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The extremely large number of unique polymer compositions that can be achieved through

copolymerisation makes it an attractive strategy for tuning their optoelectronic properties. However, this

same attribute also makes it challenging to explore the resulting property space and understand the

range of properties that can be realised. In an effort to enable the rapid exploration of this space in the

case of binary copolymers, we train a neural network using a tiered data generation strategy to

accurately predict the optical and electronic properties of 350 000 binary copolymers that are, in

principle, synthesizable from their dihalogen monomers via Yamamoto, or Suzuki–Miyaura and Stille

coupling after one-step functionalisation. By extracting general features of this property space that

would otherwise be obscured in smaller datasets, we identify simple models that effectively relate the

properties of these copolymers to the homopolymers of their constituent monomers, and challenge

common ideas behind copolymer design. We find that binary copolymerisation does not appear to allow

access to regions of the optoelectronic property space that are not already sampled by the

homopolymers, although it conceptually allows for more fine-grained property control. Using the large

volume of data available, we test the hypothesis that copolymerisation of ‘donor’ and ‘acceptor’

monomers can result in copolymers with a lower optical gap than their related homopolymers. Overall,

despite the prevalence of this concept in the literature, we observe that this phenomenon is relatively

rare, and propose conditions that greatly enhance the likelihood of its experimental realisation. Finally,

through a ‘topographical’ analysis of the co-polymer property space, we show how this large volume of

data can be used to identify dominant monomers in specific regions of property space that may be

amenable to a variety of applications, such as organic photovoltaics, light emitting diodes, and

thermoelectrics.
Introduction

Conjugated polymers are a highly versatile class of organic
materials that can be used in a wide variety of applications such
as photovoltaics,1–5 light-emitting diodes,6,7 eld-effect transis-
tors,8 batteries,9 supercapacitors,10 thermoelectrics,11,12 and
photocatalysts.13–18 All of these applications exploit a combina-
tion of the optoelectronic and/or redox properties of the
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polymers, the earth-abundance of their constituents, and the
relatively facile tunability of polymer properties. Generally,
property tuning of conjugated polymers is performed through
copolymerisation; combining different building blocks to yield
a repeating motif, which is replicated to form the polymer
chain. The properties of the resulting copolymers arise from
a combination of those of the building blocks, although the
exact connection between the two or between the properties of
the copolymer and the related homopolymers is not clear.
Models that aim to explain this connection for the optoelec-
tronic properties in terms of the donor and acceptor character
of building blocks have been proposed in the literature, but
these are generally qualitative in nature.19–21

While an attractive attribute of polymer chemistry, the ability
to both tune polymer properties through copolymerisation, and
to explore their compositional space presents a dimensionality
problem that arises from the large number of available mono-
mers and is exaggerated with increasing copolymer complexity.
To illustrate this numerically, consider a pool of 500 different
monomers. Combining these monomers in all possible ways
Chem. Sci., 2019, 10, 4973–4984 | 4973
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results in 125 250 binary copolymer compositions, increasing to
over 250 000 when we consider that each repeat unit (if asym-
metric) has two isomers. With more complex repeat units, i.e.
three- and four-component copolymers,4,5 we arrive at billions
of possible combinations. From a materials design standpoint,
these astronomically large numbers make it impossible to
explore the copolymer compositional space experimentally,
even with high-throughput robotic synthesis and character-
isation techniques, or computationally, particularly with more
complex polymer repeat units, using standard approaches
based around Density Functional Theory (DFT).

Naturally, we can overcome the copolymer dimensionality
problem with a fast enough way of determining relevant prop-
erties for known copolymer compositions. A rst step towards
this was a move from DFT to semi-empirical methods, which
allowed for the screening of short oligomers for high efficiency
organic photovoltaic materials.22–24 In recent years, machine-
learning techniques have emerged as a promising way of tack-
ling analogous problems in other areas of organic and inorganic
materials design,25–33 and conceptually could allow for the
exploration of much larger compositional spaces, unlimited by
polymer length. In this context, (supervised) machine learning
involves ‘training’ a model with examples of molecules/
materials for which the properties are known. Once trained,
the model essentially acts as a function able to map molecular
structure and/or composition to material properties. However,
use of these techniques is oen prohibited by the requirement
for large amounts of clean, high quality, data with which to
conduct training. We could obtain training data from electronic
structure calculations, where, in the context of organic mate-
rials, DFT is the standard. However, DFT is simply too compu-
tationally intensive to use for large numbers of conjugated
copolymers, where representative oligomer models can contain
upwards of 150 atoms. Indeed, recent work34 on non-conjugated
polymers using Gaussian Process Regressors trained using DFT
data as input highlighted the challenge of exploring a wide
chemical space with large numbers of possible compositions, as
well as restrictions on the type of machine learning algorithms
that are feasible, due to the limited size of the training data-set
that is computationally affordable. Until recently, using semi-
empirical methods, as discussed above, to generate this data
could mean signicantly reduced performance of a given
machine learning model due to their lower accuracy with
respect to DFT.35 However, we recently showed that optoelec-
tronic properties calculated with xTB36–38 – a recently developed
family of density functional tight binding methods – calibrated
to a small, representative subset of (time-dependent-) DFT-
derived results – provides highly accurate copolymer optoelec-
tronic properties with computational cost reduced by at least
three orders of magnitude relative to DFT.35 Further, we used
the resulting high-throughput approach to demonstrate the
weak dependence of the predicted properties on the exact
polymer conformation.39 In turn, these two observations
suggest that (i) xTB can be used to generate DFT-quality training
data and (ii) 3D structural models of polymer chains may not be
necessary for the prediction of optoelectronic properties (i.e. we
can ignore conformation effects while focussing only on
4974 | Chem. Sci., 2019, 10, 4973–4984
composition, see below), permitting the use of 2D molecular
representations as descriptors.

Here we show how high-quality training data obtained via
xTB, in combination with 2D molecular descriptors (in this
case, Extended-Connectivity (Morgan) Fingerprints40), can be
used to train a neural network model capable of the simulta-
neous, near-instant prediction of the key optoelectronic prop-
erties of copolymers with very high accuracy (RMSE < 0.12 eV).
Using this model, we explore the binary copolymer property
space spanned by a pool of 586 monomeric units that are
compatible with Yamamoto, Suzuki–Miyaura or Stille coupling
(see Fig. 1b for examples), generating around 350 000 possible
unique copolymer structures. This library was compiled from
commercially available aromatic dibromides and distannanes,
as well as non-commercially available building blocks from the
organic photovoltaics literature. With this large volume of data,
we are able to identify general features of the property space of
binary copolymers and their homopolymer counterparts, test
the ideas behind common synthetic strategies used to yield low-
optical-gap materials, and explore the extent to which polymer
properties can be tuned through copolymerisation.
Methodology
Properties of interest and polymer models

The optoelectronic properties of a conjugated polymer may be
characterised by the key quantities41 outlined in Fig. 1a. These
are the ionisation potential (IP), the energy required to remove
an electron from the polymer; the electron affinity (EA), the
energy released upon adding an electron to the polymer; and
the optical gap, the minimum energy at which the polymer
absorbs light to form an interacting electron–hole pair
(exciton). Two additional quantities may be derived from these:
the fundamental gap, the energy required to form a completely
non-interacting electron–hole pair; and the exciton binding
energy, a measure of the interaction energy between the excited
electron and hole in the exciton (the difference between the
optical and fundamental gaps). Note that, throughout the text,
we generally focus on the negative of IP and EA, (�IP and �EA),
which map directly onto the commonly used HOMO (�IP) and
LUMO (�EA) concepts which are oen used as approximations
to these quantities. Additionally, we approximate the optical
gap as the lowest energy excitation (S0 / S1) for all polymers.

In line with previous work,18,42–45 wemodel polymer materials
as long-chain oligomers, with the environment of an oligomer
in the bulk polymer approximated in the xTB calculations by
a dielectric continuum. In previous work we showed that such
a model yields accurate �IP, �EA and optical gap values
compared with experimental measurements derived from
photoelectron spectroscopy44 and UV-vis absorption spectra.18,45
Training data generation

The generation of training data follows a tiered strategy, where
a relatively small, diverse subset of copolymers is used to cali-
brate the accurate trends in properties given by a family of semi-
empirical methods to the absolute values given by DFT. Within
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 (a) Illustration of the relationships between the negative of the ionisation potential (�IP) and electron affinity (�EA), fundamental gap
(DEfund), exciton binding energy (EBE) and optical gap (DEopt). (b) Examples of monomers used to construct themonomer library (15 shown out of
586). (c) Outline of the workflow used to generate optoelectronic training data for a random selection of�50 000 copolymer compositions from
the total number of possible compositions. The resulting neural network model is used to predict the properties of the remaining �310 000
compositions.
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this family of semi-empirical, density functional tight-binding
methods, GFN-xTB37 is used for structural optimisation of the
neutral polymers. For �IP/�EA calculations, we use an exten-
sion of the parent GFN-xTB method, IPEA-xTB,38 a variant of
GFN-xTB especially parameterised by Grimme and co-workers
for the calculation of �IP and �EA values. For optical gaps,
we employ the tight binding simplied Tamm–Dancoff
approximation (sTDA)36 applied to orbitals and orbital eigen-
values obtained from xTB (sTDA-xTB),46 an approach capable of
ultrafast computation of entire UV-vis absorption spectra. All
GFN-xTB and IPEA-xTB calculations were performed using the
xtb code,47 while the sTDA results were obtained using the stda
code.48 All GFN-xTB and IPEA-xTB calculations, but not sTDA
calculations, used the generalised Born surface area solvation
model, with the default parameters for benzene distributed
with the xtb code, so as to approximate the environment of
a polymer chain in an amorphous polymeric solid. The xTB�IP,
�EA and optical gap values are calibrated to those predicted by
B3LYP49–52 using a linear model and our previously published
parameters for the low dielectric permittivity case.35

Structures for the xTB calculations are generated in a 3-step
approach. Starting from a 2D simplied molecular-input line-
entry system (SMILES)53 representation of each monomeric
unit, linear polymer structures were generated using the
Supramolecular Toolkit (stk),54,55 a Python library for the
assembly, structure generation and property calculation of
supramolecules, which takes base functionality from RDKit. stk
allows for exible copolymer formation from arbitrary mono-
mer units, control over monomer sequence within repeat units,
This journal is © The Royal Society of Chemistry 2019
and the automatic generation of different structural isomers
where asymmetric monomer units (e.g. 2,5 linked pyridine) are
concerned. In all cases, we restrict repeat units to two monomer
units and the polymer chains to 8 monomer units in total,
a length that we have previously shown to provide approxi-
mately converged optoelectronic properties.44 Where asym-
metric monomer units are concerned, we generate both
possible ordered isomers. In a second step, a conformer search
is performed using the stochastic Experimental-Torsion
Distance Geometry with additional basic knowledge
(ETKDG)56 method, where we typically generate 500 conformers
per polymer. The resulting conformers undergo a subsequent
optimisation and energy ranking procedure using the Merck
Molecular Force Field (MMFF)57 as implemented in RDKit,58

where the lowest energy conformer according to MMFF is
selected for the xTB calculations.
Neural network training and evaluation

Although all xTB calculations are performed on long-chain
oligomer models, we use trimers to generate molecular
descriptors in the form of xed-dimensional bit vectors using
Extended-Connectivity Fingerprints (ECPF). These bit vectors
are obtained directly from the 2D SMILES representations of
each trimer using RDKit. Using trimers instead of the entire
oligomer chain to obtain molecular ngerprints dramatically
reduces the computational effort required for ngerprinting,
while preserving all of the sub-structural information of the
polymer. The use of 2D SMILES rather than representations of
the 3D structures of the polymers is supported by the weak
Chem. Sci., 2019, 10, 4973–4984 | 4975
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dependence of the optoelectronic properties of the polymer on
the conformational degrees of freedom,35,39 already alluded to in
the introduction (see also Fig. S1†). Though we explored
different bit lengths and ngerprint radii, it may be assumed
that results were obtained using a 2048 bit and radius 2
ngerprint, unless otherwise stated. The neural network itself
has two hidden layers of 128 neurons each, using rectied linear
(ReLu)59 activation functions throughout. To avoid overtting,
the neural network is regularised using dropout.60 Each of the
training hyper-parameters, the dropout fraction, as well as the
neural network architecture, were obtained by 100 iterations of
a random search across the hyper-parameter space (for details,
see the ESI†). The network was trained to minimise the mean
absolute error (MAE) of the predicted IP, EA and optical gap
values using the Adam optimisation algorithm as implemented
in Tensorow.61 The model was evaluated using a simple 50%
train-test split of �50 000 polymer structures for which the
target properties are calculated. The ngerprinting, model
construction, and model training can be reproduced using
a freely-available, easy-to-use Python interface.62

Results and discussion
Model generation and performance

The nal model was obtained via a ‘data enrichment’ process,
whereby predictions made for all polymers by the initial model
were projected onto 2D property spaces (e.g.�IP vs. �EA). Areas
towards the edge of these property projections with a low
density of points (i.e. shallow �IP, deep �EA and low optical
gap) were identied. Monomer units, which were statistically
over-represented in these regions, were combined exhaustively
with each other and the properties of the resulting copolymers
calculated. A fraction (50%, approximately 900 additional
examples) of the resulting data is then applied in re-training the
neural network model. Here, this procedure is only conducted
once, but it is conceivable that it could be performed over many
iterations to generate more robust models from more limited
training data. Fig. S2† shows the effect of this data enrichment
process. Generally, we see that points at the extrema of the
property projection plots tend to be exaggerated (e.g.�EA values
are under-estimated) prior to re-training.

The resulting neural network model clearly performs very
well across the entire range of properties and property values,
with root mean square error (RMSE) of less than 0.12 eV when
predicting �IP, �EA and optical gap simultaneously (Fig. 2a
and b). This represents a signicant improvement in perfor-
mance over previous attempts for polymers,34 and a far larger
compositional space by several orders of magnitude.
Comparing to a linear regression model obtained with an
identical ECFP bit length and radius (Fig. 2c and d), we see that
the neural network outperforms the linear model signicantly
for all properties (the linear regression model yields an RMS
error of 0.30 eV overall). This comparison demonstrates that the
neural network model captures some degree of non-linearity
when mapping molecular substructures to optoelectronic
properties. For high-throughput screening purposes, the neural
network model accuracy is perhaps even greater than required,
4976 | Chem. Sci., 2019, 10, 4973–4984
with absolute values as well as relative ordering of polymer
properties adequately recovered. Further, high-throughput
workows, which rely on a cost-efficient method to screen
very large number of structures, generally involve a post-large-
scale-screening stage, where a promising subset of systems
are taken forward and treated at a more computationally
intensive level of theory. In this case, however, it appears that
this step could effectively be negated by the inherent model
accuracy.

Fig. S3† shows model performance when predicting differ-
ences in optical gap between isomers using different ngerprint
bit lengths and radii. While we observe improvements in this
quantity at longer bit lengths and radii, no signicant
improvement of the overall model performance is observed and,
indeed, increasing these parameters may be detrimental to
model generality. On the other hand, effects of monomer
isomerism (in the case of asymmetric monomer units) are far
better (albeit still roughly) captured at longer radii. This is
consistent with the idea that distinctions between repeat unit
isomers can only be made effectively when considering larger
molecular fragments. In the future, some form of feature
engineering could potentially be used to account for monomer
isomerism more explicitly.
Comparing the property space of homo and binary
copolymers

The large and varied data set at our disposal means that we can
empirically probe the optoelectronic property space of binary
copolymers and how it differs from that of homopolymers. The
optoelectronic property space is a 3D space spanned by vectors
corresponding to a polymer's �IP, �EA and optical gap values.
The fundamental gap is by denition equal to the difference
between �IP and �EA and hence not a free parameter. Fig. S4†
shows an image of this property space, showing that all poly-
mers lie in an almost 2D plane embedded in the 3D space. The
quasi-two-dimensional nature of the optoelectronic property
space nds its origin in the fact that (i) in the limit of zero
exciton binding energy, the optical gap would equal the
fundamental gap and (ii) the predicted exciton binding energies
(�0.5–2 eV), while large compared to classical inorganic semi-
conductors, are small relative to the fundamental gap (�2–6 eV,
see Fig. S5†).

Fig. 3a–c shows projections of the 3D optoelectronic property
space on 2D surfaces spanned by (i) �IP and �EA, (ii) �IP and
optical gap, and (iii)�EA and optical gap, respectively, where we
have drawn convex hulls enclosing all homopolymers in each
case. Comparing these homopolymer convex hulls with the
plotted points for the copolymers it appears that only a very
small number – likely to be statistically insignicant for
a dataset of this size – of copolymers lie outside of the property
space spanned by homopolymers. The homopolymers also
appear to sample the property space proportionally to the
density of copolymers within a given subspace. This suggests
that copolymerisation, at least in the case of ordered binary
copolymers, does not allow access to additional regions of the
optoelectronic property space not already sampled by the
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Performance of neural network model when predicting (a) �IP and �EA, (b) optical gap (S0 / S1 excitation energy) values derived from
calibrated IPEA-xTB and sTDA-xTB, respectively shown as 2D histograms (dark red (high) – light red (low) density). For comparison, the
performance of a linear regression model is also given (c and d). All properties correspond to copolymer compositions not used during the
training phase.
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homopolymers. The density of points in the case of the copol-
ymers is much larger though, conceptually allowing for more
ne-grained property control. Further, we would like to
emphasise that these observations may not hold for other
properties (e.g. charge-transport properties) and more complex
co-polymer repeat units (e.g. ternary and quaternary co-
polymers). Finally, we note that, even if the vast majority of
copolymers lie inside the homopolymer convex hulls, this does
not necessarily mean that the properties of a specic copolymer
lie in between those of the two corresponding homopolymers,
as we will discuss later.

Fig. 3d–f shows kernel density estimates of the distributions
of �IP, �EA and optical gap values for both the homo and
copolymers. Here we see that the co-polymer property space
spans a broad range of values, with signicant numbers of
materials present over a range of more than 4 eV for each
property. It is clear that in all cases the copolymer distributions
This journal is © The Royal Society of Chemistry 2019
are more symmetrical than those of their homopolymer
counterparts.
Correlations between copolymer properties

The 2D projections in Fig. 3a–c shows that there are weak
correlations between the different properties. In the case of �IP
and �EA, binary copolymers and homopolymers with deep �IP
values are likely to also have deep �EA values and vice versa. In
the case of the optical gap, binary copolymers and homopoly-
mers with small(er) optical gaps are more likely to have shal-
lower �IP values. Similarly, the same polymers are more likely
to have deeper �EA values. It is unclear if these correlations are
evidence of some deeper relationship or merely result from the
fact that the fundamental gap values of the polymers span
a range of around 4 eV. Regardless, as we study a large range of
monomers, and therefore copolymers, it is apparent that
certain property combinations might be difficult to achieve (e.g.
Chem. Sci., 2019, 10, 4973–4984 | 4977
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Fig. 3 2D histograms of copolymer property spaces spanned by (a) �IP and �EA, (b) �IP and optical gap, (c) �EA and optical gap. In each case,
the property space spanned by copolymers (dark red (low) – yellow (high) density) and homopolymers (blue dots) is shown. The property space
enclosed by the homopolymers is also shown as a convex hull (blue line). Kernel density estimates (KDE) of (d)�IP, (e)�EA and (f) optical gap for
both homo- and copolymers.
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copolymers that both have a shallow �EA value and a small
optical gap; copolymers with a shallow �IP value and a large
optical gap) due to the absence of copolymers in these regions
of property space. As these regions are also not sampled by the
homopolymers, this is simply the result of practically all binary
copolymers lying within the homopolymer convex hull.
Emergence of copolymer properties and the donor–acceptor
model

As briey mentioned in the introduction, models that explain
the copolymer optoelectronic properties in terms of the donor
and acceptor properties of the monomeric building blocks have
been proposed in the literature. In the same vein, we compare
the optoelectronic properties of copolymers to their homopol-
ymer counterparts formed from the same building blocks. The
reason for comparing with homopolymers rather than mono-
mers is two-fold. Firstly, we do not have direct access to the
optoelectronic properties of the isolated building blocks via the
neural network. Secondly, the direct comparison of optoelec-
tronic monomer and copolymer properties is inherently fraught
by the conation of effects due to the electronic coupling
between the different monomers and their polymerisation.

In the absence of a clear rst principles model for this
relationship, we employ two simple empirical models which
explore two different regimes (i) a “max/min” model in which
the �IP and �EA of the copolymer are predicted by the least
negative (shallowest) �IP value and the most negative (deepest)
4978 | Chem. Sci., 2019, 10, 4973–4984
�EA value of the relevant homopolymer pair, and (ii) an
“averaging” model in which the �IP and �EA values are
approximated by the arithmetic mean of the �IP and �EA
values of the homopolymer pair (Fig. 4a).

Fig. 4b shows the performance of these models in terms of
the �IP and �EA value of the copolymers. We observe that the
averaging model performs well in terms of predicting the �IP
and �EA values of the copolymers, with an RMSE of 0.16 eV
overall. The max/min model performs less well (RMSE ¼ 0.38
eV), while appearing to estimate a lower (upper) boundary to the
�EA (�IP) value of a copolymer, reecting the convex hull
analysis in Fig. 2a–c. Additionally, we observe that the average
model shows the largest deviation for copolymers where the
difference between the�IP (or�EA) values of the homopolymer
pair is large (see Fig. S6†), with a general over- and under-
estimation of �EA and �IP, respectively. This is also consis-
tent with the qualitatively curved contour lines shown in Fig. 4c,
where, when the difference between �IP/�EA homopolymer
values is large, the more positive �IP/more negative �EA
homopolymer skews the resulting copolymer property further
from a perfect average value. Conversely, where the difference
between homopolymer values is small, the resulting copolymer
properties are closer to the simple average value. Finally, as can
be seen in Fig. S8† use of the averaging model can also quali-
tatively reproduce the convex hull picture shown in Fig. 2a.
Overall, expressing copolymer properties as a simple average of
‘parent’ homopolymers appears to be an effective model for
most polymers.
This journal is © The Royal Society of Chemistry 2019
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Fig. 4 (a) Illustration of two simple models used to predict copolymer properties from those of its ‘parent’ homopolymers formed of its
constituent monomers. (i) Max/min model (top), where the copolymer is assumed to inherit its �IP (�EA) from the parent homopolymer for
which it is most shallow (deep). (ii) Averagemodel, where the copolymer properties are averages of those of the parent homopolymers (bottom).
(b) Results of applying each of these models to predict �IP and �EA of the copolymer database as 2D histograms (yellow (high) � green (low)
density), where reference values are given by the neural network. (c) Contour plots of copolymer �IP and �EA as a function of parent
homopolymer �IP/�EA. (d) Scatter plots of �IP & �EA values predicted for each model, coloured according to the optical gap values predicted
by the neural network.
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In the literature, the case for copolymerisation is oen
based on the ‘donor–acceptor’ strategy,19,21 where combining
monomers with ‘donor’ and ‘acceptor’ qualities allows one to
obtain copolymers with small(er) optical gaps. Here, we can
use the large volume of data at our disposal to explore this
concept and how it relates to the two empirical models dis-
cussed above. Indeed, the predictions made by the neural
network identify some co-polymers for which the optical gap is
lower than that of the two corresponding homopolymers
(Fig. 5c). Specically, we observe that �17 000 out of �350 000
copolymers studied have an optical gap that is at least 0.12 eV
(the overall RMSE of the neural network) lower than that of the
homopolymers. As can be seen from Fig. 5c, such copolymers
generally correspond to cases where the related homopoly-
mers have signicantly different �IP and/or �EA values, and
almost exclusively for cases where the �IP and �EA values of
the two homopolymers are staggered with respect to one
another (Fig. 5a). Conversely, when the �IP and �EA values of
one homopolymer straddle the other (Fig. 5b), no reduction in
optical gap upon copolymerisation is predicted. Furthermore,
the likelihood of reducing optical gap through copolymerisa-
tion appears to increase with the extent to which the �IP and
This journal is © The Royal Society of Chemistry 2019
�EA values are staggered (Fig. 5d), which we rationalise
through the concomitant decreasing likelihood of this effect
being countered by differences in the exciton binding energy
between homo and copolymers. Overall, accounting for the
overall RMSE of the neural network, we nd that in our dataset
�100 000 out of the �350 000 copolymers are staggered by at
least 0.12 eV, �17 000 of which display an optical gap reduc-
tion of at least 0.12 eV. In contrast, the �IP and �EA values of
the copolymers strictly lie in between those of the two corre-
sponding homopolymers when accounting for the RMSE of the
neural network model.

One can explain the above observations by noting that,
while the averaging model predicts that the fundamental gap
of copolymers always strictly lies in between that of both cor-
responding homopolymers, and while it is very successful for
most copolymers considered, there are copolymers that
deviate considerably from its predictions. Such copolymers, as
discussed above, tend to correspond to cases where the
difference between the �IP (and/or �EA) values of the homo-
polymer pair is large (see Fig. 4c and S5†). In these cases the
fundamental gap tends towards that predicted by the max/min
model. A combination of this with a staggered arrangement of
Chem. Sci., 2019, 10, 4973–4984 | 4979
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Fig. 5 Two situations that arise where monomers have significantly different electronic properties. (a) ‘Staggered’ energy levels, where both the
�IP and�EA values of one homopolymer are greater (or lesser) than those of the other. (b) ‘Straddled’ energy levels, where either the�IP or�EA
values of one homopolymer are greater than those of the other. (c) Plot of whether a copolymer optical gap is less than (red) or greater than
(blue) that of both related homopolymers, as a function of the difference between �IP and �EA homopolymer values. Quadrants related to
‘staggered’ and ‘straddled’ energy levels are highlighted. (d) Fraction of co-polymers within the staggered (red) and straddled (black) arrange-
ments for which the observed optical gap is at least 0.12 eV lower than that of both related homopolymers as a function of the smallest of the
differences between the IP and EA values of the related homopolymers. (e) Cumulative histogram of copolymers for which the optical gap/
fundamental gap is less than that of both related homopolymers. Dashed line indicates overall RMSE of neural network model.
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the �IP and �EA values of the two homopolymers then gives
rise to a fundamental gap that is smaller than either of the
homopolymers (see DEmax/min in Fig. 5a). As can be seen from
Fig. 1a, this explanation translates directly to the case of the
optical gap, as long as the exciton binding energies in the co
and homopolymers are not sufficiently different. As such, the
requirement for a staggered arrangement maps on to the
intuitive donor–acceptor picture used in the experimental
literature, but stresses that these labels are only really mean-
ingful when considering pairs of monomers and their prop-
erties relative to one another.

Overall, these observations and their explanation lend both
context and understanding to the donor–acceptor strategy
proposed in the literature. With knowledge of the optoelec-
tronic properties of homopolymers alone, we can provide
a simple heuristic to predict promising combinations of
monomers, which are likely to result in low optical gap
materials. Specically, for optical gap reduction to likely
occur, not only should the �IP and �EA values of the two
corresponding homopolymers be signicantly different, but
they should also be staggered, along the lines of Fig. 5a. This is
strongly illustrated by Fig. 5d, which shows that for staggered
4980 | Chem. Sci., 2019, 10, 4973–4984
cases with large�IP and�EA differences optical gap reduction
is highly likely, while for straddled cases the odds of optical
gap reduction are effectively zero. The same observation would
also suggest that a likely side effect of reducing the optical gap
is that the �IP and �EA values of the resulting copolymers will
lie closer to those predicted by the max/min model than its
averaging counterpart. As a result, such copolymers will likely
combine relatively shallow�IP and deep�EA values, reducing
their potential applicability in domains such as photo-
catalysis, where the alignment of the polymer potentials rela-
tive to those of other materials or solution half-reactions is
crucial.
Monomer topography of the property space

Aside from the general exploration of copolymer property space
and the testing of models able to describe it, high-throughput
calculations have the potential to guide synthetic efforts
towards promising materials with properties amenable to
certain applications. In the context of copolymers, this could
mean either the identication of specic copolymer composi-
tions or – perhaps more interestingly from synthetic accessi-
bility and material morphology standpoints – monomers (i.e.
This journal is © The Royal Society of Chemistry 2019
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Fig. 6 (a–c) 2D property spaces where the most prevalent monomer units within different regions are highlighted. (d) Colour key for monomer
property sub-spaces shown in (a–c).
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dibromo compounds or diboronic acids/acid esters) – which
target a particular region of property space. To illustrate this, we
give examples of the most prevalent co-monomers in different
regions of the property space (Fig. 6). From this analysis, we see
the emergence of some common motifs found in, for example,
the organic photovoltaics literature (namely, diketopyrrolo-
pyrrole and benzothiadiazole), where smaller optical gaps are
sought aer to absorb more of the solar spectrum. Similarly,
monomers that give rise to materials with deep �IP and not too
deep �EA values, which are potentially attractive for water-
splitting due to their large driving force for both proton
reduction and water oxidation, contain electron-withdrawing
substituents like –F and –NO2 (1,3-linked tetra-
uorophenylene and 1,3-linked nitropyrazole). Additionally,
these same monomers illustrate the idea that, due to the quasi-
two-dimensional nature of the optoelectronic property space,
choosing monomers that place �IP and �EA within a desired
range also xes the possible optical gap values to within the
domain of possible exciton binding energy values. Finally, Fig. 6
also suggests that, for applications in which ohmic contacts
between the polymer and an electrode are important, e.g.
organic photovoltaics and organic light emitting diodes, to
achieve barrierless charge injection or collection, the properties
of the copolymer relative to an electrode can be anchored to
a particular value range by copolymerisation with suitably
chosen monomers.
This journal is © The Royal Society of Chemistry 2019
Conclusions

We have demonstrated that machine learning techniques –

neural networks – can be used to resolve the optoelectronic
property landscape of conjugated organic copolymers with very
diverse monomer compositions. The neural network training is
facilitated by the availability of large amounts of accurate, low-
noise data derived from a tiered strategy based on calibrated
density functional tight binding calculations, which display an
accuracy on par with density functional theory. The property
space generated by the neural network allows for the data-
driven testing of simple models that link the properties of the
constituent monomers of a copolymer to the properties of the
copolymer itself. We observe that copolymerisation to make
binary copolymers does not appear to allow access to regions of
the optoelectronic property space not already sampled by the
homopolymers, while allowing for more ne-grained property
control. The large dataset at our disposal also facilitates the
testing of common synthetic strategies such as using ‘donor’
and ‘acceptor’ monomers to construct low-optical-gap mate-
rials. Generally, despite the prevalence of this concept in the
literature, we observe that this phenomenon is relatively rare.
We predict that for a copolymer to have a signicantly smaller
optical gap than its related homopolymers, the potentials of
these should be substantially offset and arranged in a staggered
fashion. From here, one can imagine an application-specic,
Chem. Sci., 2019, 10, 4973–4984 | 4981
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optimal balance between absolute value of the homopolymer
potentials themselves and the extent to which they are stag-
gered relative to one another that achieves ideal copolymer light
absorption and redox properties. Additionally, we demonstrate
that high-throughput methods could be used to identify
promising monomers which target specic regions of property
space.
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