template
approach to synthesize multishelled hollow ZnCo,0, spheres
(Fig. 14A and B), which displayed a specific capacity of
1020 mA h g~ ' at 100 mA g~ ' (Fig. 14C), a cycling durability
of 1200 mA h g™ after 200 cycles at 0.1 A g ' and a rate
capability of 730 mA h g~ " at 5.0 A g~ . Similarly, Deng et al.**®
proposed a citrate-assisted hydrothermal synthesis to generate
hollow ZnCo,0, octahedral particles (Fig. 14D and E). Battery
tests demonstrated a specific capacity of 1110 mA h g™ ' at
0.2 A g ' (Fig. 14F) and a capacity retention of 60% at 5 A g "
over 60 cycles.

The main electrochemical performances for ZnCo,0, with
different morphologies are summarized and listed in Table 6.
Hollow porous structures composed of 2D structures of
ZnCo,0y, such as nanosheets, showed superior electrochemical
performance to other nanostructures or microstructures in
LIBs, due to the interior hollow structure which can accom-
modate the huge volume expansion and provide more active
lithiation sites; thus, ZnCo,0, structures exhibit higher capa-
city and cycling stability than the other materials, and second,
the porous structures ensure sufficient contact between active
materials and electrolyte. Therefore, it can be concluded that
2D nanostructures of ZnCo,0, would be considered as an
optimum architecture for high-performance ZnCo,0,.

Although the theoretical capacity of ZnCo,0, as an anode
material is high (900 mA h g !),’** tremendous efforts have
been paid, in recent years, to increasing the conductivity and
overcoming the volume expansion of ZnCo,0, caused by
lithium-ion insertion/extraction, which results in its fast fading
of capacity. One strategy is the combination with transition
metal oxides such as Zn0O/ZnCo,0,/C05;0,,'*® ZnCo,0,/
C0304,"7"° N-ZnC0,0,/Co0,'** ZnCo,0,@NiO0,'** Ni-NiC0,0,@
7ZnCo,0,,'®" and ZnCo,0,@Fe,0,-C,'** which can alleviate the
problem through the synergy effect of bimetallic oxides.

The construction of hollow and 3D porous structures is
another effective strategy, promoting the generation of voids,
which can alleviate the structural stress and buffer the volume
variation. For example, a novel route to prepare hollow Co;0,
nanospheres doped with ZnCo,0, was demonstrated by Song
et al.”® (Fig. 15A). This nanocomposite shows a specific capa-
city of 890 mA h g ' at a current density of 0.1 A g ' and
displays a similar specific capacity at 1 A g~ " after 120 cycles
(Fig. 15B). Guo et al."”” reported the synthesis of a 3D porous
ZnCo,0,/Co30,4 composite on carbon cloth (Fig. 15C). The as-
prepared composite exhibits an enhanced lithium storage
property of 1350.0 mA h g ' at 0.3 A g ' and a cycling
performance of 64% over 105 cycles at 0.3 A g~ ' (Fig. 15D). Li
et al'’® also prepared ZnCo,0,/Co;0, hierarchical hollow
ZnCo,0,/Co3;0, microspheres via solvothermal synthesis fol-
lowed by thermal annealing. When used as an anode material

Energy Adv., 2022, 1, 793-841 | 815
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(A and B) SEM images of ZnCo,0,4 multishelled hollow spheres at different magnifications. (C) Galvanostatic charge/discharge curves of a

ZnCo,0,4 multi-shelled hollow sphere anode at a current density of 100 mA g~*. Reproduced with permission.1®* Copyright Marketplace™. Royal Society
of Chemistry. (D and E) SEM images of ZnCo,04 hollow structures at different magnifications. (F) Galvanostatic charge/discharge curves of a ZnCo,04
hollow anode at a current density of 0.2 A g~*. Reproduced with permission.*®® Copyright © 2017 Published by Elsevier B.V.

for LIBs, this material exhibits a rate capability of 842 mAh g™*
at a current density of 4 A g " and a cycle life of 754 mA h g *
after 800 cycles at a current density of 2 A g~ '. The development
of hollow structures based on ZnCo0,0,/Cos;0, composites
demonstrated that the hierarchical hollow structure with high
porosity relieves the volume expansion and increases the con-
tact area between the electrode and electrolyte, increasing
discharge capacity and cycling performance.

Another strategy to solve concerns in terms of lithium
diffusion kinetics, electronic transport, volume change, and
particle agglomeration is to anchor ZnCo,0, structures onto
electrically conductive nanostructured carbon materials.
Hence, some carbonaceous materials including carbon nano-
tubes (CNTs),"**'9%1%° reduced graphene oxide (rGO),'8” '
polyaniline (PAN),*'® n-doped carbon layers,?°®*** carbon cloth
(CC),"**19%223 and carbon porous structures>’>>** were used as
inert and conductive matrices in ZnCo,0, based anode mate-
rials. For instance, binder-free and self-supporting anode
materials were prepared based on carbon-coated ZnCo,O,
composites. The lithium storage properties were as follows: a
high initial discharge (1951.4 mA h g~ ') and good capacity after
cycling (88.6.4 mA h g~" over 100 cycles at 200 mA g~ ').>*°
In addition, Huang et al.>** prepared a ZnCo,0,@CC nano-
composite with a reversible capacity of 1376 mA h g~ * even after
200 cycles at a current density of 1 A g™ .

Graphene has attracted widespread attention due to its
unique properties such as mechanical flexibility, excellent
conductivity (1600 S m™'), large specific surface area
(2630 m> g ), and chemical stability.?>*">*” The introduction
of graphene into ZnCo,0, structures can accommodate serious

816 | Energy Adv, 2022, 1, 793-841

volume expansion, prevent agglomeration of ZnCo,0, material
over continuous lithiation/delithiation cycles, and, meanwhile,
improve the electrical conductivity of the hybrids.'®”**$22° For
example, Wang et al.'®" prepared interconnected mesoporous
ZnCo,0, nanosheets on 3D graphene foam (Fig. 16A), which
had a discharge capacity of 1233 mA h g " at 500 mA g~ * after
240 cycles (Fig. 16B). Ren et al."®® fabricated a ZnCo,0,@rGO
nanocomposite to be used as a LIB anode. The ZnCo0,0,@rGO
electrode exhibited cycling stability (1589 mA h g ' at
100 mA g ' after 140 cycles) (Fig. 16C). Xie et al. developed a
rapid laser-irradiation methodology for the synthesis of oxygen-
vacancy abundant nano-ZnCo,O,/porous rGO hybrids as anodes
for LIBs (Fig. 16E). The results showed that the nano-ZnCo,0,/
porous rGO has a reversible capacity of ~1053 mA h g™ ' at
0.05 A g ' and a cycling stability of ~746 mAhg 'at 1.0 Ag "
after 250 cycles (Fig. 16D)."*> In these cases, the rGO acts as a
conductive substrate for anchoring the ZnCo,0, structure, which
increases the electrical conductivity and avoid the structure
collapse upon cycling (Fig. 16F).

The combination in the composites, taking full use of the
good conductivity and high surface area of carbon materials,
efficaciously heightens the wundesirable conductivity of
ZnCo,0,, thereby affording enhanced electrochemical beha-
viors in LIBs. The carbon coated ZnCo,0O, nanocomposites
have large surface areas, resulting in better electrolyte wett-
ability and high conductivity, which contribute to cycling
stability. This effective approach to fabricating material
composites not only has the advantages of all the constituents,
but also overcomes the disadvantages of the individual
components.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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From the perspective of material application, an energy
storage device balances the power supply and demand of
large-grid energy storage. Several factors can be addressed to
evaluate the performance of an electrode material in a battery
cell, such as first discharge, stability, reversible capacity and the
potential window. Among the many types of ZnCo,O, materials
previously shown, we summarize in Fig. 17 the electrodes with
the 10 biggest first discharge. The best one is the ZnCo0,0,/
carbonized silk fabric (CSF) (3164 mA h g~ "); the high initial
discharge of this material is endowed by the hydrothermal
method that improves the bonding between active materials
and the flexible substrate, and avoids capacity reduction
from the active substance detaching from the substrate during
the charge and discharge cycle; the unique weave structure
of the CSF gives it good mechanical flexibility and the 3D
network structure of the CSF provides a fast electron transport
path to enhance the composite material’s energy storage
performance.’*?

Nine out of the top ten anode materials demonstrate the
benefits of a nanocomposite based on ZnCo,0,/carbon nano-
materials. Use of these nanocomposites was shown to be a
remarkable strategy to improve the electrochemical perfor-
mance of anode electrodes, as the carbon nanomaterials have
many great electrochemical abilities, including enhancing the
electrical conductivity of the electrode and preventing the
volume change and aggregation found with ZnCo,0, electro-
des. The second (ZnCo,0,@CNTs, 2553 mA h g 1),>°° seventh
(C/ZnCo,04/CNT, 1947.1 mA h g )'° and ninth (ZnCo,04/
ZnO/CNT, 1893 mA h g~")'® materials with the best perfor-
mances demonstrate the advantages due to the presence
of carbon nanotubes; this can be attributed to the efficient

© 2022 The Author(s). Published by the Royal Society of Chemistry

electron transport and CNT network, which could shorten
the diffusion pathway of lithium-ions and buffer the volume
expansion/constriction, as well as enlarge the surface area for
more electrochemically active species.>*® Likewise, the tenth
(ZnCo,0,@CC, 1886.2 mA h g ")," eighth (ZnCo,04-
graphene, 1937 mA h g !),"** sixth (carbon-coated ZnCo0,0,4
nanowires, 1951.4 mA h g "),>% fifth (ZnCo,0,@3D graphene
film@Ni foam, 2024 mA h g *)** and third (hybrid carbon/
ZnCo,0, nanotubes, 2247 mA h g~ *)*"* best materials demon-
strate improved electrochemical performance, which may be
assigned to the carbon nanomaterial structure, which can
enlarge the electrode-electrolyte contact area, greatly strengthen
the electroconductivity and structural stability and improve the
energy density.

It’s worth highlighting that the second, seventh and tenth
best materials mentioned above are based on MOF-derived
materials. This strategy of preparation of materials has many
advantages; for example, it endows the materials with large
specific area, regular porosity, shearing capability and topo-
logical diversity, which can demonstrate that the best electro-
chemical performance is associated with the effects of the
preparation method and the electrode architecture.?*° The
fourth (ZnCo,04 nanoribbons, 2161 mA h g~ ")®*' best material
had its highlighted role due to its unique morphology, as well
as the tenth best materials. In fact, the size of nanostructures of
ZnCo,0, provided more active sites, large surface area and
shorter diffusion paths for ions and electrons, bringing remark-
able enhancement in their electrochemical performance.®'%°

In summary, ZnCo,0, with excellent electrochemical perfor-
mance should have nanostructures or a unique morphology or
be associated with a carbon nanomaterial as a nanocomposite.

Energy Adv., 2022,1,793-841 | 819
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These improved electrochemical performance can be attribute to
the greater number of electrochemically active sites, the high surface
area, a good diffusion length of ions and electrons, and a satisfac-
tory volume expansion from the insertion/extraction of Li ions.
3.2.2. Other metal ion batteries. Sodium-ion batteries (SIBs),
as appropriate energy storage systems for large-scale applications,
have gained a lot of attention as alternative energy storage
technologies to LIBs, due to abundant sodium resources and
their low cost."***" As previously reported for LIBs, ZnCo,O,-
based materials are attractive candidates as SIB anode materials
due to their low cost, high theoretical specific capacity, high
specific surface area, and fast ion-diffusion.”******? zZnCo,0,
nanowires and nanosheets as SIB electrode materials were studied
by Zhao and collaborators.”” They prepared ZnCo,O, nanosheets
and nanowires aiming for electrochemical applications. Results

820 | Energy Adv., 2022,1, 793-841

indicated that ZnCo,0, nanosheet and nanowire anodes achieved
191.9mA h g " and 70.8 mA h g~ " after 100 cycles at 100 mA g™,
respectively. Recently, materials obtained by other strategies have
been considered for application as anode materials; for example,
Yang et al.**® prepared a polyhedron ZnCo,O, anchored onto
rGO nanosheets via the hydrothermal method. This composite
electrode displays good cycling performance, with a discharge
capacity of 134 mA h g~ " after 300 cycles. To improve capacity over
cycles, Zhang et al'® designed novel yolk-shell structured
ZnCo,0, spheres anchored onto rGO sheets. This unique struc-
ture provides superior properties with an initial discharge capacity
of 827.7 mA h g~ ' and a reversible capacity of 280 mA h g™ " at
1.0 A g~ ' after 1000 cycles. Table 6 summarizes the electro-
chemical performance of electrodes with different materials,
coupled with distinct types of anodes based on ZnCo,0,.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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In addition to SIBs, Zn-ion and Mg-ion batteries afford some
attributes required of an alternative energy storage technology,
such as nondendritic formations, Zn and Mg metal anode mate-
rial delivers a high capacity of 820 mA g~" and 2205 mA h g™,
respectively, and abundant and non-toxic raw materials.******
Recently, ZnCo,0, structures have been developed as potential
cathode materials for these types of batteries. Baby et al>*
reported the synthesis of a ZnMnCoO, cathode material with
the first discharge of 109.4 mA h ¢~ ' in Zn-ion batteries, whereas
Shimokawa et al.>*® reported the synthesis of ZnCo,0,4 used as a
cathode material for rechargeable magnesium batteries with a
discharge capacity in the first cycle of ~100 mA h g~ .

3.2.3. Lithium-sulfur batteries. To replace current LIBs,
lithium-sulfur (Li-S) batteries are considered to be the most
potential energy storage systems due to the high theoretical
specific capacity (1675 mA h g~ ') and high specific energy
(2600 W h kg™ ") of the sulfur cathode.**”>*! Owing to their
well-defined crystallinity and high porosity, mixed transition
metal oxides are regarded as perfect selections for cathode
materials, and the interstitial spaces surrounded by the
octahedra interconnect into three dimensions, accommodating
guest ions, ie., lithium ions.>**** To explore the potentiality
of ZnCo,0, as a Li-S electrode material, Sun et al.*** synthe-
sized ZnCo,0, porous particles anchored on N-doped rGO
via the combined procedures of refluxing and hydrothermal
treatment. ZnCo,0,@N-rGO when used as a cathode material
for Li-S achieved 1332 mA h g ', which was maintained
at 720 mA h g~ ' after 200 cycles. Meanwhile, Zhang and
colleagues®*® also constructed a ZnCo,0O,-based material and
researched its Li-S storage behavior. This material showed a
specific capacity of 466 mA h g~ " at 0.3C and 413 mA h g™ " at
0.5C after 200 cycles. Yeon et al.>*® synthesized a 2D spinel
ZnCo,0,. When performing the electrochemical measurement,
this material presented a high initial discharge of 1292.2 mAh g *
at 0.1C and a capacity retention of 84% (1C) and 86% (2C) even
after 800 cycles.

3.2.4. Metal-air batteries. Metal-air batteries (MABs) such as
lithium-air, iron-air, zinc-air, aluminum-air, and magnesium-air

© 2022 The Author(s). Published by the Royal Society of Chemistry
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batteries are considered to be the next-generation technology
because they use oxygen from the air as the cathode, freeing up
more space devoted to energy storage.>***° The exceptional
theoretical energy density of MABs (3505 W h kg ' for Li-O,
batteries and 1086 W h kg™ for Zn-air batteries)**’ is based on
the oxygen evolution reaction (OER) and oxygen reduction reac-
tion (ORR); in this way, these devices have been studied by several
researchers, including oxygen electrode catalysts with special
structures for use in rechargeable metal-air batteries.”> Among
the oxygen electrode catalysts, spinel transition metal oxides such
as MCo,0, are potential cathode materials due to the abundance
of the necessary raw material and the high electrocatalytic activity
for the OER and ORR. ZnCo,0, has been widely studied as a
catalytic oxygen electrode material for MABs such as lithium-air
batteries®>**! and zinc-air batteries.”*>>*® Kin et al.>®" fabricated
highly mesoporous ZnCo,0, nanofibers by simple electrospin-
ning and used them as a cathode material in the lithium-oxygen
battery. The ZnCo,0, nanofiber electrode displayed excellent
electrocatalytic activity and cycling stability (226 cycles with a
capacity limit of 1000 mA h g~ ' at 500 mA g ). Mai et al*?
reported a catalyst with ZnCo,0, submicron/nanospheres with
Co,Se, nanosheets, which exhibited promising catalytic properties
towards OER activity with an overpotential of 324 mV at
10 mA cm™? in 1 M KOH. In the homemade Zn-air battery test,
the cathode showed a small voltage gap (0.98 V at 50 mA cm ™ ?),
high power density (212.9 mW cm™?) (Fig. 18A) and high specific
capacity (570.1 mA h g~ ). Costa and co-workers***> documented
the fabrication of a novel W-Co oxide bifunctional catalyst for the
air electrode in Zn-air batteries. The conformal layer of W-Co
oxide was transformed into cubic spinel ZnCo,0, nanoparticles
which provided excellent bifunctional catalytic activity and a good
performance in the Zn-air battery test with a maximum power
density of 216.4 mW cm ™ (Fig. 18B).

To improve catalyst performance, composite materials have
been synthesized and used as catalysts in both the ORR and
OER. Generally, metal oxides combined with carbon materials
such as graphene and carbon nanotubes (CNTs) can not only
improve the conductivity of the catalyst but also increase the
specific surface area and improve electrochemical stability.*>* 2>
Combining Co/ZnCo,0, with N-doped carbon microplates inter-
woven with CNTs, Yan et al.>** developed a Co/ZnCo,0,@NC-CNT-
based flexible solid-state Zn-air battery with a competitive power
density of 151 mW cm™ > at 50 mA cm > (Fig. 18C), robust
flexibility and integrality. Xu et al.>>* prepared ZnCo,04/CNTs by
inserting zinc ions. When used as a cathode material in a recharge-
able Zn-air battery, this material exhibits a power density of
249.4 mW cm” 2 and a charge-discharge durability of 240 cycles.

4, ZnCo,04-based electrocatalysts for
energy conversion and storage
applications

4.1. ORR electrocatalysts in energy storage

As mentioned in the previous topic, both the oxygen reduction
and oxygen evolution reactions (ORR/OER) play an important

Energy Adv.,, 2022,1,793-841 | 821
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role in the electrochemical energy conversion process, not only
in metal-air rechargeable batteries but also in fuel cells.>*®
In fact, because of their high associated activation energies,
such reactions are usually sluggish and require catalysts to
enhance the kinetics.>*® In this sense, great efforts have been
directed towards the development of inexpensive, efficient,
noble metal-free and stable electrocatalysts for next-generation
sustainable energy technologies.”>® Thus, ZnCo,0, and its com-
posites show great potential as electrocatalysts due to their high
intrinsic activity,”®® and in many cases exhibit both ORR and OER
activity simultaneously.

As shown in Table 7, despite being considered as very
promising electrocatalysts, less than two dozen ZnCo,0,-
based materials have been reported in the past 5 years for
application in the ORR, indicating that these materials are still
to be explored, especially in the design of bifunctional electro-
catalysts. However, some improvement strategies for these
materials can be highlighted, as a guide for future research.
For instance, many catalysts with different morphologies
such as nanosheets,’**?®° flower like structures'®*’ and near-
spherical particles®*® have been recently reported.

In one of these studies, Chakrabarty et al.>®' synthesized a
flower-like porous ZnCo,0, microstructure by the one-step
solvothermal method, as confirmed by SEM and HRTEM
images (Fig. 19A and B). The ZnCo,0, microstructure achieves
a nearly 4-electron assisted oxygen reduction (n ~ 3.4) with
onset and half wave potentials observed at 0.81 V and 0.75 V vs.
RHE (Table 7). It is important to highlight that despite the
interesting results obtained by designing the morphology of
ZnCo,0, nanostructures, better results are clearly improved
by the formation of composites, especially by combining
them with conductive carbonaceous materials. For example,
Chakrabarty et al.>®' also showed the activity of electrocatalysts
predated by the simultaneous growth of ZnCo,0, and reduc-
tion of GO (Fig. 19D), achieving a more positive ORR onset
potential (0.95 V vs. RHE) with higher cathodic peak current
density compared to ZnCo,0, and n ~ 3.95, demonstrating
that the presence of a conductive matrix is essential in the
design of high-performance electrocatalysts. Furthermore, the
bifunctional electroactivity of the rGO-ZnCo,0, and ZnCo,0,
was determined from the potential difference (AE) between the

822 | Energy Adv, 2022, 1, 793-841

OER (Eogg, at 10 mA cm™?) and ORR (Eogg, at —3 mA cm™ 2).
The AE for rGO-ZnCo,0, was 0.679 V vs. RHE (Fig. 19C), which
is less than that obtained using ZnCo,0, (0.944 V vs. RHE),
demonstrating the synergistic effect achieved by increasing the
catalytic surface area and efficient electron transfer through the
RGO sheet in the composite catalyst.”®!

Employing a similar strategy, Yan and coworkers>*® reported
the preparation of a 3D bifunctional oxygen electrocatalyst
based on Co/ZnCo,0, nanoparticles derived from CoZn-ZIF-L
sandwiched in leaf-like nitrogen-doped carbon microplates
interwoven with carbon nanotubes (Co/ZnCo,0,@NC-CNTs,
Fig. 20A), as confirmed by the SEM images in Fig. 20B and C
and TEM images in Fig. 20D and E. As shown in Table 7, the
Co/ZnCo,0,@NC-CNT material is among the best bifunctional
electrocatalysts as revealed by its excellent onset potential of
1.01 V, Ey;, of 0.90 V, Tafel slope of 91 mV dec !, limiting
current density of 4.6 mA cm™ > for the ORR and small AE of
0.70 V for ORR/OER activities. The excellent activity of this
composite is due to the large amount of metal-N, and Co®*
active sites as well as the interwoven CNTs on the surfaces of
the carbon microplates which are beneficial to the charge
transfer in the ORR/OER processes.>>”

4.2. Water-splitting electrocatalysts for energy conversion
(OER and HER)

Electrochemical water-splitting has been considered as a pro-
mising method to obtain H, and O, through the hydrogen
evolution reaction (HER) and the oxygen evolution reaction
(OER), respectively. However, the production of H, is limited by
the sluggish OER kinetics at the anode due to the multi-
electron transfer coupled with protons, which leads to high
overpotentials.>** Benchmark catalysts such as RuO, and IrO,
have been used in the water-splitting process to overcome this
issue. Nevertheless, due to the scarcity and high cost of these
noble metals, their commercial implementation has been
unfeasible.?®® In this sense, it is necessary to search for new
electrode materials with low cost, which are not scarce, besides
they have a superior electrochemical behavior.

In recent years, cobaltite spinel oxides M,Co; ,O, (where
M = Ni, Mn, Zn, and Fe) have been used as electrode materials
for efficient water oxidation.®™**®2®” Among these electrode

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(A) SEM image of ZnCo,0,4 microspheres and (B) TEM images of a ZnCo,O,4 microsphere. The inset of (B) shows the magnified portion of the

image that shows the porous structure. (C) Oxygen electrode activities of both the catalysts within the range of potential for the ORR and OER in O,-

saturated 1 M KOH electrolyte at 1200 rpm. (D) Growth mechanism of rGO-ZnCo,0, flower-like microstructures. Reproduced with permission.
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(A) Schematic synthesis process of the Co/ZnCo,0,@NC-CNT electrocatalyst. (B and C) SEM images, (D) TEM image, and (E) HRTEM image of

the as-prepared Co/ZnCo,04@NC-CNTs. Reproduced with permission.?>® Copyright © 2020 Elsevier Ltd. All rights reserved.

materials, ZnCo,0, has drawn attention due to its rich redox
chemistry, which has led to enhanced electrochemical perfor-
mance. Indeed, ZnCo,0, presents a better catalytic activity for
the OER when compared to other cobaltite spinel oxides,?*® and
the reason for this lies in how Zn>" ions replace Co ions in the
Co30, spinel structure.

In the Co,0, spinel structure, Co>* and Co®" ions are found,
respectively, in the tetrahedral and octahedral sites. Kim and
colleagues®®® demonstrated that Zn>*, when inserted into the

824 | Energy Adv, 2022, 1, 793-841

Co304 spinel structure to form ZnCo,O,4, only replaces Co>*
found in the tetrahedral interstices, leaving Co®" (highly active
species for the OER) unchanged in the octahedral sites. Never-
theless, other metal ions like Ni and Mn, when inserted into
Co030, to form NiCo,0, and MnCo,0,, respectively, can sup-
press the catalytic activity for the OER,**' due to occupation of
tetrahedral and octahedral sites in the Coz;0, spinel structure.
In addition, M. Harada, F. Kotegawa, & M. Kuwa'® demon-
strated that the active sites are controlled by the balance of

© 2022 The Author(s). Published by the Royal Society of Chemistry
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M**/M>" cation distribution in Oy, and T4 sites and by the bond
strength between M and oxygen atoms at the electrocatalyst
surface before and after the exposure to OER conditions, where
the catalytic activity of the OER decreases in the order of
ZnCo,0, > NiCo0,0, > FeCo0,0, > C03;0, > MnCo0,0,.

In this sense, ZnCo,0, has been used as an electrode
material for the OER and has shown good results. For instance,
Bao et al.* prepared ZnCo,0, ultrathin nanosheets by thermal
treatment of ZnCo-LDH (where LDH = layered double hydro-
xide). The electrode material was deposited on a GCE (glassy
carbon electrode) and tested for OER performance in KOH
1.0 mol L' The as-prepared ZnCo,O, ultrathin nanosheet
presented an overpotential of 340 mV at 10 mA cm 2%, and a
Tafel slope of 38 mV dec ™", compared to RuO, (33 mV dec ™).
The authors attributed these results to the large surface area of
ZnCo,0, ultrathin nanosheets that provides more exposed
active sites on the surface, easing the catalytic reaction. Moreover,
Xiang and colleagues®° synthesized ZnCo,0O, nanosheets with
abundant oxygen vacancies (OV), named OV-ZnCo,O,, through
the hydrothermal method and NaBH, reduction process. The
results showed that the presence of oxygen vacancies in ZnCo,O,
was beneficial for the OER. In fact, OV-ZnCo,0, achieved an
overpotential of 324 mV at 10 mA cm ™2, while pristine ZnCo,0,
showed an overpotential of 427 mV at the same current density.
The catalytic kinetics for the OER also was evaluated and OV-
ZnCo,0, presented a Tafel slope of 56.9 mV dec™ !, which is lower
than that of pristine ZnCo,0, (74.4 mV dec™ ).

Although the studies aforementioned seem to be encoura-
ging, the electrochemical performance of ZnCo,0O, is still

View Article Online

Review

restricted by its poor electronic conductivity, which leads to
suppression of electrocatalytic activity towards the OER. Thus,
most works reported in the literature presented ZnCo,O,
combined with other compounds, especially with conductive
polymers and conductive carbon-based materials to enhance its
electronic conductivity, resulting in a better catalytic activity for
the OER, as can be seen in Table 8.

For instance, Tomboc et al*’* prepared ZnCo,0, nano-
particles with a nanocactus morphology in the presence of
polyvinylpyrrolidone (PVP) (here denoted as PVP-ZnCo,0,)
using a one-step hydrothermal method followed by calcination
treatment. The authors demonstrated that in the presence of
PVP the electrocatalytic activity of ZnCo,0, was enhanced when
compared to ZnCo,0, without PVP. Indeed, PVP-ZnCo,0,
exhibited an overpotential of 282 mV at 10 mA cm 2, while
ZnCo,0, without PVP showed an overpotential of 343 mV.
PVP-ZnCo,0, also presented an overpotential lower than
PVP-NiCo0,0, (298 mV), synthesized under the same conditions.

Recently, Zhao and colleagues®”® electropolymerized poly-
pyrrole (PPy) on ZnCo,0, nanowires under a constant potential
of 0.9 V for 60, 100, 200 and 300 s, and the electrodes were
denoted as ZnCo,0,@PPy-60, ZnCo,0,@PPy-100, ZnCo,0,@
PPy-200, and ZnCo,0,@PPy-300, respectively. The SEM image
of ZnCo,0,@PPy-200 in Fig. 21B reveals that nanowires were
coated by a thin layer of PPy, in comparison to ZnCo,0,
(Fig. 21A), and from the TEM images in Fig. 21C and D it is
possible to observe that nanowires are composed of many
nanoparticles. In addition, ZnCo,O,@PPy-200 presented a surface
area of 56 m*> g~ higher than pristine ZnCo,0, (39 m* g™ ).

Table 8 ZnCo,04-based OER and HER catalysts and their main electrocatalytic parameters

Overpotential at

10 mA cm > (Eny,) Tafel slope  Stability pH conditions

Catalyst Preparation method (mV vs. RHE) (mvdec™) (h) (mol LY Ref.
OER  ZnCo0,0, Sol-gel method 650 51 — KOH 0.1 271
ZnCo,0, nanosheets Thermal treatment of Zn-Co LDH 340 38 — KOH 1.0 130
MOF-derived ZnCo,0, Calcination process 389 61.8 KOH 1.0 272
OV-ZnCo,0, Hydrothermal method 324 56.9 30 KOH 0.1 270
m-ZnCo,0, Calcination process 300 54 — KOH 1.0 273
PVP-ZnCo,0,4 NPs Hydrothermal method 282 79.9 24 KOH 1.0 274
ZnCo,0,@PPy-200 Hydrothermal and 254 60.77 42 KOH 1.0 275
electrochemical deposition
ZnCo,0,-CNTs Hydrothermal method 490 — — KOH 0.1 254
ZnCo,0,@C-MWCNTs Calcination process 327 65 25 KOH 1.0 276
ZnCo,0,@NC/CT Carbonization-oxidation process 196.4 61.3 45 KOH 1.0 138
rGO-ZnCo,0, Solvothermal method 300 59.2 12 KOH 1.0 261
Co/ZnCo0,0,@NC-CNTs Pyrolysis treatment 370 64 30 KOH 1.0 255
ZnCo0,0,@Ni(OH), - 2.0  Hydrothermal method 280.2¢ 64.62 17 KOH 1.0 277
ZnCo,0,@ZnCo-LDHs Hydrolysis 375 73 — KOH 1.0 278
ZnCo,0,@NiFe-LDH Hydrothermal method 249 96.7 20 KOH 1.0 279
ZnCo,0,/FeOOH HPs Thermal treatment of ZnCo/ZIFs 299 69 15 KOH 1.0 280
ZnCo,0,/Au/CNTs Hydrothermal method 440 46.2 — KOH 1.0 281
ZnCo0,0,4/Co,Se, Solvothermal method 324 79.3 50 KOH 1.0 253
C/ZnCo0,04/ZnO Annealing 279 72 24 KOH 1.0 282
HER  Co,P/C0o0/ZnCo,0, Hydrothermal followed by 112 62 24 KOH 1.0 283
phosphorization process
ZnCo,0,@PPy-50 Hydrothermal and 133 62.4 — KOH 1.0 57
electrochemical deposition
ZnCo,0,@PPy-200 Hydrothermal and 183.52 60.77 22 KOH 1.0 275
electrochemical deposition
HPs = hollow polyhedrons; ZIFs = zeolitic imidazolate frameworks. ¢ At 50 mA cm™>.
© 2022 The Author(s). Published by the Royal Society of Chemistry Energy Adv., 2022,1, 793-841 | 825


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ya00106c

Open Access Article. Published on 03 October 2022. Downloaded on 2025-10-16 7:18:37 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

View Article Online

Energy Advances

160

E)

-

Current density / mA em™~

120 «

SO o 7ZnCo,0,
= 7.0C 0,0 ,(@PPy-60
—o—7nC0,0,@PPy-100
= 7.0C 0,0 @PPy-200
o 7ZnCo,0 @PPy

40 4

-300

1.0 I'Z Il-l 16
Potential / V vs. RHE

Fig. 21 SEM images of ZnCo,04 (A) and ZnCo,O4@PPy-200 (B). TEM images of ZnCo,04@PPy-200 (C and D). Linear sweep voltammetry at 2 mV s~*
for ZnCo,04 and ZnCo,0,4@PPy samples (E). Reproduced with permission.275 Copyright © 2021 Elsevier Ltd. All rights reserved.

Among these samples, ZnCo,0,@PPy-200 exhibited a lower over-
potential (250 mV) at 10 mV ¢cm™> (Fig. 21E) and a lower Tafel
slope (60.77 mV dec™'). Chronoamperometric studies were
performed to evaluate the durability and stability of the
ZnCo,0,@PPy-200 electrode, and even after 42 hours the catalyst
remained steady, revealing its excellent stability.

In addition to conductive polymers, carbon-based materials
(carbon nanotubes and graphene) have been widely used with
cobaltite spinel oxides to improve their electronic conduc-
tivity,>®**%> thus providing a conducting platform. Furthermore,
these materials, when combined, present a synergistic effect in
the OER owing to their high surface area, providing more
electrocatalytically active sites for charge transport between
the electrode/electrolyte interface. For instance, Yan and co-
authors**® reported the synthesis of Co/ZnCo,0, from a MOF
(CoZn-ZIF-L) sandwiched in N-doped carbon interconnected
with carbon nanotubes (denoted Co/ZnCo,0,@NC-CNTs) as
an electrode material for OER activity. The composite presented
an overpotential of 370 mV at a current density of 10 mA cm™>
and a low Tafel slope of 64 mV dec™'. Similarly, Liu et al.>”®
embedded two different MOFs (metal-organic frameworks)
ZIF-8 and ZIF-67 into MWCNTs (multi-walled carbon nano-
tubes) and obtained ZnCo,0,@C-MWCNTs by the calcination
process. The electrode material exhibited a low overpotential of
327 mV at 10 mA cm > and a Tafel slope of 65 mV dec™". In
addition, the electrocatalytic activity of ZnCo,0,@C-MWCNTSs
remained unchanged, even after 25 hours of tests, demonstrat-
ing the reliability of the material.

In the same way, Kong et al.,"*® using a ZnCo MOF, prepared
an electrode material based on zinc-cobalt oxide nano-
flakes@N-doped carbon hollow nanowall arrays anchored onto
carbon textile (ZnCo,0,@NC/CT). The SEM images of ZnC0,0,@
NC/CT show that the compound grown vertically on a carbon
textile electrode (Fig. 22A) and holes can be observed in its
structure (Fig. 22B), caused by cation exchange between Co>*
and Zn*"*. Furthermore, the hollow structure is confirmed through
the contrast between the shell and core (hollow), as can be seen in

826 | Energy Adv, 2022,1, 793-841

Fig. 22C. The electrode exhibited an outstanding low overpotential
of 196.4 mV at 10 mV cm™ 2, a low Tafel slope of 61.3 mV dec ™,
and a long-term durability of 45 hours (Fig. 22D). The authors
attributed the excellent results to (i) the decreased resistance at
the interface between the substrate and the electrode material due
to the direct growth of N-doped carbon nanowalls on the substrate
surface, leading to improvement of the ion/electron transfer rates
and (ii) the easy penetration of electrolyte, leading to faster
faradaic reactions and ion diffusion rates, thanks to the high
surface area of the porous structure of the ZnCo,0, nanoflake
shell, as shown in Fig. 22E and F.

Graphene has also been combined with spinel oxides to
improve the electrocatalytic activity for the OER.>®%?8¢%87
To enhance the catalytic activity of ZnCo,0, towards the OER,
Chakabarty et al.>®* prepared a ZnCo,O, grafted onto reduced
graphene oxide (rGO) sheet through the solvothermal method.
The SEM and TEM images in Fig. 19A and B revealed that the
structure of the ZnCo,0,4 microsphere is highly porous, as well
as composed of several nanoparticles with an average size of
10 nm. The highly porous structure of ZnCo,0, was maintained
in the rGO-ZnCo,0,, as shown in Fig. 19B. The rGO-ZnCo,0,
composite presented the lowest overpotential at 10 mA cm 2
for the OER (300 mV) when compared to rGO (510 mvV),
ZnCo,0, (410 mV), and benchmark IrO, (340 mV), or a rGO/
ZnCo-layered double hydroxide composite (onset overpotential
~ 330 mV).?*® Moreover, rGO-ZnCo,0, presented high stability
and the current density remained stable from the beginning to
the end of the measurement (12 h), differently from ZnCo,0,
that presented a decrease of current density, caused by gas
bubble formation. In addition, the electrocatalytic activity
of rGO-ZnCo,0, towards the OER was evaluated by SECM
measurement. It is possible to observe that a small current
density is detected from 1.4 V, indicating the beginning of the
OER process. As the potential increases to 1.45 V and 1.5 V the
current density also increases.

In addition to carbon-based materials, other compounds
such as LDH and oxides have been associated with ZnCo,0,, as

© 2022 The Author(s). Published by the Royal Society of Chemistry
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can be seen in Table 8. For instance, Pan et al.>’® reported the
synthesis of ZnCo,0,@ZnCo-LDH yolk-shell nanospheres. The
electrode material exhibited an overpotential of 375 mV at
10 mA cm 2 and a Tafel slope of 73 mV dec . Its electro-
chemical performance was attributed to the large surface area,
the synergistic effect between ZnCo,0, and ZnCo-LDH, and the
interconnection among the nanosheets which consisted of the
nanospheres, causing the reduction of the transportation path
of electrolyte ions. Que et al.>’® obtained a core-shell structure
of ZnCo,0,@NiFe-LHD that presented an overpotential of
249 mV at 10 mA cm > The authors explained that the low
overpotential achieved by the electrode material was due to the
synergistic effect between core@shell structure components.
Xiong et al.*®* prepared a C/ZnCo,0,/ZnO material, combining
two strategies (preparation of MOF-derived ZnCo,0, and the
formation of a hierarchical core@shell structure). As a conse-
quence, the electrode material required 279 mV overpotential
to reach 10 mA cm 2 current density. Besides, the electro-
catalyst did not present significant degradation after a 24 h
stability test.

Possible strategies and tendencies in the preparation of
electrode materials based on ZnCo,0, for OER catalysis can
be seen in Fig. 23, where the electrocatalysts are summarized
according to their low overpotential (1710 < 300 mV). Analyzing
the electrode materials displayed in Fig. 23 we figured out that
three of the nine electrocatalysts based on ZnCo,0, are MOF
derivatives, and one of them presented the best electrochemical
performance for OER catalysis among the electrocatalysts
reported. In fact, ZnCo,0,@NC/CT, C/ZnCo,0,/ZnO and
ZnCo,0,/FeOOH HPs exhibited an overpotential of 196.4, 279
and 299 mV, respectively. The best electrocatalyst ZnCo,O0,@
NC/CT presented an overpotential of ~102 mV lower than the
seventh electrocatalyst also based on MOF-derivative ZnCo,0,/
FeOOH HPs (299 mV). Although both of them were designed

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 23 The top 9 electrocatalysts based on ZnCo,04 for the OER that
presented an overpotential <300 mV (0 < 300 mV).

from the MOF, the former was combined with a carbon
material that enhanced the electronic conductivity of the
electrode. However, the rGO-ZnCo,0, electrocatalyst occupied
the eighth position along with m-ZnCo,0, and both of them
presented an overpotential of 300 mV.

Among the electrode materials displayed in Fig. 23, it can be
noticed that the combination of ZnCo,0, with conductivity
polymers can also be a good strategy to improve the electro-
chemical performance of the electrocatalyst. Indeed, intermedi-
ate overpotential values were reached for ZnCo,0,@PPy-200
(254 mV) and PVP-ZnCo,04 NPs (282 mV) electrodes, occupying,
respectively, the third and sixth positions.

The design of hierarchical structures as core@shell providing a
shortened ion/electron transport pathways and a large surface
area with a large number of electrocatalytic sites exposed, favoring

Energy Adv., 2022,1,793-841 | 827
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faradaic reactions, seems to be another interesting strategy to
improve the electrochemical performance for OER catalysis. Thus,
it can be highlighted that the electrocatalyst based on ZnCo,0,@
NiFe-LDH presented the second-best electrochemical perfor-
mance with an overpotential of 249 mV, and the synergistic effect
between the core and shell materials in the structure contributed
to the excellent result. It is noteworthy that the chosen shell
material also was fundamental to achieving the results. In fact,
recent studies have shown that NiFe-LDH and ternary NiFe-LDH
derivatives are promising electrode materials for the OER
catalysis.”® The fifth position was occupied by the electrocatalyst
ZnCo,0,@Ni(OH), - 2.0, presenting an overpotential of 280.2 mV,
where the presence of Ni(OH), as a shell material improved the
electrochemical performance of the electrode materials, since the
Ni(OH), nanosheets made transporting electrons/ions easier.
In fact, the overpotential value for the ZnCo,0,@Ni(OH), is much
smaller than those of many other pristine materials such as NiO
(310 mVv),>*° ZnO (340 mV)*** and Ni(OH), (340 mV).>*>

Although many works using ZnCo,0, as an electrode mate-
rial for the catalysis of OER processes have been reported, few
articles using the same material were found in the literature for
HER electrocatalysis, as can be seen in Table 8. The main
reason for this is that the production of high-purity hydrogen
from the water-splitting method*** still is restricted by the
sluggish kinetics of the OER.>**

Among these works, we can highlight that reported by Zhang
and colleagues®®® where zinc cobalt oxide/phosphide (Co,P/
Co0/ZnCo,0,) hollow submicron boxes were obtained and
used as an electrode material for the HER. The electrocatalyst
showed an overpotential of 112 mV at —10 mA cm ™2 current
density; for comparison purposes the commercial Pt/C elec-
trode also was tested and presented an overpotential of 19 mV
at the same current density. Furthermore, the electrode materi-
als exhibited a Tafel slope of 62 mV dec™*, indicating that the
reaction pathway obeys the Volmer-Heyrovsky mechanism with
a fast Volmer step for the HER.

5. Conclusion and outlook

The morphology of ZnCo,0, has a huge impact on its electro-
chemical performance, and can be improved by means of a
rational design. The specific capacitance, electrocatalytic activity,
rate-capability and cycling stability of ZnCo,0O4-based electrodes
heavily depend on ZnCo,0, mechanical properties. Bulkier micro-
and nanoparticles usually have low specific surface area (even
lower if they are not porous or having at least rough surfaces),
heavily suffering from the strain effects throughout the charge-
discharge cycling, and high internal electrical resistance due to
low surface area-to-volume ratios.

The design of 1D and 2D morphologies, along with hollow
and/or porous structures, can partially overcome these limita-
tions, specially aligned with suitable spaces between these 1D
and 2D structures. 1D and 2D structures present increased
specific surface areas, promoting electrolyte diffusion and
electroactive site availability; greatly reduced one or more
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dimensions, providing shortened electron transfer pathways and
alleviating the strain effects caused by volume changes; and in the
case of electrocatalysts the high porosity and pore sizes, enhan-
cing specific surface area and facilitating electrolyte adsorption
and product release (e.g., O, in the OER and H, in the HER).

In fact, for supercapacitive applications, 1D structures can
deliver high specific capacitances at lower current densities,
owing to their unidimensional electron pathways and high
specific surface area, which enhances the electroactive site
availability. However, usually at higher current densities the
electrolyte diffusion is hindered due to the entanglement of
such 1D structures, which reduces the area for electrolyte
penetration within the structure, limiting the electroactive site
availability and cyclability. This effect can also be observed in
2D structures, which, even being the most commonly synthe-
sized and being known for their high specific capacitance, can
present strain effects caused by volume changes if the space
between the structures is not suitable for fast electrolyte diffu-
sion at higher current densities. Thus, it is extremely beneficial
to engineering electrodes based on ZnCo,0, with wide-open 1D
or 2D nanostructures, which, along with all the benefits of such
structures, facilitates the electrolyte diffusion even at higher
current densities and further alleviates the strain effects of
continuous charge-discharge cycling processes.

As for electrocatalytic applications, similarly to supercapa-
citive applications, it is interesting to synthesize wide-open and
porous nanostructures. 1D nanostructures usually present
unsuitable specific surface area, pore sizes and porosity
for efficient electrolyte adsorption and product desorption,
hindering the electrocatalyst performance of such structures,
especially in comparison to 2D structured nanoparticles. 2D
nanostructures commonly present the most optimal meso-
porous and microporous sizes and volumes for the promotion
of electrocatalytic activity, which can be even further enhanced
according to the spaces between such structures by the facili-
tation of electrolyte penetration and enhancement of electro-
active site availability.

Additionally, the electrochemical performance of ZnCo,0,-
based electrodes can be even more improved by the incorpora-
tion of composites and/or binder-free electrode production,
along with the morphology control. The use of slurry-cast
electrodes with binders that can significantly reduce the elec-
tronic conductivity, limiting the availability of active materials,
and hindering the ion-diffusion. It can also increase the mass
density as ‘“dead-mass” and reduce the material integrity
through cycling. So, binder-free electrodes should be preferred
to circumvent all the above-mentioned downsides. ZnCo,0,
composites can be produced with highly electrically conductive
and/or electrochemically active carbonaceous and other transi-
tion metal materials, such as oxides, hydroxides and sulfides,
as both support and coating components. They can provide
bigger specific surface area, faster electron transfer, and short
and more efficient ion-diffusion paths. In addition to the more
active sites and richer redox reactions, the overall stability is
greatly improved. One can also morphologically orient the
growth of ZnCo,0, when it is used as a support material.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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The strategies for synthesis and application of pristine
ZnCo,0, and its composites in LIBs, SIBs, Li-S batteries and
metal-air batteries are summed up. Although ZnCo,0, has
been applied in energy storage and has proved to be a promis-
ing electrode material, there are a few challenges to mention,
e.g., its poor electrical conductivity, slow lithium diffusion and
short cycling life. This is associated with the volume expansion
during the lithium insertion and extraction process. Many
prospective strategies should be developed for the application
of ZnCo,0, electrode materials, and we hope that this review
article will facilitate further studies and advancements in
this area.

Improving the conductivity is always a key issue in the
development of electrode materials based on ZnCo,0,. Gener-
ally synthesis of electrode materials with nanoscale dimension
ZnCo,0, has already been proven to be effective for obtaining
high-power density, high-energy density, better stability and
other admirable electrochemical performances. Nanostruc-
tured ZnCo,0, composites with conductive materials such as
polymers and carbon were also demonstrated to improve their
electrochemical performance. These strategies can effectively
enhance the conductivity and alleviate the volume change of
ZnCo,0, electrode materials. Therefore, ZnCo,0, has been
gaining more and more attention in the field of energy storage
in recent years.

For application as electrocatalysts in energy technologies,
ZnCo,0, and its composites show great potential due to their
high intrinsic activity. In many cases they can exhibit bifunc-
tionalities, encompassing both ORR and OER activity. In fact, it
is important to highlight that the main strategies employed in
electrode materials for the ORR consisted of the design of new
catalysts with different morphologies, and the formation of
composites with conducting nanocarbons, such as carbon
nanotubes and graphene.

Similarly, although ZnCo,0, exhibits an overpotential close
to 300 mV as an electrode material for OER catalysis, it is
limited by its poor conductivity. For this reason, ZnCo,0,-based
OER electrocatalysts have been combined with conducting
carbon materials and polymers, as well as with compounds
such as metal oxides/hydroxides. Curiously, among the top 9
(110 < 300 mV) electrode materials for OER catalysis, three
electrocatalysts are based on MOF-derivatives. Deriving
ZnCo,0, electrodes using the MOF strategies can be interest-
ing, since the main features will be preserved, such as a high
porous structure and large surface area.>** They will improve
the electrochemical performance of the electrocatalyst. The
design of the electrode material is fundamental for obtaining
a good electrochemical performance. For instance, hierarchical
core@shell structures can yield excellent results because of
their large surface area, while the exposed electrocatalytic sites
can improve the faradaic reaction, and shorten the ion/electron
transport pathway. In fact, the regulation strategies for improv-
ing the electrocatalytic performance of ZnCo,0,4-based electro-
des follow trends also reported in other works®****°> and can
be summarized mainly as: (a) reducing electrical resistance
using conductive supports and (b) increasing active sites by

© 2022 The Author(s). Published by the Royal Society of Chemistry
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nanostructuration, morphology engineering and porous struc-
ture construction.””

Despite the important advances in the design of new materials
based on ZnCo,0, aforementioned, many challenges still need to
be overcome regarding a full exploration and implementation in
practical/real application in electrochemical energy storage and
conversion. For instance, currently it is mandatory the develop-
ment of devices that are able to withstand high current density
with long-term cycling stability, aiming to reduce the charge time,
e.g., devices that can provide high energy density at a high-power
density during the long-term charge/discharge cycling process.
However, the excellent performances generally reported in the
literature, especially in studies using three-electrode systems, and
even in two-electrode devices, may not fully represent a real
application, since on a laboratory scale it usually takes 2-3 mg cm ™2
of the electrode material, but commercially always demands
high mass loading (>10 mg cm™>). In this sense, the design and
manufacture of more robust devices with greater thickness and
mass loading should be further studied.

In fact, we are convinced that much research needs to be
done to further improve electrochemical and electrocatalytic
materials based on ZnCo,0,, where site engineering and a
conductivity optimization approach should be used in the
quest for ideal electrode materials.>” For instance, the incor-
poration (or metal-ion doping) of third and fourth metal ions®
or the development of high entropy materials®>*® can be decisive
for improving energy storage and for electrocatalytic activity.**°
In fact, these strategies can also help in the challenge of mini-
mizing the use of Co, which are pushing a new trend of emerging
low-Co (and Co-free) materials as next-generation electrode mate-
rials for energy applications.”®” In addition, the research should
seek to increase the conductivity and porosity of ZnCo,O,/carbon
composites as strategies for manufacturing electrodes with high
mass loading for real application. From this perspective, the
preparation of ZnCo,O,/carbon derived from MOFs should be
studied more deeply, especially those derived from the zeolitic
imidazolate framework (ZIF-67, ZIF-8, ZIF-67 + ZIF-8, etc.). In fact,
MOF-derived composites have been regarded as excellent new
functional electrode materials for many applications, exhibiting
exceptional conductivity, stability, porous/hollow structures with
tunable shapes, and tailored compositions and electrochemical
activity, overcoming the relatively low conductivity and missing
chemical and/or structural robustness of precursor MOFs,"*>%>%8
Therefore, these are some future directions for the development
of ZnCo,0, based materials for their commercial/real applications
towards a more sustainable society.
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