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1 Introduction

Shape oscillations of particle-coated bubbles and
directional particle expulsiont

Vincent Poulichet, Axel Huerre and Valeria Garbin*

Bubbles stabilised by colloidal particles can find applications in advanced materials, catalysis and drug
delivery. For applications in controlled release, it is desirable to remove the particles from the interface
in a programmable fashion. We have previously shown that ultrasound waves excite volumetric
oscillations of particle-coated bubbles, resulting in precisely timed particle expulsion due to interface
compression on a ultrafast timescale [Poulichet et al., Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 5932]. We
also observed shape oscillations, which were found to drive directional particle expulsion from the
antinodes of the non-spherical deformation. In this paper we investigate the mechanisms leading to
directional particle expulsion during shape oscillations of particle-coated bubbles driven by ultrasound at
40 kHz. We perform high-speed visualisation of the interface shape and of the particle distribution
during ultrafast deformation at a rate of up to 10 s™%. The mode of shape oscillations is found to not
depend on the bubble size, in contrast with what has been reported for uncoated bubbles. A decom-
position of the non-spherical shape in spatial Fourier modes reveals that the interplay of different modes
determines the locations of particle expulsion. The n-fold symmetry of the dominant mode does not
always lead to desorption from all 2n antinodes, but only those where there is favourable alignment with
the sub-dominant modes. Desorption from the antinodes of the shape oscillations is due to different,
concurrent mechanisms. The radial acceleration of the interface at the antinodes can be up to 10°-10° ms 2,
hence there is a contribution from the inertia of the particles localised at the antinodes. In addition, we found
that particles migrate to the antinodes of the shape oscillation, thereby enhancing the contribution from the
surface pressure in the monolayer.

Particle-stabilised bubbles, or armoured bubbles, present new
opportunities in controlled release for medical applications, and

Solid particles adsorbing at fluid—fluid interfaces are widely
exploited to stabilise emulsions and foams."* Because the energy
cost of removing a colloidal particle from a fluid-fluid interface
can be up to millions of times the thermal energy for micron-
sized particles,® adsorption can be considered to be irreversible.
The outstanding stability of colloidal particles at fluid interfaces
has enabled the development of a range of novel materials, such
as colloidosomes,* armoured bubbles,” bijels,’® bijel particles,’
and capillary foams,'® which exhibit complex structures and
exceptional mechanical properties.'" Alongside these emerging
applications, recent advancements include fundamental studies
of colloidal interactions at interfaces,'®'* and of the structure
and mechanics of colloid monolayers. Furthermore, newly
developed theoretical models'® and numerical simulation
methods"” are providing new insights into the dynamics of
particle-laden interfaces.
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in functional materials.'® For applications in controlled release,
it is desirable that the coating of particles be forced to desorb in
a programmable fashion when an external stimulus is applied.
Particle desorption can be triggered by addition of surfact-
ants,">*° by changing the pH or electrolyte concentration,*** by
magnetic or gravitational forces,>*** or by interface compres-
*>27 One of the most common triggers for drug delivery
applications is ultrasound.”® We have recently shown that
ultrasound waves can drive particle-coated bubbles into highly
dynamic deformation, triggering particle desorption by inter-
face compression on a ultrafast timescale.*® This method holds
promise for controlled release since desorption is programmable
in time, the payload of particles can be released in under a
millisecond, and physicochemical modification of the particles
or the fluids is not required.

During ultrasonic driving, bubbles undergo volumetric
oscillations, and above a certain threshold in acoustic pressure,
shape oscillations can develop.”® In our previous work we have
shown that particle-coated bubbles also exhibit both these
behaviours, and that both scenarios lead to particle expulsion.?®

sion.
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When a bubble remains spherical during volumetric oscilla-
tions, particle expulsion is primarily due to the decrease in area
during the compression phase, which results in a sufficiently
large surface pressure within the particle monolayer to over-
come the desorption energy.>®> When a bubble undergoes shape
oscillations, we found that desorption is strongly localised at
the antinodes of the shape oscillation, that is, the points where
the amplitude of the radial excursion is a maximum.?® In this
case, additional mechanisms can promote desorption. Due to
the high frequency of ultrasonic driving (10-100 kHz) the radial
velocity, R, and acceleration, R, of the interface are very large,
of the order of 1 ms™" and 10> ms™” respectively, and can
influence particle desorption. In this paper, we investigate the
conditions for the occurrence of shape oscillations of particle-
coated bubbles, and the mechanisms of directional particle
desorption.

2 Dynamics of uncoated and coated
bubbles in ultrasound
2.1 Spherical oscillations

The pressure fluctuations created by an ultrasound wave,
p(t) = pasin(wt), with p, the acoustic pressure amplitude and
o the angular frequency, cause gas bubbles to periodically com-
press and expand. For volumetric oscillations of sufficiently
small amplitude, uncoated bubbles remain spherical and the
interface undergoes pure dilation. A bubble in ultrasound can
be thought of as a forced harmonic oscillator, with a mass
associated to the inertia of the liquid, and a restoring force
associated to the compressed gas.>* The amplitude of radial
oscillations increases with the forcing amplitude, p,, and is a
maximum for a resonance frequency, w,, that is inversely
1 3Kp()

proportional to the size of the bubble,*" wy = =
0

R, is the resting radius, k the polytropic exponent, p, the
ambient pressure, p the density of the liquid, and surface tension
effects have been neglected.

The effect of surface coatings on bubble dynamics in ultra-
sound has been studied primarily for the case of lipid-coated
bubbles.>***> With a surface coating present, the surface ten-
sion of the interface changes as the surface concentration of the
adsorbed species oscillates during compression-expansion.
The resonance frequency of a coated bubble depends both on
the surface tension and on the elasticity of the surface coating,
that is, the rate of change of surface tension with changing
area.’” For particle-coated bubbles, it is possible to relate the
effective surface tension, y = y, — II, where y, is the surface
tension of the bare interface, and II the surface pressure of
the particle monolayer, to the surface coverage by particles,

2
¢ =N%, provided that the particles can be visualised by

, where

optical microscopy.*® Here N is the number of particles in the
monolayer, a the particle radius, and A the total surface area of
the monolayer. The surface pressure I1(¢) can be measured for
instance using a Langmuir trough.*®
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2.2 Shape oscillations

If an initially small perturbation of the spherical shape grows in
amplitude during periodic compression-expansion through a
parametric instability, the bubble undergoes shape oscillations.*
Shape oscillations cause non-uniform dilation of the interface,
as well as shear and bending.>””*® Parametric instability occurs
for a driving frequency o = 2wy, with w, the resonance frequency
of a spherical harmonic distortion of order n (n > 1), given by:*°

;=

, (m=D@m+1)(n+2)y (1)

pRo? '
The threshold in acoustic forcing for the onset of shape oscilla-
tions depends on the acoustic frequency, and is a minimum when
the bubble is driven close to the resonance frequency for volu-
metric oscillations,>® w,. As a result of the condition for parametric
instability, shape oscillations forced at a frequency w exhibit
subharmonic behaviour, that is, they exhibit periodic behaviour
with frequency w, = w/2. Experiments on uncoated bubbles show
mode selectivity depending on the bubble radius, R,, consistent
with eqn (1), and subharmonic behaviour. Shape oscillations of
lipid-coated bubbles have been found to also exhibit subharmonic
behaviour, but in contrast to uncoated bubbles, mode selectivity
was not observed.** Modifications of eqn (1) have been recently
proposed, to take into account the effects of shear and bending
elasticity’” and shear viscosity.*®

3 Materials and methods
3.1 Particle-coated bubbles

Particle-coated bubbles were made using charge-stabilised latex
particles (ThermoFisher Scientific, Molecular Probes™) of 500 nm
diameter. The particles were used as received. To promote adsorp-
tion to the water-air interface, the particles were suspended in an
aqueous solution of 500 mM NaCl (VWR Chemicals, AnalaR
NORMAPUR, 99.5%). Bubbles were made by mechanical agitation
of a 0.4% w/v suspension using a vortex mixer. Ultrapure water
with resistivity 18.2 MQ cm (Milli-Q system, Millipore) was used to
prepare all solutions.

3.2 Experimental setup

An observation chamber for optical microscopy was made of a
glass slide and a glass coverslip separated by a 2 mm PDMS
spacer. All the components of the observation chamber were
cleaned using ethanol and rinsed using ultra pure water prior to
each experiment. The chamber was placed on an inverted micro-
scope (IX71, Olympus) equipped with 10x and 20x objectives.
Ultrasound waves were excited in the observation chamber by a
single-element piezoelectric transducer with resonance frequency
45 + 3 kHz (SMD50T21F45R, Steminc) glued to the glass slide.
The driving signal was generated by a waveform generator
(332204, Agilent) and amplified by a linear, radio-frequency power
amplifier (AG1021, T&C Power Conversion Inc.). The dynamics of
deformation were recorded at 300 000 frames per second using a
high speed camera (Fastcam SA5, Photron). The image resolution
at 10x and 20x magnification is 2 pm and 1 um, respectively.

This journal is © The Royal Society of Chemistry 2017
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The bubbles were driven for 20 or 40 cycles at a frequency of
40 kHz and a pressure in the range 100-500 kPa, as measured
with a hydrophone (RP Acoustics, PVDF RP 33 s). Bubbles with
radii ranging from 40 pm to 100 um can be driven into shape
oscillation with these parameters. Since the wavelength of
ultrasound at 40 kHz in water is 2 =& 3.75 cm, the pressure
can be considered to be uniform over distances of the order of
the bubble size.

3.3 Image analysis

We assume that the bubble shape has an axis of symmetry,
so that each surface mode is characterised by a single integer n,
corresponding to the number of undulations along the bubble
contour. We exclude any experiments in which the shape can
be seen to deviate from axial symmetry. To characterise the
shape oscillations, the bubble’s contour is tracked using image
analysis routines in Matlab (MathWorks, Natick, MA, USA).
A black and white threshold is applied to the image using the
function im2bw with a threshold value defined by the function
graythresh. The edge of the bubble is then tracked using the
function bwboundary, and the boundary-pixels locations are
saved. The centroid of the bubble is also extracted to calculate
the distance between the boundary and the centroid. A polar
coordinate system (r,0) is defined, with origin at the center
of mass of the bubble. The radial amplitude is obtained from
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contour tracking for each frame, and cast in polar coordinates
as R = R(0,t). The radial excursion relative to the resting radius
R, is defined as AR(6,t) = R(6,t) — Ro. The mean bubble radius
during shape oscillations is defined as

1 P21

R(t) = >

= R(0,1)do),

(2)
which is a measure of the volumetric oscillations of the bubble.
The radial deviation from the mean radius, 8R(6,t) = R(0,t) — R(?),
measures the deviation from spherical shape. The raw data are
smoothed using Matlab’s smooth function set to rloess method
with a span of 5% in order to remove artefacts due to pixelisa-
tion. The pixel size limits the resolution to modes with n < 20.
The deviation from spherical shape, 3R(6,t), is then decomposed
into spatial Fourier modes:

o0

SR(0,1) =Y 3R, (0,1).

n=2

(3)

The summation starts from n = 2 because n = 0, 1 do not
represent deviations from spherical shape (n = 0 is the spherical
mode, and n = 1 represents a translation of the centre of mass).
The contribution from each mode, 8R,(0,t), is characterised by
an amplitude A,(¢t) and a phase o,(t):

SR,(6,t) = A,(t) cos[n(0 + o,(2))]- (4)

(a) “S’ T T=1/ (c)
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Fig. 1 Shape oscillations of particle-coated bubbles and directional particle expulsion. (a) A particle-coated bubble undergoing shape oscillations with
mode n = 5. The period of the ultrasonic driving is T = 1/f; the period of the shape oscillation is 2T, corresponding to a frequency f/2. (b) Examples of
shape oscillations of particle-coated bubbles with different modes n observed in experiment. Rg is the resting radius of the bubble. (c) Mode number n
versus resting radius Rg. The experimental data (circles) show that the system does not exhibit mode selectivity. The solid line is the theoretical prediction
from eqgn (1) for an uncoated bubble. The shaded area is the prediction from egn (1) for the typical range of surface tension of particle-coated bubbles.
(d) Growth of shape oscillations (n = 4) during driving by ultrasound, followed by directional particle desorption from 2 of the 8 antinodes. (e) Another

example of directional particle desorption driven by shape oscillations with

This journal is © The Royal Society of Chemistry 2017

n =5 (see ESI, ¥ Movie S1). All scale bars: 80 um.
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The decomposition of dR(0,t) into spatial Fourier modes fully
characterises the deviation from spherical shape and the temporal
evolution of the bubble shape.

4 Results and discussion

4.1 Shape oscillations of particle-coated bubbles and
directional particle expulsion

Fig. 1a shows an example of shape oscillations of a particle-
coated bubble. The bubble is excited at a frequency f= 40 kHz.
The dominant mode is n = 5. The acoustic pressure oscillates
in time with period T = 1/f. As can be seen from the image
sequence in Fig. 1a, the period of the shape oscillations is 2T.
The observed subharmonic behaviour (with frequency f/2) is
characteristic of shape oscillations both for uncoated*® and
lipid-coated bubbles.?** Fig. 1b shows different modes of shape
oscillations, with n = 2 to n = 7, that are observed in experiment
for different bubbles driven at a frequency /= 40 kHz. In Fig. 1c we
report the observed mode number 7 as a function of the initial
bubble radius R, (circles) at a fixed frequency f = 40 kHz. In the
range of bubble sizes used in our experiments, R, & 40-100 pm,
surface modes with n = 2 to n = 8 are observed, with no apparent
dependence on the bubble size. The predicted dependence
of mode number on resting radius for an uncoated bubble,

(@
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computed from eqn (1) with y = 72 mN m™', is shown for
reference (solid line). The shaded area corresponds to the
typical range of values of surface tension for a particle-laden
interface,® y ~ 30-50 mN m™*. The large scatter in the experi-
mental data is not captured by the models including the rheo-
logical properties of the monolayer.>”*® The effect of the vicinity
of the wall is to decrease the resonance frequency relative
to eqn (1)*° but this also does not explain the scatter in the
experimental data. Variability in properties of the coating, for
instance differences in the initial surface coverage, is a possible
reason why mode selectivity is suppressed, as observed for lipid-
coated bubbles.>* Other possible mechanisms include plastic
behaviour of the coating or non-continuum effects, due to the
extremely large strain rates applied (10* s77).

Shape oscillations direct particle expulsion from the anti-
nodes, as we reported previously.>® While the observed pattern
of particle expulsion typically follows the symmetry of the non-
spherical mode, in general it does not have an exact 2n-fold
symmetry. In many cases, desorption preferentially occurs
only from some of the antinodes, as shown in Fig. 1d and e.
In Fig. 1d, the bubble undergoes shape oscillations with n = 4,
and plumes of particles are expelled predominantly from two
of the antinodes, indicated by the arrows. In Fig. 1e, shape
oscillations with n = 5 promote the expulsion of a single plume
of particles (indicated by the arrow) from one of the antinodes
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Fig. 2 Mode decomposition of shape oscillations. (a) Image analysis gives the bubble contour and centre of mass, from which the radial amplitude R(0,t)
is obtained (left). The mean radius R(t) is computed from eqgn (2) (right). Scale bar: 80 um. (b) Deviation from spherical shape, 8R(0) = R(0) — R, for the frame
shown. (c) Fourier decomposition of 8R(0), where 3R,(0) is the contribution of mode n, for the first 8 modes. (d) Deviation from spherical shape
reconstructed from the sum of the first 8 modes only. (e) Maximum amplitude of the first 10 modes, showing that the three dominant modesaren =5, 6, 7.
(f) Time evolution of the mean radius R(t). The mean radius oscillates with period T = 1/f. (g) Time evolution of the amplitude of modes n = 5, 6, 7. Every
second peak corresponds to the same bubble shape, consistent with subharmonic behaviour with period 2T (frequency f/2).
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(see ESI, 1 Movie S1). The antinodes are the locations where the
radial excursion, AR, and therefore the radial velocity, R ~ ARw,
and the radial acceleration of the interface, R ~ ARw? are a
maximum. The rate of change of area is also a maximum at the
antinodes. The mechanisms that govern particle desorption from
the antinodes will be discussed in Section 4.4. We first analyse
the selectivity of desorption from certain antinodes by performing
a mode decomposition of the bubble shape.

4.2 Mode decomposition of shape oscillations

Fig. 2a shows a bubble undergoing shape oscillations with a
dominant n = 6 mode. The bubble’s contour obtained from
image analysis, overlaid on the image in Fig. 2a, gives the radial
amplitude as a function of the angular coordinate, R(f). The
mean radius for the same representative frame, R, is also shown.
The corresponding radial deviation from spherical shape,
3R(0) = R(0) — R, is plotted in Fig. 2b. The Fourier transform
of 3R(0) reveals the contribution of different spatial modes. The
amplitudes of the first 8 modes, R,(0) with n = 2-8, are shown in
Fig. 2c. While n = 6 is clearly the dominant mode, the amplitudes
of other modes are non-negligible, particularly n = 5 and 7.
Fig. 2d shows the reconstructed radial deviation, dRg,m, obtained
by taking the sum of the first 8 modes. The reconstructed signal
satisfactorily reproduces the experimental data, indicating that
modes of higher order can be safely neglected. The Fourier
analysis is performed on the entire image sequence to obtain
the time-dependent amplitude of each mode, 6R,(0,t). The maxi-
mum amplitude in time for each mode, 4, max = max[4,(t)], with
A,(t) defined in eqn (4), is shown in Fig. 2e. We focus on the three
modes with the largest amplitudes, n = 5, 6, and 7, for the
analysis of the time-dependent behaviour. Fig. 2f shows the time
evolution of the mean radius, R(¢). The mean radius oscillates
in time as the bubble undergoes volumetric oscillations driven
by the ultrasound wave. The oscillations are at the frequency of
the acoustic driving, f= 40 kHz, which corresponds to a period
T = 1/f = 25 ps. The observation that the oscillations are not
around a constant value of the mean radius is likely due to an
experimental artefact: since the bubble is not surrounded by an
unbounded fluid, but is in contact with the solid wall of the
sample cell, during oscillations it flattens against the wall. As a
consequence, the projection of the shape in the observation
plane is no longer representative of the bubble volume. Fig. 2g
shows the time evolution of the mode amplitude, 4,, for n =5, 6,
and 7. The three modes develop at ¢ ~ 0.3 ms. All the modes
exhibit subharmonic behaviour, as they oscillate with a period 27,
as expected.

4.3 Temporal evolution of non-spherical modes

We perform a mode decomposition for the experiment shown
in Fig. 1d, to reveal the role of the interplay of different modes
in determining the pattern of particle expulsion. Fig. 3a shows
the temporal evolution of the maximum deviation from spherical
shape, 8R.x(f), defined as the maximum with respect to 0 of
SR(0,t) (see Fig. 2b). The maximum deviation from spherical
shape increases during ultrasonic driving, until it reaches a
maximum in time. It then decays after the driving stops at ¢ =1 ms.

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 (a) Time evolution of the maximum deviation from spherical shape.
The shaded area corresponds to the desorption event and the dashed line
corresponds to the end of the ultrasound driving. (b) Time evolution of the
maximum interface curvature. The horizontal dashed line represents the
curvature of the bubble at rest. (c) Time evolution of the amplitude of
the three main modes, n = 2, 4 and 8. The three modes exhibit different
frequencies, indicating that the dynamics are non-linear.

The time at which desorption occurs, t*, is represented by
the shaded area. Desorption occurs just before 6Ry,,x reaches
its maximum in time. From the bubble contour, R(6,t), we
compute the local interface curvature «(6,t), defined as
R*+2Ry* — RRyp
k(0,1) = — 53
(R* + Ro?)
partial derivative with respect to . We take the maximum with
respect to 0 to obtain ky.x(¢). Fig. 3b shows the evolution of
Kmax aS a function of time. The horizontal dashed line shows
the initial curvature of the interface, corresponding to the
resting radius R,. Desorption, marked by the shaded area at
time t*, occurs when the interface curvature is also a maximum.
To explain the occurrence of desorption only from certain
antinodes, we now analyse the contributions of different modes.
Fourier analysis reveals that, in addition to the clearly visible
mode n = 4 (see Fig. 1d), modes n = 2 and n = 8 also have
significant amplitude. Fig. 3c shows the temporal evolution of
the mode amplitude 4,, for n = 2, 4 and 8. Mode n = 8 develops
first, with a frequency wg = wo. Modes n = 2 and n = 4 develop
from ¢ ~ 0.4 ms, with frequencies w,; = wy/2 and w, = we/4.

, where the subscript 0 denotes the

Soft Matter, 2017, 13, 125-133 | 129
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These behaviours indicate that the regime of shape oscillations
is in this case non-linear, in keeping with the fact that the
amplitude of deviation from spherical shape is larger than for
the experiment of Fig. 2g. Sub-harmonic and harmonic mode
coupling have been reported for acoustically driven bubbles in
the non-linear regime, with resonant energy transfer typically
from higher- to lower-order modes.*" The amplitude of all three
modes is a maximum at, or near, the time when desorption
occurs, t = t*. The presence of different modes partly explains
why the desorption pattern does not simply follow the symmetry
of the dominant mode, n = 4.

To understand how the interplay of the three modes leads to the
desorption pattern shown in Fig. 1d, we examine their spatial
alignment. Fig. 4a shows the contours of the three modes n = 2,
4 and 8 at time ¢ = 0.83 ms, overlaid on the image of the overall
bubble shape. The phase differences A, 4 and A, g are also shown,

Fig. 4

View Article Online

Soft Matter

where we have defined the time-dependent phase difference
between modes p and g as Aoy, ((t) = «,(t) — o,(t). In Fig. 4b we plot
each of the modes 3R,(6), with n = 2, 4 and 8, for different times.
The amplitude of mode 2 increases monotonically in time, and the
phase of the mode changes, that is, the mode drifts along the inter-
face. For modes 4 and 8, the amplitude changes non-monotonically
in time, and the phase does not change significantly. Because the
modes under consideration are second harmonics of each
other (p = n, g = 2n) a condition for the phase difference that
gives alignment of the antinodes (mod 2n) can be obtained:

T
A‘xn,Zn =0y — Up = k%v (5)
with k=0, +1, £2, .. .,2n. Of the 4n possible configurations that

give alignment of antinodes, 2n correspond to alignment of
maxima, and 27 to alignment of minima.

()
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(a) Contours of modes n = 2, 4 and 8 overlaid on the overall bubble shape. Av, 4 and Aay g are the phase differences between the modes. Scale

bar: 80 um. (b) Time evolution of the three modes. Different times correspond to different colour (see colorbar). (c) Time evolution of the phase
difference between modes 4 and 8, Avy4g. The two modes align with their antinodes in phase. The shaded area corresponds to the time of desorption.
(d) Time evolution of the phase difference between modes 2 and 4, Aa, 4. The phase difference behaves erratically in time, but the two modes are aligned
at the time of desorption (shaded area). (e) Superposition of modes n = 2, 4 and 8 at the time of desorption. The shaded areas mark the locations of the
two desorption plumes, which are found to correspond to the locations of maximum deviation from spherical shape.
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The temporal evolution of Aa, 4 and Ao, g is shown in Fig. 4c
and d. The two phase differences change rapidly during the initial
0.4 ms, as modes 2 and 4 are still developing. After ¢ ~ 0.4 ms,
modes 2, 4 and 8 are all present. For modes 4 and 8, the phase

. i . .
difference A, g takes the values 0, vt corresponding to align-

. n . . -
ment of maxima, and ig, corresponding to alignment of minima,

as shown in the schematic in Fig. 4c. The modes are aligned with
their antinodes in phase. For modes 2 and 4, the phase difference
A, 4 exhibits a more erratic behaviour. Alignment is observed for

(0 . . ..
Aoy g = ot corresponding to alignment of minima, whereas

there are large fluctuations around Aa,, = 0 corresponding to
alignment of maxima (see the two configurations in the schematic
in Fig. 4d). At the time where desorption occurs, ¢*, marked by the
shaded area, modes 2 and 4 temporarily align also at Aa, 4 = 0. At
this time, where the antinodes of all three modes are aligned, the
sum OR, + 8R, + dRg shows two maxima at the angular locations,
0* and 0**, where the two main desorption plumes are observed.
Mode 4 contributes the most to the deviation from spherical
shape, and reaches an amplitude of almost 10 pm at desorption
(see Fig. 3c). Mode 2, whose amplitude is 4 um at ¢ = ¢*, imposes
the selectivity on two of the antinodes.

4.4 Mechanisms of directional particle desorption

The forces that can contribute to promoting desorption in this
system are the inertia of the particles, viscous drag on the
particles, and the contact forces between neighbouring particles.
When the component normal to the interface of the net force on
a particle exceeds the capillary force holding the particle at the
interface, the particle is expelled. As the three forces reach their
maximum value during different stages of the shape oscillation,
we now examine their temporal evolution and relative magni-
tude. We can write the local amplitude of the radial excursion
at an antinode, AR,(t), as AR,(t) ~ ARnaxsin(wt). Recall that
AR(0,t) = [R(f) — Ro] + 8R(0,t). The interface velocity at the
antinode is then R, ~ AR, cos(wt), and the acceleration
R, ~ —ARp,»”sin(wt). The viscous drag on a particle at an
antinode, Fqy ~ —nak,, is directed outwards when the interface is
retracting, and its magnitude is a maximum when the interface is
going through the mean radius R. The net inertial force on a
particle, F; ~ Apa’R,, is in anti-phase with the radial excursion
amplitude. This force is directed outwards and has maximum

. . Lo - n
magnitude when the radial excursion is a minimum. Due to the 3

phase difference between R, and R,, the inertia of a particle is zero
when the viscous drag is a maximum, and vice versa. The magni-
tudes of the two forces can be compared with the capillary force,
F. ~ 70a, resulting in two non-dimensional numbers: the Weber
number, We, based on the acceleration of the interface, and the
capillary number, Ca, based on the viscous drag force on a particle:

_ Apd®R?

nR
We = =
¢ YoAR ’

o
0

Ca (6)

where we have used the fact that F; ~ Apa®ARpa0® =
Ap@®R.>/AR oy Fig. 5 reports the phase diagram for particle
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Fig. 5 Phase diagram for directed particle desorption driven by shape
oscillations. The Weber number, We, and the capillary number, Ca, compare
respectively the inertial and viscous force on a particle with the capillary
force holding the particle at the interface. The diamonds correspond to
experiments where desorption is not observed, the squares to desorption
events. The scale bars in the insets are 80 um.

desorption in the (We, Ca) plane, with We and Ca calculated
from the maximum values of AR, and R, for each experiment.
The observed qualitative trend is that there is a minimum
threshold in Ca and We for desorption to occur, but the transi-
tion is not sharp, possibly due to the variability in initial surface
coverage. Furthermore, the values of Ca and We are both much
smaller than 1 even when particle desorption is observed. Particle
desorption under the effect of gravity has been previously
reported to occur despite the Bond number, which compares
gravitational forces with surface tension forces, being low.>*
This phenomenon was ascribed to the collective effect due to
the surrounding particles in the monolayer, and is consistent
with desorption from points of high curvature, as observed also
in our experiments.”® While the inertia of one particle is not
sufficient to promote desorption, the sum of the inertial forces
on all the particles in the monolayer acting on the particle at
the point of maximum curvature causes desorption. In other
words, for desorption to occur, the number of particles at the
antinode, N should be such that NWe > 1. From Fig. 5 we see
that the number of particles participating in the collective effect
should be N ~ 10*-10°. For 500 nm particles on an antinode
with radius of curvature 40 pm (corresponding to the maximum
curvature in Fig. 3b), at a surface coverage ¢ =~ 0.5, we get
N ~ 25 x 10* consistent with the requirement for desorption.
For the viscous drag, it is expected that hydrodynamic inter-
actions between particles would result in an effectively higher
drag force, but we cannot provide a simple estimate of collective
effects in this case. We also expect an enhanced viscous dissipa-
tion due to the high-frequency oscillatory motion of the particles,
which causes unsteady viscous effects.”” The correction to the

quasi-steady drag scales as g, where ¢ = \ﬁzz um is the
)

diffusive length, with v = 107° m*> s™" the kinematic viscosity of
water. For particles with radius @ = 0.5-2 um the correction
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Fig. 6 Migration of particles to the antinodes of shape oscillations. (a) Image sequence of a bubble undergoing shape oscillations (n = 4). Over 20 cycles
of oscillations the particles accumulate at one of the antinodes (see ESI,T Movie S2). Scale bar: 40 pm. (b) Particle tracking shows the net increase in
surface coverage ¢ at an antinode (n = 5) over several periods of oscillation. The time axis is normalised by the period of the ultrasound driving, T. The
frames in the image sequence correspond to the filled symbols in the graph. Scale bar: 50 pm.

ranges from a factor of 1.1 to a factor of 2 of the quasi-steady
drag. On the other hand, since the particle is only partially
immersed in the liquid, the quasi-steady drag could be decreased
by a factor of the same order of this correction. We therefore did
not attempt to evaluate the viscous forces more accurately. From
visual estimation of the timing of particle expulsion relative to
the expansion/retraction dynamics of the antinode, we tentatively
exclude viscous drag as a dominant mechanism, because particles
do not seem to be expelled at the time when the viscous drag is
expected to be a maximum.

The third force that contributes to particle expulsion is due
to the tangential stress, or surface pressure, I1. The tangential
stress results in a non-zero normal component of the force on a
particle when the interface is curved. The normal component
increases with increasing curvature of the interface,” consistent
with the observation that desorption occurs when the curvature
is a maximum (see Fig. 3b). The surface pressure I1 depends
on the surface coverage by particles, which is expected to be
non-uniform over the surface of a bubble undergoing shape
oscillations, since the rate of change of area is non-uniform.
We performed high-magnification visualisations of the particle
distribution at an antinode using larger particles (4 pm or 5 pm
diameter). The bubble shown in Fig. 6a has a resting radius
Ry ~ 60 um and exhibits shape oscillations with a dominant
mode n = 4 at f = 43 kHz. Over 20 cycles of shape oscillations,
the particles initially located at the centre are seen to migrate to
one of the antinodes (see ESI, T Movie S2). In Fig. 6b we report the
surface coverage ¢ at an antinode as a function of the number of
periods of oscillations for a bubble with radius Ry & 110 pm
undergoing shape oscillations with mode n = 5 at f= 23 kHz. The
frames in the image sequence correspond to the solid symbols in
the graph. The local surface coverage at the antinode increases
from ¢ =~ 0.2 to ¢ ~ 0.6 due to particle migration. The
migration of particles to the antinodes further contributes to
localising desorption, since the surface pressure IT is larger due
to the local increase in surface coverage, and its effect on

132 | Soft Matter, 2017, 13, 125133

desorption is amplified by the larger curvature at these loca-
tions. The mechanism causing migration of particles to the
antinodes remains unclear at this stage, and is the subject of
current investigation. A possible mechanism is capillary inter-
actions: the particles generate a deformation of the interface
due to roughness of the contact line,** which interacts with the
curvature gradient at the antinodes.**

5 Conclusions

We have studied the desorption of colloids from the interface of
particle-coated bubbles undergoing shape oscillations during
ultrasonic driving. We investigated whether the shape oscilla-
tions of particle-coated bubbles exhibit mode selectivity, that is,
if different mode numbers are observed for bubbles of different
sizes. Selectivity is not observed, in contrast with uncoated
bubbles, but in agreement with observations for lipid-coated
bubbles. Desorption of colloids from the interface is directional
and localised at the antinodes of the shape oscillations. The
antinodes are the locations where the radial acceleration of the
interface, the interface curvature, and the rate of change of area
have their maximum value. Desorption typically occurs only
from a subset of the 2n antinodes of a bubble undergoing shape
oscillations with mode n. Decomposition of the bubble shape
into spatial Fourier modes reveals the occurrence of different
modes in addition to the dominant mode that is clearly visible
with the naked eye. The interplay of modes of different order
results in preferential desorption from the antinodes where the
modes are in phase. Several mechanisms are likely to promote
particle desorption from the antinodes. Firstly, the inertia of
the particles can drive desorption through a collective effect at
the points of high curvature, the so-called “keystone” effect.>*
Secondly, the surface pressure is a maximum at the antinodes,
where the rate of change of area is a maximum. In this case, the
particles are pushed out of the interface because of the excluded
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volume constraint (the particles cannot overlap). In addition, our
experiments revealed migration of particles to the antinodes
during shape oscillations. As a result, the accumulation of
particles at the antinodes further enhances the contribution
of the surface pressure in driving desorption. Our results on
controlled desorption of colloidal particles from ultrasound-
driven bubbles may find applications in drug delivery, catalysis,
and sonochemistry.
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