Issue 16, 2021

Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction

Abstract

Layered double hydroxide (LDH) is a ‘sandwich’-like two-dimensional clay material that has been systematically investigated for biomedical application in the past two decades. LDH is an alum-similar adjuvant, which has a well-defined layered crystal structure and exhibits high adjuvanticity. The unique structure of LDH includes positively charged layers composed of divalent and trivalent cations and anion-exchangeable interlayer galleries. Among the many variants of LDH, MgAl-LDH (the cationic ions are Mg2+ and Al3+) has the highest affinity to antigens, bioadjuvants and drug molecules, and exhibits superior biosafety. Past research studies indicate that MgAl-LDH can simultaneously load antigens, bioadjuvants and molecular drugs to amplify the strength of immune responses, and induce broad-spectrum immune responses. Moreover, the size and dispersity of MgAl-LDH in biological environments can be well controlled to actively deliver antigens to the immune system, realizing the rapid induction and maintenance of durable immune responses. Furthermore, the functionalization of MgAl-LDH nanoadjuvants enables it to capture antigens in situ and induce personalized immune responses, thereby more effectively overcoming complex diseases. In this review, we comprehensively summarize the development and application of MgAl-LDH nanoparticles as a vaccine adjuvant, demonstrating that MgAl-LDH is the most potential adjuvant for clinical application.

Graphical abstract: Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction

Article information

Article type
Minireview
Submitted
09 Feb 2021
Accepted
31 Mar 2021
First published
01 Apr 2021

Nanoscale, 2021,13, 7533-7549

Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction

L. Zhang, J. Hu, Y. Jia, R. Liu, T. Cai and Z. P. Xu, Nanoscale, 2021, 13, 7533 DOI: 10.1039/D1NR00881A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements