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In recent decades, significant progress has been made on the development of low environmental impact
plastic materials, as alternatives to conventional plastics for food packaging. Research has focused on the
engineering of renewable resources of animal or vegetable origin that are rich in polysaccharides and pro-
teins, to produce green bioplastic materials for food packaging, with good mechanical and gas barrier
properties. Furthermore, incorporating natural antimicrobials, antioxidants, and pH-sensitive substances in
the new eco-friendly materials, smart and active green packaging can be developed. Recently, the prepa-
ration of bioplastics and biocomposites directly from the processing of agro-food residues via hydrolysis
or digestion was proposed for the production of new added-value products that comply with zero waste
and circular economy principles and are expected to impact the future of food packaging significantly.
This review aims to revise the various fruit and vegetable agrowaste-based bioplastic and biocomposite
systems developed so far, with potential applications in food protection and shelf life extension. The
vegetal lignocellulosic and non-lignocellulosic agrowaste composition, processing methods, and pro-
perties of the developed biomaterials are addressed. The obtained biocomposites, rich in natural poly-
mers, as cellulose, pectin, starch, zein, etc., can actively protect the packaged food against oxidation or
microorganisms, as long as they preserve the raw materials’ phytochemicals in their composition. We
focus on simple and easily scalable procedures that either involve green solvents or require low-energy,
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and lead to films for food packaging or suspensions intended to be applied as coatings directly on fruit or
other foodstuff surfaces. All the previously mentioned aspects are extensively reviewed in this manuscript,
mainly considering the literature reported during the last five years including the research works of the
rsc.li/greenchem authors in the field.

From the second half of the 20™ century, petroleum-based
polymers increased in popularity and ended up dominating
the food packaging industry thanks to their excellent pro-
perties, versatility, and low price.> Materials such as polyethyl-

1 Introduction

1.1 Current situation in food packaging: towards new
biomaterials

Nowadays, food packaging is an indispensable part of the food
industry. Food packaging is mainly used to establish a barrier
between the food and the environment in order to provide
mechanical protection and to reduce food contact with spoi-
lage factors, such as microorganisms, oxygen, and UV-light, as
well as to avoid losses of flavors and odors, to extend food
shelf life and quality." Additionally, food packaging has several
other functions, including marketing, information on the pro-
duct’s ingredients and expiry.”
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ene (PE), polypropylene (PP), and polyethylene terephthalate
(PET) are nowadays the most used in the packaging sector,
despite their high contribution to the accumulation of plastic
waste in the environment. These products originate from non-
renewable resources and, most importantly, are non-bio-
degradable. Their uncontrolled accumulation has raised pro-
found concern about their deleterious effects to the environ-
ment. In fact, when they end up in landfills or the oceans, it
takes hundreds of years to be biodegraded."* The alternative
of their incineration for energy recovery has a severe environ-
mental impact, including the generation of toxic airborne par-
ticles and greenhouse gas emissions.” Although the recycling
of such non-biodegradable polymers comes as a better alterna-
tive, the gradual chemical deterioration during that process
limits the further application of recycled plastics in food
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packaging. Finally, many of the current plastic packaging
items are made by combined polymers, making their recycling
technologically challenging and non-economically sustainable.
For example, within Europe, one of the best global scenarios
regarding the actions against plastic pollution, 24.9% of
plastic waste is disposed of in landfills, 42.6% is used for
energy production and 32.5% is recycled.” The immense con-
tribution of plastic packaging products to plastic waste gene-
ration is mainly due to their very short lifetime, about 1 year in
average, that forces a very quick turnover of materials with lack
of economically viable recycling.®”

In this scenario, more than 60 countries have issued prohi-
bitions on the use of plastic products, such as single-use
plastic bags, intending to stop the increasingly severe environ-
mental pollution.® These prohibitions are in line with the
Directive (EU) 2019/904 of the European Parliament and of the
European Council of 5 June 2019 on the reduction of the
impact of certain plastic products on the environment.’
Furthermore, the European Commission guidelines on single-
use plastic products, mainly connected to food protection and
consumption, have recently been published in accordance
with this Directive (May 31, 2021)."°

The above-described situation highlights the immediate
need to reduce the use of traditional plastics and a great neces-
sity for new sustainable materials capable of replacing plastics
in the food packaging industry and in other short-lived appli-
cations. These alternative materials can be considered sustain-
able only if they have positive implications simultaneously on
the environment, economy, and society. Bioplastics that are
made of renewable resources, preferably wastes, that can be
recyclable and biodegradable at the end of their life-cycle
fulfill this requirement," since they contribute to the reduction
of plastic waste generation, of nonrenewable raw materials
dependence, and of water and energy usage.> The use of vege-
table wastes as raw materials for bioplastics preparation has
the additional potential to reduce greenhouse gas emissions,
since plants uptake carbon dioxide from the atmosphere
during their growth and convert it into biomass thanks to the
photosynthesis."* Furthermore, plant biomass offers immea-
surable potential for bioplastics preparation through methods
that include, but are not limited to, the extraction and iso-
lation of polymers, the possibility to obtain monomers for
further synthetic routes and the possibility to disassemble,
mix and reassemble the entire biomass to develop blends and
composites. Although this review focuses mainly to the latter
processing methods, all the above methods have great potenti-
ality and lead to a wide variety of materials and the possibility
to tune their properties for specific applications. Thus, they
can be the ideal candidates for replacing traditional polymeric
packaging in all its forms, ie. rigid, flexible and coatings.
More details about the chemistry of the materials prepared
from vegetable waste are introduced in the following section.

The bioplastic packaging needs to maintain its properties
unaltered from the moment of the introduction of the food
within it, till the moment of its removal for consumption.
Successively, it is highly required that its biodegradation starts
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as soon as it is disposed of, and happens in short time.'* The
biodegradation can be triggered by external factors such as
humidity, temperature, changes in pH, and UV-light exposure,
in the presence of microorganisms or enzymes. Research
efforts are being made to improve the end of life compostabil-
ity of the few already commercially available sustainable bio-
polymers, such as polylactic acid (PLA), polybutylene succinate
(PBS) or polyhydroxyalkanoates (PHAs). These materials are
produced from plant biomass through various sequential pro-
cesses that will be mentioned further down, are rapidly bio-
degradable in specific conditions (industrial composting sites,
with temperatures around 60 °C) and slowly biodegrade over
the years when they end up dispersed in the environment,
although PHAs are marine-degradable.”® New policies should
be implemented to ensure their correct collection and com-
posting, while governments worldwide need to support the
increase, expansion and improvement of the industrial
compost sites.

On the other hand, biocomposites produced by the direct
transformation and reorganization of plant biomass from
agrowastes are more easily compostable at environmental con-
ditions, and can possibly be managed together with the
organic waste produced at homes. Furthermore, antimicrobial
and antioxidant molecules that are present in the biomass of
the agrowastes can provide functional properties to such bio-
composites, that can help extend food shelf life and quality
when used for food packaging.

Finally, it is worth mentioning that sustainable solutions to
conventional non-biodegradable plastics could also come from
microalgae exploitation. In fact, microalgae can be used to bio-
valorize food wastes and food processing waste waters to
produce proteins, lipids and carbohydrates, but can also be
transformed through reorganization upon solvent processing
into composite bioplastic films."**¢

In this manuscript, we review the bioplastics and biocom-
posites obtained from the processing of biomass from indus-
trial vegetable agro-food by-products, consistent with zero
waste and circular economy models, as pictured in Fig. 1,
focusing mainly on biocomposites obtained from the biomass
deconstruction, separation and reconstruction under a
different form.

1.2 Agro-food waste components and their potentiality for
new biomaterials in food packaging

The life cycle of a typical food item can be summarized in four
phases: (1) production, (2) processing, (3) distribution, and (4)
consumption. Food loss can occur at every step of the supply
chain and also occurs when food is removed from the chain.
According to the Food and Agriculture Organization of the
United Nations (FAO), 13.8% of all food produced worldwide is
wasted between the harvest on-farm, transport, storage, proces-
sing, and wholesale stages.'” For the scope of this manuscript,
as food waste we adopt the definition given by the FUSIONS
EU project,® that is “any fraction of food and inedible parts of
food removed from the food supply chain to be recovered or
disposed of”."?

This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Life cycle of an ideal system for packaging based on the circular
economy of agro-food waste.

The generation of edible food waste should be reduced by
taking precautionary measures at each level from its pro-
duction to its consumption. Since the growing world popu-
lation demands more food, minimizing the edible waste could
be a viable solution, reducing intensive agriculture. Regarding
the inedible discards, there is an extreme need for adequate
practices and policies for their management and reuse.*’ The
inedible parts of agro-food production could be the ideal
biomass source for the production of the new sustainable bio-
plastics. Indeed, agricultural processing by-products such as
husks, peels, straw, seeds, and pomace, constitute a reservoir
of carbohydrates, proteins, lipids, and phytochemicals,*"** all
invaluable components for new biomaterials. Next, we present
analytically all these components of the plants and where they
can be found within the plant.

1.3 The plant cell wall

Most of the natural polymers are found in the plant cell walls,
playing a fundamental role: they are the key elements that
control the wall’s resistance, stiffness, and flexibility. Precisely,
the cell wall consists of a network of cellulose microfibrils
embedded in a highly hydrated amorphous matrix of other
complex and heterogeneous non-cellulosic polysaccharides,
hemicelluloses, and pectins. As shown in Fig. 2A, there are two
types of vegetable cell walls: primary and secondary. The
primary walls are typical of growing cells, which require wall
flexibility and are generally poorly specialized. Secondary walls
form after growth has ceased, they are thick, inflexible, and
highly defined in structure and composition.>® Between the
walls of neighboring cells, is located the middle lamella,
which contains pectin and proteins.>* In addition, vascular
plants present a hydrophobic layer called cuticle at their plant-
environment interface. It consists of a cutin polymer film with
embedded intracuticular waxes, whose main function is to

This journal is © The Royal Society of Chemistry 2022
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prevent uncontrolled water loss. Wax constituents include long
chain hydrocarbons, such as alkanes, primary alcohols, alde-
hydes, secondary alcohols, ketones, esters, and may also
contain triterpenoids, flavonoids, and/or phenolic lipids.*

Although both types of walls are based on cellulose micro-
fibrils, the components of the amorphous phase vary widely
throughout the plant kingdom. Furthermore, cell walls are
dynamic entities, which can change their structure and com-
position during plant development and in response to abiotic
and biotic stress.”® The primary wall is made up of polysac-
charides such as cellulose (Fig. 2B), hemicelluloses (Fig. 2C),
pectins (Fig. 2D), a small part of structural proteins, and a sig-
nificant part of water (between 75 and 80%). Hemicelluloses
bind cellulose, and together with pectin, they help bind its
fibers and prevent the structure from collapsing. The second-
ary cell wall consists of cellulose, hemicelluloses, and in some
cases, lignin (Fig. 2E) with a minimal amount of water (5%).>
Raw materials that include a high content of these three com-
ponents are called lignocellulosic biomass and include non-
commercial material traditionally left on site after harvesting
of crops such as trunk, fiber, sugar cane bagasse, plant stalks,
vines, hulls, leaves, vegetable matter, sawdust, mill residues,
low-quality wood, tops, and limbs.>®

1.3.1 Cellulose. Cellulose (Fig. 2B) is the most abundant
polysaccharide on planet earth.”® It is a linear polymer of
7000-15 000 glucose units linked by $-1,4 bonds in which each
glucose residue has a rotation of 180° with respect to the next,
resulting in a polymer whose repeating unit is the disaccharide
cellobiose.>® These units form long unbranched chains that
interact through hydrogen bonds, creating structures of high
crystallinity called fibrils, which are then grouped to form
microfibrils and that in the presence of hemicellulose and
lignin are assembled into the well-known natural fibers. In
this way, cellulose fibers have a hierarchical structure with
areas of high crystallinity (55-75%) and high chemical and
mechanical resistance, connected by amorphous areas, more
susceptible to chemical and enzymatic attack.””

1.3.2 Hemicellulose. Hemicellulose (Fig. 2C) is a hetero-
geneous set of branched polysaccharides more complex than
cellulose and with lower molecular weight, usually formed by
500-3000 monomer units.”® Chemically, these polysaccharides
are composed of combinations of monosaccharides of five
(xylose, arabinose) or six carbon atoms (glucose, mannose,
galactose). These polysaccharides act as a support matrix for
cellulose microfibrils binding to them and, when present, also
binding to lignin.>" Among the carbohydrates usually included
in the category of hemicelluloses are xylan, xyloglucan,
mannan, glucomannan, and galactoglucomannan, and their
occurrence in the cell walls varies with the plant species,
among other factors.””

1.3.3 Pectin. Pectins (Fig. 2D) play a key role in controlling
cell wall flexibility, cell proliferation and growth.>> They are
made of heterogeneous polysaccharides that mainly have
a-(1,4)-p-galacturonic acid in their structure and, to a lesser
extent, neutral sugars such as rhamnose, galactose, and arabi-
nose.”” They consist of a series of structurally different
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secondary plant cell walls. (B) Scheme of cellulose polymer’s structure. (C) Scheme of xylan, a hemicellulose, structure. (D) Scheme of pectin poly-
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polymer. (F) References for figures understanding.

domains from which they can be distinguished: homogalactur-
onan (HG), rhamnogalacturonan I (RGI), and rhamnogalactur-
onan II (RGII), among other less frequent ones. The first HG
domain is the most abundant and important in the union of

4706 | Green Chem., 2022, 24, 4703-4727

divalent and trivalent cations. It represents ~65% of the
pectins and is made up of galacturonic acid monomer units
linked by a-(1,4) bonds. It is partially methylated at the C-6 car-
boxyl groups, and it can be O-acetylated at O-2 or 0-3.>**° The

This journal is © The Royal Society of Chemistry 2022
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RG I domains represent 25 to 30% of pectins. They have as
repetitive unit, dimers of o-(1,4)-0-galacturonic acid and
a-(1,2)--thamnose, which are partially substituted with side
chains containing linear and branched residues of a-r-arabi-
nose and/or p-o-galactose, showing high heterogeneity accord-
ing to plant sources.’®" RG II are the least abundant but most
complex and branched domains of pectin, representing
approximately 10% of the total. They have a main chain of
about 8 residues of o-(1,4)-0 galacturonic acid with four side
branches containing 12 different types of sugars linked by at
least 20 different forms.>*

Pectins are transported to the wall in highly methyl esteri-
fied forms and selectively de-esterify to control matrix stiffness
by forming gels in the presence of calcium or boron ions that
chelate with charged carboxylic groups forming egg box
structures.”®*> Therefore, they show gelling capability, which
was explored to prepare hydrogels, coatings, and cross-linked
films.***° Besides, they were also capable of being processed
by melt extrusion in the presence of a plasticizer, showing a
thermoplastic characteristic.*”

1.3.4 Lignin. Lignin (Fig. 2E) is the most abundant aro-
matic polymer in nature. It is found in most vascular plants,
where it can represent 40% of the plant wall. It is made of aro-
matic heteropolymers derived from three monomers: the
p-coumaryl alcohol (4-hydroxycinnamyl), coniferyl alcohol
(4-hydroxy-3-methoxycinnamyl) and sinapyl alcohol
(4-hydroxy-3,5-dimethoxycinmyl) that bind forming a three-
dimensional network of different types of links, resulting in an
irregular and complex pattern.®® It is found mainly in the sec-
ondary plant cell, where it holds the cellulosic fibers together,
conferring rigidity and impermeability to the plant, and
finally, it is resistant to biodegradation, protecting the wall
from most microbial attack.**

1.4 Other plant intracellular biopolymers

1.4.1 Starch. Starch is a widely known biopolymer used in
material science for the production of biodegradable
materials. It occurs intracellularly in the amyloplasts of plant
cells, where it serves as a source of carbohydrate reserve for
plants. It is synthesized in semicrystalline granules, whose
morphology and size are specific for each plant species, and can
adopt a round, oval, ogival, or lenticular shape while its sizes
range from submicron to 100 um in diameter. These granules,
however, have an internal structure that is broadly common to all
of them.* Starch is made up of two polyglucans: amylose and
amylopectin. Amylose consists of glucose residues connected
through o-(1,4) bonds forming long and mainly linear chains
with a few a-(1,6) branches. Amylopectin, which is the main com-
ponent, has the same basic structure but has considerably
shorter chains and many more ramifications o-(1,6).>? Starch has
been widely used for the preparation of thermoplastic materials
by combining it with a plasticizing agent.*®*' Thus, plant resi-
dues rich in this polymer have a high potential for processing as
conventional thermoplastic polymers.

1.4.2 Proteins. Proteins represent another group of impor-
tant plant compounds. A wide variety of proteins can be found

This journal is © The Royal Society of Chemistry 2022

View Article Online

Tutorial Review

in plants, with many different functions.*” Storage plant pro-
teins of nutritional value are made of 20 different amino acids
and could be classified according to their solubility using the
Osborne classification: albumins are water-soluble proteins,
globulins are soluble in dilute salt solutions, prolamins are
soluble in alcohol and alcohol-water mixtures, and glutelins
are soluble in diluted acidic or basic solutions.*’ In tissues
such as leaves, proteins constitute only a minor amount, for
instance, only 1-3% of the dry mass in lettuce leaves. On the
other hand, seeds are very rich in storage proteins that are
needed to sustain their germination and the growth of the
plants at the initial stages. In seeds, protein amounts are sig-
nificantly higher, up to 40% of the dry weight. In particular,
they comprise 40% of soybeans, 9-12% of corn kernels, 25%
of peanuts, and 20% of sunflower seeds.**™*’

Vegetable derived proteins are often found as a byproduct
of food processing, either because they have poor nutritional
value or because they are the result of refining of legumes.
These proteins, often with the addition of some plasticizers,
have been proposed for the production of bioplastics. For
example, soy proteins (SP) and wheat gluten (WG) are among
the most studied proteins for the production of bioplastics
because of their wide availability and low price. SP result from
the processing of soy beans after the extraction of the oil.
Their main constituents are non-polar aminoacids such as
glycine, proline, alanine, valine, acidic amino acids such as
aspartic and glutamic acid, and finally basic amino acids such
as lysine and arginine.*® Despite their good nutritional value,
not all the soy proteins produced are consumed, and a signifi-
cant portion ends up being discarded. To be processed into
bioplastics, soy proteins benefit from the addition of plastici-
zers such as glycerol or water.’> WG is a relatively cheap
protein obtained from wheat processing to obtain starch.
Commercially available WG has high protein content (>75%,
the rest being starch and lipids) that is due to mostly two pro-
teins: gliadins (that are low-molecular-weight) and glutenins
(high-molecular-weight).**>*>° Both proteins are prolamine pro-
teins and are storage proteins whose function is to help the
germination of the seeds. When combined via S-S bridges,
gliadins and glutenins create a strong network with good visco-
elastic properties.

Other examples of less known proteins obtained from
biomass are zein and kafirin. Zein is a prolamine protein with
poor nutritional value and so has limited uses as an ingredient
for foodstuff. It is obtained from the processing of corn, in
which it has a function as a storage protein providing nitrogen
for growing kernels during corn germination and it is com-
posed of glutamine, leucine, proline, and alanine aminoa-
cids.”" Zein proteins are alcohol soluble and form films upon
casting, but, similarly to other proteins, their films are usually
brittle and fragile, and a plasticizer is needed to provide
flexibility.>>>* Similarly, Kafirin is the family of storage pro-
teins in sorghum and are classified as prolamines. Their mole-
cular weight is between 12 961 Da and 27 000 Da and they are
comprised of mostly non-polar amino acids such as
proline.’*”® Kafirins are known to be the most hydrophobic

Green Chem., 2022, 24, 4703-4727 | 4707
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prolamines.>® Kafirins are relatively less explored for both food
and non-food applications because of the low sorghum pro-
duction. Despite being the fourth cereal produced worldwide,
sorghum represents only 3% of the total cereal production.®®
Because of the high hydrophobicity and poor digestibility,
kafirins are better suited for non-food applications and are
studied for applications ranging from adhesives to bioplastics
to biomedical devices.*”

1.5 Plant intracellular functional phytochemical compounds

Phytochemicals are plant-derived chemicals. Some of them,
called nutraceuticals, can provide health benefits for consumers
either in food or in isolation.® These benefits translate into
better nutrition, treatment and prevention of diseases, and
delayed aging. They could also reach consumers through packa-
ging, edible or not, based on fruit and vegetable residues.

In addition, when phytochemicals are incorporated into the
food packaging, they can actively protect food, extending its
shelf life and giving information about its quality.”®®" For
instance, phenolic compounds provide antioxidant activity,
which in some cases can be used to extend the shelf life of
food. Besides, some of them also have antimicrobial action
and, together with essential oils (EOs), constitute the most
commonly used type of phytochemicals for the development
of active and sustainable food packaging.®” EOs are mixtures
of 20 to 60 different secondary metabolites. Among those, 2 or
3 components predominate, generally terpenes and terpe-
noids, while other aromatic and aliphatic compounds such as
aldehydes and phenols are found in smaller quantities. They
are characterized by an intense odor and flavor that vary
depending on their constituents and they play a vital role in
the plant defense due to their antibacterial, antifungal, and
antiviral action.®® These properties make them good candi-
dates to replace chemical preservatives and can be included as
active components in food packaging materials.®” In particu-
lar, compounds such as linalool, thymol, carvone, carvacrol,
citral, and limonene are regulated by the European
Commission as flavorings for food products and have been
categorized as “generally recognized as safe (GRAS)” ingredi-
ents by the Food and Drug Administration.®*

It is worth mentioning that the processing of the vegetable
wastes can influence the chemical and functional stability of
their phytochemicals, so it is a parameter that must be con-
sidered.®® Detailed information on these aspects can be found
in the literature.®

2 Brief review of the methods of
transformation of agrowastes into
bioplastics

The most widespread and traditional way to obtain bioplastics
from agro-food waste is to extract and purify natural polymers,

monomers, or other compounds through quite complex pro-
cesses briefly mentioned below.
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Bioplastic films, intended for various applications among
which also food packaging, are then obtained mainly through
techniques such as blending, solution casting,’®®® chemical
synthesis starting from the monomers,**’° to obtain biopoly-
mers that can be processed by thermomechanical processes
like extrusion.”*””* Concerning bioplastic coatings, liquid solu-
tions containing biopolymers and active phytochemicals can
be applied onto substrates, ie. food, either by dipping or
casting or spraying techniques. Dipping is suitable when the
substrate has an irregular surface, casting when the coating
solution is more viscous, while spraying is more appropriate
when only one side of the product is supposed to be
coated.”*””

Many of the extraction processes of the polymers present in
the vegetable cell wall are done with acidic or alkaline solu-
tions or both. For instance, cellulose nanocrystals (CNC) or
microcrystalline cellulose (MCC) can be recovered from agro-
food residues by a combination of acidic (H,SO,) and alkaline
(NaOH) hydrolysis treatments.”® In this process, usually
carried out on lignocellulosic biomass, hemicelluloses and
lignin can be obtained as byproducts.”””® Furthermore, pectin
polymer found in non-lignocellulosic biomass, is usually
obtained by extraction from citrus and apple peels in hot water
or hot diluted acid solutions, followed by an isolation step
through alcohol precipitation.”®%°

Even though these extraction methods are well established,
they present some challenges, like the disposal of the acid com-
pounds produced after the acid treatment step. Therefore,
different innovative extraction processes are under study and
investigation. One of these is the autohydrolysis process, which
allows obtaining, for instance, MCC with similar results to acid
hydrolysis, taking advantage of high pressure and temperature,
avoiding the use of sulfuric or other strong acids.®"*

Intracellular polymers, such as proteins and starch, can
also be obtained through acid-alkaline treatments but also
through solvent-assisted extractions. For instance, proteins can
be extracted by dissolution in an alkaline environment and
subsequent precipitation at their isoelectric point with the
addition of concentrated solutions of mineral acids like hydro-
chloric acid and sulfuric acid.®® Alternatively, some proteins
are obtained by solvent-assisted extractions. For example,
a-zein proteins and a small amount of B-zein proteins can be
extracted with 80-85% (v/v) ethanol or 2-propanol, while a, 3,
Yy, and &-zein proteins are extracted by combining an alcohol
with a reducing agent that contributes to the disulfide bonds
break and release of zein proteins.*” Similarly, kafirins are
usually extracted with ethanol and a reducing agent such as
sodium metabisulfite, although this method is usually pre-
ceded by an enzymatic pretreatment.®*

Starch, another important intracellular polymer, is mainly
recovered using wet extraction processes, where different
extraction liquids can be utilized to dilute starch in the liquid
phase. Sometimes sodium sulfate solution is used to promote
the separation.®” Besides, other innovative methods like ultra-
sonically-enhanced wet extraction or microwave radiation have
been reported for starch recovery.®®

This journal is © The Royal Society of Chemistry 2022
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The isolation through extraction from agro-food wastes of
specific compounds, like fatty, organic, or amino acids, or the
fermentation of the biomass for obtaining specific monomers
is also interesting for the production of new biopolymers.
Indeed, these compounds can be the base for biopolymer syn-
thesis, like polylactic acic (PLA) and polyesteramides (PEAs).
PEAs are innovative synthetic bio-based and biodegradable
polymers, not as well-known as PLA or PHAs. PEAs constitute
a promising family of biodegradable materials since they
combine a degradable character, afforded by hydrolysable
ester groups in the backbone, with relatively good thermal and
mechanical properties due to the strong intermolecular hydro-
gen bonding interactions between their amide groups.®”

As mentioned before, plant wastes often contain residual
amounts of different bioactive compounds (e.g., glucosino-
lates, phenolic acids, and flavonoids) characterized by remark-
able health-promoting properties with strong immunomodula-
tory, antimicrobial, antioxidant, and anti-inflammatory
actions.®® These bioactive compounds need to be recovered
from the waste source through feasible and efficient extraction
processes. The most common and easily implementable
extraction process is conventional solid-liquid extraction. The
choice of the solvents is crucial to maximize the extraction of
the target compounds while minimizing co-extraction of unde-
sired components, together with the proper set of the operat-
ing conditions of the process (e.g., temperature, time, solid-
liquid ratio, etc.) depending on the target bioactive and the
specific matrix.® The main disadvantage of this kind of
process is the requirement of expensive and potentially hazar-
dous organic solvents. Therefore, different, potentially greener
extraction techniques (e.g;, microwave-and ultrasounds-
assisted extraction, deep eutectic solvents, etc.) are under
investigation.’”®" The release of bioactive compounds from
vegetables can be enhanced using electric fields such as
pulsed electric and moderate electric fields®® or using enzyme
preparations that are environmentally friendly technologies.’?
However, the main limitation for the application of enzymes
in industrial extraction processes is their relatively high
cost.”%*

Apart from the extraction of isolated compounds from plant
biomass and their transformation in bioplastics, the latter can
also be obtained by the direct processing of the entire agro-
waste biomass either by biotechnological or by chemical
routes. Regarding, biotechnological transformation, biopoly-
mers can be directly produced through microbial fermentation
starting from plants and plant wastes, with most known
examples the polyhydroxyalkanoates (PHAs) and the bacterial
cellulose (BC). For example, Vega-Castro et al. obtained PHA
from pineapple peel waste using Ralsthonia eutropha.”® Before
the fermentation process, pineapple peels were hydrolyzed
using sulfuric acid (2% v/v). Then, fermentation was con-
ducted inoculating the specific culture. Other authors have
also used waste streams as carbon sources for bacterial PHA
production, including whey,”® spent coffee grounds,” grass
biomass,”® and fruit waste.”® Similarly, BC is produced by
some bacteria, being the ones from the genus

This journal is © The Royal Society of Chemistry 2022
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Komagataeibacter the most used for research and food appli-
cations, since they produce BC with high purity and yield."*
The main difference among these two biopolymers is that BC
is synthetized extracellularly, while PHAs are produced intra-
cellularly in the form of granules. Details on the methods of
synthesis and properties of bio-based polyesters, polyestera-
mides and BC are not part of the scope of this manuscript and
for more information about them the reader can refer to other
recent publications.®”1071%2

Regarding chemical transformation, the entire plant
biomass from agrowastes, when treated with different acids,
such as hydrochloric,'* formic'®® and acetic,' but also with
alkali solutions such as ammonium hydroxide,'® results in
deconstruction of its plant cell structure and hydrolysis of its
components, and eventually, in solutions or dispersions of
partially hydrolyzed natural polymers and phytochemicals.
The resulting solutions and dispersions, after casting or spray-
ing and solvent evaporation, can reassemble into stand-alone,
compact, self-assembled composites, but sometimes, the
hydrolyzed vegetable biomass needs to be combined with
other additives or natural polymers or biopolymers to obtain
consistent materials suitable for food packaging. For instance,
when the amount of starch present in the vegetable waste is
high enough, the materials obtained are fragile and need a
plasticizer."*® Besides, when the fiber content is high, the bio-
composites can be blended with other amorphous polymers
acting as binding agents.®®

The sections 3 and 4 of this review that follow, present pro-
tective films and coatings respectively, which contain partially
or totally biomass from agrowastes, and are developed for food
protection through combinations of the above described
processes.

3 Films for food packaging from
agro-food waste

In this section, we present examples of agrowaste biomasses
transformed into biocomposite films, either as additives or
through chemical processing, intended for food packaging.
The mechanical, barrier, antioxidant, and antimicrobial pro-
perties of the obtained films are discussed with respect to
their potential in food protection. A summary of the main
results discussed below, is shown in Table 1.

Agrowastes discussed in this section include both ligno-
cellulosic biomass such as husks, shells, stems and straw, and
non lignocellulosic biomass like pomace, seeds, fruit puree
and peels. There are also considered formulations prepared
with the addition of extracted phytochemicals such as EOs,
waxes, and polyphenols.

3.1 Films with suitable mechanical and barrier properties

Since the biopolymers present in plant biomass are commonly
hydrophilic, with shorter chain lengths and have more
complex structures than their petroleum-based counterparts,
the mechanical (Fig. 3A) and water vapor barrier properties of

Green Chem., 2022, 24, 4703-4727 | 4709
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the obtained films are usually inferior.'°® Therefore, many
approaches have been developed so far to overcome these
drawbacks and offer efficient, apart from sustainable, films
suitable for food transportation and protection.

A first approach, is the addition of lignocellulosic biomass
to natural polymers. Lignocellulosic biomass in addition to
being low-cost, and to show high strength, low density, biode-
gradability, availability, and renewability, can also effectively
improve mechanical and barrier properties of natural polymers
when added at relatively small percentages.'®”'°® For example,
the incorporation of lignocellulosic biomass has been demon-
strated to improve the mechanical behavior of some starch-
based composites.'®® Rice and coffee husks were added separ-
ately at 5 wt% in a corn starch matrix plasticized with 30 wt%
of glycerol. The composite materials were prepared by melt
blending followed by compression molding, and mechanical
characterization demonstrated a 100% improvement on the
tensile strength (TS) with respect to the control starch sub-
strate (5.2 + 1.6 MPa)."*® Similarly, lignocellulosic fibers from
corn stalks, husks, and cobs were added to a starch water solu-
tion at concentrations ranging from 5 to 20 wt%. The films
obtained by casting showed increases in TS and Young’s
modulus (YM) in the case of 5 and 10 wt% fiber content."%

However, lignocellulosic fiber-reinforced composites often
present different manufacturing defects associated with the
poor dispersion and big size of the fibers, as well as the lack of
compatibility between them and the matrix, which usually
leads to fibers’ agglomeration and negatively affects the overall
mechanical properties.'"" For example, de Moraes Crizel et al.,
has prepared gelatin-blueberry fiber composite films by
casting. The incorporation of 15 wt% of blueberry fibers into
gelatin, reduced the TS of the matrix by 40% due to the fibers’
agglomeration, observed by scanning electron microscopy at
the cross-section surface.™*? Nevertheless, the chemical modifi-
cation either of the matrix or of the additive biomass, as well
as the use of compatibilizers, were able to improve the cohe-
sion between the components. In particular, the butyl meth-
acrylate acid has been employed to enhance the compatibility
between coconut shells and regenerated cellulose biocompo-
sites prepared by casting. The regenerated cellulose with
3 wt% of butyl methacrylate acid-treated and untreated
coconut shells exhibited a TS of 62 and 55 MPa, respectively.
Above this concentration, the strength was reduced due to low-
dispersion and the agglomeration of coconut shell fibers."*?

Another strategy to avoid fillers agglomeration and compo-
sites’ defects is to use purified cellulose nanocrystals (CNCs) at
even lower concentrations. CNCs have received growing inter-
est as polymers’ reinforcing agents in recent years, since their
uniform distribution into a polymeric matrix improves its
mechanical performance and barrier properties.’'* In the
work of Kargarzadeh et al.,'™” the authors prepared composites
of cassava starch with untreated rice husk fibers, bleached rice
husk fibers, and rice husk-derived CNCs (Fig. 3B) by casting.
Results showed that untreated fibers weakened the TS,
bleached fibers improved it by 12%, while 6 wt% of CNCs pro-
duced an increase of 52% in the TS.'"® The authors attributed
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these results to the different dimensions of the fibers and the
lack of cohesion between the untreated fibers and the matrix.
Bruni et al. have reported the preparation of biocomposites, by
adding CNCs derived from different plant sources (rice, oat,
and eucalyptus) into a phosphorylated wheat starch matrix, by
the method of solution casting.''® Results indicated that the
incorporation of the CNCs resulted in an improvement of the
water-resistance and mechanical properties of the materials.'*®
In the same way, Ilyas et al. have prepared and analyzed the
mechanical properties of plasticized sugar palm starch-sugar
palm CNCs composites obtained by casting. They found an
enhancement in the thermoplastic starch films’ mechanical re-
sistance showing the highest TS at 0.5 wt% of CNCs, the
double of the sugar palm starch films.""”

Besides their application as reinforcement agents, CNCs
have demonstrated to improve the barrier properties of bio-
composites when they are well-dispersed in the polymer
matrix."** This happens because the incorporation of CNCs
provides reduced gas diffusion by increasing the tortuosity
path through the materials."'* For example, in over-ripe
papaya puree films obtained by casting, the water vapor
diffusion was reduced by 50% with the incorporation of
0.2 wt% of cellulose nanofibers (CNFs), while an improvement
in the TS of the neat puree film was also observed.''®
Similarly, the water vapor permeability (WVP) of sugar palm
starch films obtained by casting decreased up to 18% when
1 wt% of CNCs was loaded.""”

Alternatively, the addition of lignin as filler in composites
is also being considered as strategy for mechanical and barrier
properties improvement. For instance, soy protein isolate films
with 30-40% of sulfonated lignin prepared by melt blending
followed by compression molding, demonstrated the simul-
taneous enhancement of the TS and YM of the pure soy
protein films together with a decrease in the material’s water
absorption.'" Interestingly, Tedeschi et al. combined different
proportions of cellulose, commercial Kraft lignin, and xylan to
fabricate multifunctional lignin-based bioplastics by casting
method after treating materials in different concentrations
under acidic media. Results showed that lignin increased the
stiffness and the oxygen and water transmission barrier of the
wood-like biocomposites (Fig. 3C), exhibiting barrier and
mechanical properties comparable to petroleum-based and
commercial polymers.®”

Another strategy used for improving plant-based films’
barrier properties includes the addition of small functional
phytochemical substances, such as lipophilic EOs, into a bio-
polymer matrix. It has been demonstrated that they enhance
water resistance and provide films with antimicrobial
activity."®® For example, sunflower seed oil substantially
affected the water-resistance properties when incorporated
into mung bean starch-guar gum films prepared by casting.'*!
The WVP of this film with 2 wt% of sunflower oil showed a
decrease of 30% on the WVP with respect to the film without
oil. Similarly, improved water resistance and moisture barrier
properties were reported when 50 wt% of apricot kernel EO
was incorporated into chitosan films obtained by casting.'*?
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