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Abstract: Encapsulation of cells inside microfluidic droplets is central to several applications involving 
cellular analysis. Although, theoretically the encapsulation statistics are expected to follow Poisson 
distribution, experimentally this may not be achieved due to lack of full control of the experimental 
variables and conditions. Therefore, there is a need to automatically detect droplets and enumerate cell 
counts within droplets so that this can be used as process control feedback to adjust experimental conditions. 
In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential 
class of object detectors with several benefits over traditional methods. This paper investigates the 
application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet 
and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed 
phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet 
generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a 
droplet bounding box is predicted, then cropped from the original image for the individual cells to be 
detected through a separate model for further examination. The system includes a production set for 
additional performance analysis with Poisson statistics while providing an experimental workflow with 
both droplet and cell models. The training set is collected and preprocessed before labeling and applying 
image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a 
validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate 
droplet detector. To examine model limitations, the predictions were compared to ground truth labels, 
illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is 
demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and 
the Poisson distribution, confirming that the platform can be used in real-time experiments for cell 
encapsulation optimization.
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1. Introduction

Droplet microfluidics often involve encapsulation of cells and beads in individual drops of volumes 
ranging from nanoliters to picoliters [1, 2]. This approach is unique as thousands to millions of droplets can 
be generated with encapsulated objects using microfluidic flow-focusing devices [3, 4]. Such an approach 
has opened a wide array of applications ranging from cell culture models [5] to emulsion PCR [6] to single-
cell studies [7]. One influential technology that utilizes this is Drop-seq, capable of analyzing mRNA 
transcripts from thousands of individual cells (e.g., mouse retinal cells) by encapsulating individual 
barcoding beads inside the droplets [8]. Other critical applications using customized generators to analyze 
specific components of biological cells include genomic, epigenomic, transcriptomic, and proteomic studies 
[9-13]. The success of these applications relies on robust and reproducible encapsulation of a defined 
number of cells or beads, indicating the need for techniques to detect, monitor, and control encapsulation, 
preferably in real-time.

Studies show that encapsulation statistics of objects in microfluidic droplets follow a Poisson 
distribution, i.e., to minimize the number droplets containing two or more objects a maximum of 10% would 
contain only one object [1, 14]. Clearly, such a theoretical single-object encapsulation rate, with a lambda 
value of 0.1, is inefficient leaving 90% of droplets containing no objects. In result, strategies to sort droplets 
have been implemented to address this limitation [15]. The encapsulation efficiency can further suffer from 
additional experimental issues such as cell sedimentation, aggregation, or clogging during the experiment 
necessitating significant operator supervision to ensure high efficiency encapsulation. One approach to 
ensure Poisson statistics and address these experimental issues associated with a long operation time is 
using a magnetic stirrer to mix the cells while the dispersed phase is running. However, this could be 
damaging to the cells and require a complex and challenging setup with homemade syringes and expensive 
equipment [16, 17]. If no automatic stirring device is present, droplet generation can be a time-consuming 
process of adjusting experimental variables such as cell concentrations, droplet diameters, and flow rates 
of the dispersed and continuous phase [18-20].

Machine learning (ML) approaches offer promise to reduce the burden on operator supervision of 
cell encapsulation by auto-detecting both droplets and encapsulated objects from acquired images. Indeed, 
recently, several studies have successfully implemented ML approaches in droplet microfluidic studies, see 
Table 1. Most modern object detectors use Convolutional Neural Networks (CNNs) to learn high level 
features from the training set to predict multiple bounding box coordinates in an output tensor [21-23]. You 
Only Look Once (YOLO), an influential object detector [24], is based on having the whole detection 
pipeline as a single network, i.e., going straight from image pixels to bounding box coordinates and class 
probabilities. This approach makes YOLO detectors faster and more lightweight than most other object 
detectors [25, 26]. In recent years, there have been several updates to increase performance from the original 
publication in 2016 including: (1) YOLOv3 in 2018, (2) YOLOv4 in April 2020, and (3) YOLOv5 in June 
2020 [26-28]. The most recent update, YOLOv5, was released shortly after the YOLOv4 model and, 
although maintained on GitHub with the PyTorch library, is not well supported yet by a published paper 
[28-30].  Therefore, we pursue both YOLOv3 and YOLOv5 models and compare the results from the two 
object detectors.
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Table 1 ML approaches in droplet microfluidic studies summarizing application, the model architecture 
used, the detection output and detection capability.

Detection OutputDroplet 
Application

ML Model
Droplet Cells

Detection 
Capability

Reference

Coalescence YOLOv3, SSD Multiple 
Droplets

No ≈ 117 drop/sec Arjun et al., 2020
[31]

Regimes of droplet 
generation

Handcrafted CNN 
classifier

Breakup 
Behavior 

No ≈ 100 drop/sec Chu et al., 2019
[32]

Droplet 
Optimization

Watershed 
Segmentation,

Bayesian Optimization

Multiple 
Droplets

No ≈ 135 drop/sec Siemenn et al., 2022
[33]

Cell Sorting Handcrafted CNN 
classifier

Single Droplet No ≈ 200 drop/sec Anagnostidis et al., 
2020
[34]

Cell Sorting YOLOv4-tiny Single Droplet Yes ≈ 60 drop/sec Howell et al., 2021
[35]

Cell Sorting Image thresholding and 
SVM

Single Droplet Yes ≈ 50 drop/sec Sesen et al., 2020
[36]

Cell encapsulation YOLOv3, YOLOv5 Multiple 
Droplets

Yes ≈ 1080 drop/sec This work

Studies that have reported the application of machine learning in droplet-based microfluidics can 
be broadly classified into two groups (see Table 1). In the first group, studies have implemented ML 
approaches to physical mechanisms such as coalescence and droplet breakup that are relevant to droplet-
microfluidic applications. For example, Arjun et al. deployed both Singleshot Multibox Detector (SSD) and 
YOLOv3 object detectors to classify merged droplets into three categories of low mixing, intermediate 
mixing, and high mixing from binary coalescence [31]. Likewise, Siemenn et al. developed a method 
employing Bayesian optimization and watershed segmentation with targets of circularity and droplet yield 
to converge to optimum flow rates [33]. In the second group, studies have focused on cell sorting where the 
objective is to encapsulate cells and use machine learning approaches to detect individual droplets with 
cells so that they can be sorted. For example, Howell et al used YOLOv4-tiny to detect cells, beads, and 
cell doublets in microfluidic droplets and performed ML-assisted sorting [34, 35].

The present work follows closely the studies in the second group that involve cell encapsulation. 
Rather than training a model on single droplets, here, we increase the throughput of detection by training 
the model on a collection of droplets present in the expansion chamber of the microfluidic device. 
Employing our detector in this manner allows for several advantages over previous droplet studies 
including: (1) simultaneous droplet and cell detection, (2) higher detection capability, (3) superior precision, 
and (4) real time statistical analysis. Specifically, our automated detector not only labels droplets containing 
cells, but also detects the individual cells inside the droplets, providing information on cellular aggregates. 

To build the detector we employed the new YOLOv5 model and well-known YOLOv3 PyTorch 
implementation while comparing their performances [28, 29, 37]. With our lightweight object detection 
method, it is feasible to process over 1080 droplet per second, whereas other studies found in Table 1 detect 
less than 200 droplets per second. After the boundary of the droplet is realized from one model (droplet 
model) the individual cells are predicted for each droplet with another pass through the YOLO layers (cell 
model). We received high mAP and precision when training the models in this manner resulting in less 
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false positive cell predictions. Lastly, with our high detection capability, we evaluated droplet ratios from 
numerous YOLO predictions for Poisson distribution comparison to provide real-time statistical analysis 
for future experiments. This detector can be leveraged for cell encapsulation experiments to assemble a 
process control inspection, where the droplet fractions containing cells are compared to the Poisson 
distribution in real time, allowing for cell visualization and their aggregation events for future analysis. 
Furthermore, the droplet flow rate parameters could be controlled to obtain the correct encapsulation ratios 
through a Bayesian optimization technique. For example, instead of using a circularity and yield target as 
in Siemenn et al., a monodispersity and cell encapsulation ratio target could be used to predict the correct 
flow rates to use in the experiment [33]. Single cell encapsulation experiments are already limited from the 
Poisson distribution, where only 10% of droplets contain cells. In result, this optimized process where a 
software predicts the correct control parameters for complete automation is essential to obtain the correct 
droplet ratios[2, 38]. Finally, the process control inspection can allow for a feedback loop so that 
experimental variables may be regulated to keep the maximum Poisson ratio [39].

This paper is structured as follows: Sec. II gives a brief overview of microfluidic device fabrication 
and cell culture, in addition to the process used for data collection and annotations. Sec. III presents the 
results of model training, testing, and predictions of both droplet and cell bounding boxes. In addition to 
test set metrics, the droplet ratios from the trained model are compared to hand counted images as well as 
the Poisson distribution. Lastly, Sec. IV gives the final remarks and future strategies to improve the detector 
for production employment.

2. Results and Discussion

A. Data Collection and Preparation for ML Models

Image data sets were collected by conducting microfluidic experiments along with video 
acquisition. As shown in Fig. 1a, b, the flow-focusing device was used to produce droplets that encapsulated 
PC3 cancer cells. These generated droplets flow into the downstream collection chamber where their 
velocity was reduced to form an ensemble of droplets. Images for ML model generation were collected 
from only the collection chamber at 100 frames per second (Fig. 1c). These images were used for two 
different types of ML models: (1) an object detection model to detects individual droplets in the ensemble 
referred to as the droplet model, and (2) an object detection model to detect the cells inside the droplets 
referred to as the cell model.
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For the droplet model, preprocessing consisted of cropping a square section in the collection-
chamber image that was filled with droplets and skipping images to make sure the same droplet did not 
appear in the training set twice. For most of the experiments, this square section was in the middle of the 
collection-chamber. Around every 50th frame in the video was pre-processed and uploaded to Roboflow 
Annotate (Roboflow, Des Moines, Iowa) to begin annotations [40]. During the annotation process, the 
images containing a majority of droplets with one or zero cells were discarded to maintain an even class 
balance ratio. 

The cell model was to detect the cells inside each of the droplets that were predicted from the 
droplet model. For the cell model, preprocessing consisted of taking every 5th image in the droplet dataset 

Fig. 1 (a) The physical microfluidic device used for droplet generation. The continuous phase inlets (1,2) 
and discrete phase inlet (3) are marked on the left with the outlet of the device on the right (4). The orifice 
and expansion chamber are labeled with black arrows. (b) A zoomed in view of the droplet generation 
process. The white circles in the discrete phase are PC3 cancer cells in aqueous suspension. Images are 
spaced at 10 ms so that the shearing at the orifice and droplet generation is visualized. Individual droplets 
take only 30 ms to pass allowing for high throughput droplet generation. Scale bar: 150 μm. (c) The 
expansion chamber of the droplet generator device with droplets tightly packed together. The red box 
indicates the microscope visualization box displayed on the computer. Scale bar: 400 μm.
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(training, validation, and test set) and cropping the annotated droplets with one or more cells. The droplets 
without cells were not used since this would result in no annotations for model training. The ground truth 
bounding boxes from the droplet model were exported from Roboflow in YOLO label format and converted 
to corner coordinate format so that the individual droplet images could be cropped from the larger image 
containing multiple droplets. After the width and height were averaged the cropped images were uploaded 
to Roboflow Annotate to draw bounding boxes on cells [40].

A typical representation of an annotated training example for the droplet model can be seen in Fig. 
2(a). The four different classes in the dataset include: (1) drop_0cell (red box), are droplets with no cells 
encapsulated (2) drop_1cell (yellow box), are droplets with one cell encapsulated as, (3) drop_2cell (green 
box), are droplets with two cells encapsulated and (4) drop_3cell are (pink box) droplets with more than 
two cells encapsulated. In all training and testing examples, there are some droplets that are cutoff and not 
fully contained in the cropped image. To minimize the effect of wrongly classifying droplets, the bounding 
boxes were only drawn around the droplets that were approximately more than 85 % in the image. This was 
done to train the object detection model to not inaccurately classify droplets that have a cell not contained 
within the boundaries of the image.

Typical annotated training examples for the cell model are illustrated in Fig. 2(b) with bounding 
boxes drawn for all distinguishable cells. We note that the droplet model discussed above is sufficient for 
calculating the Poisson statistics, however, labeling the bounding boxes for each cell in the droplet allows 
for phenotypic analysis of individual cells encapsulated in the droplets. The phenotypic analysis of 
individual cells could be useful in the future to relate application outcomes to variations in individual 
cellular features.

For both ML models, the cropped images were resized to a resolution of 544 x 544 pixels and split 
between three separate datasets. We chose to use 20% of the data for testing, leaving 80% for training and 
validation sets. After taking another 20% for the validation set the resulting 64-16-20 split allowed for no 
bias or misrepresentation in test set performance. After a dataset was split, augmentations were applied to 
training sets, while validation and test sets were used as is to achieve testing on realistic examples. 
Specifically, there were three outputs per training example consisting of random combinations of vertical 
flip, hue change between  and , and brightness change between  and . Since data ―15° +15° ―10% +10%
was collected over multiple experiments the image quality and brightness may fluctuate between examples. 
The brightness augmentations alleviated this variance and allowed for more generalizable data to be used 
for testing and inference [41]. The droplet model had only vertical flipping while the cell model had 
horizontal and vertical flipping since the cells can be in any orientation within the droplet. These image 
augmentations allowed the model to be more robust to data that it had not seen before by increasing the 
diversity of input examples. 

A total summary of the dataset before augmentation is described in Table 2 where the total number 
of labels and images are provided for both models. The total count for the number of images and labels in 
the droplet model is 643 and 14,916 respectively while the total count for the images and labels for the cell 
model is 2,063 and 4,207 respectively.
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  Table 2 Model Annotation Summary Before Augmentation. Drop_0cell refers to a droplet with 
zero cells, Drop_1cell a droplet with one cell, Drop_2cell a droplet with two cells, and 
Drop_3cell a droplet with three or more cells.

Label/Set Total Count Training Validation Test
Droplet Model

Drop_0cell 3519 2451 483 585
Drop_1cell 4308 3067 572 669
Drop_2cell 3585 2487 539 559
Drop_3cell 3504 2447 535 522
Combined 14916 10452 2129 2335
Images 643 412 103 128

Cell Model

Cells 4207 2695 666 846
Images 2063 1321 330 412
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B. ML Models and Performance Metrics

Typical applications of microfluidic droplet generation operate at speeds of a few to tens of kHz 
[1]. This results in thousands of droplets produced in one second, requiring a fast object detector to process 
as many droplets as possible. Since the YOLO object detector goes straight from image pixels to bounding 
box coordinates it is faster and more lightweight than other object detectors. With high computational power 
and state of the art GPU’s the more recent versions of YOLO can reach up to 100 FPS depending on the 
accuracy and dataset used [25, 26]. In the droplet model, we use the recently developed YOLOv5 model 
and the established YOLOv3 PyTorch implementation from Ultralytics Inc., to compare their performances. 

Fig. 2 Ground truth annotation summary for the droplet (a) and cell (b) models used as training 
examples. The droplet model images include four different annotated classes of drop_0cell representing 
a droplet with 0 cells (red boxes), drop_1cell representing a droplet with one cell (yellow boxes), 
drop_2cell representing a droplet with two cells (green boxes), and drop_3cell representing a droplet 
with three or more cells (pink boxes). The cell model training examples include one annotated class 
representing the individual cells in each droplet (green boxes).
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In the cell model, we employ the more established YOLOv3 PyTorch implementation and leave the newer 
YOLOv5 model for further production applications. The full model architectures for YOLOv3 and 
YOLOv5 can be seen in Figures S3 and S4.

The workflow for the droplet and cell ML models are shown in Fig. 3. Images were preprocessed 
and the annotations were performed in Roboflow. The labeled data set is stored with an 80, 10, 10 split 
between training, validation, and test sets. The dataset is transferred to Google Colaboratory and passed 
through the YOLO object detector containing a feature extractor and output tensor. Feature extraction is 
the process by which an initial set of data is reduced by identifying key features, giving a higher-level view 
of objects in the data set examples. The output tensor for the YOLO model is divided into multiple grid 
cells each containing numerous bounding boxes. For each proposed bounding box there exists nine 
parameters containing four spatial coordinates (  representing the box center and  representing the 𝑡𝑥,𝑡𝑦 𝑡𝑤,𝑡ℎ

box width and height), four class probabilities , and one confidence value as the likelihood of (𝑝1,𝑝2,𝑝3,𝑝4)
the proposed box being a droplet ( ). After thresholding the proposed box confidence values there may still 𝐶
be multiple bounding boxes for one droplet. Non-maximum-suppression (NMS) technique was employed 
to obtain the proposed bounding box with the highest confidence value. Finally, the resulting bounding box 
coordinates were stored, and the final YOLO class predictions were compared against ground truth labels 
with python plotting libraries. A second model was trained to detect each cell in an individual predicted 
droplet after cropping and resizing. The bounding box annotations in the droplet model were used to crop 
individual droplets that subsequently pass through a separate YOLO model with the same architecture as 
the droplet model for detecting cells within droplets. Lastly, the enumerated droplet class predictions for a 
separate production set were subsequently used to investigate the Poisson statistics.

In object detection models, to compare performance, the research community has converged to a 
single important metric capturing precision, intersection over union (IOU), and confidence threshold, called 
mean average precision (mAP) [42, 43]. Precision can be defined as the proportion of correct positive 
identifications and can be calculated by taking the ratio of true positives over the total number of 
predictions:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃#(1)

where  and  are the number of true positive and false positive predictions, respectively. On the other 𝑇𝑃 𝐹𝑃
hand, recall is the proportion of actual predictions identified correctly:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁#(2)
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where  is the number of false negative predictions. The total mAP is an advanced calculation that uses 𝐹𝑁
the precision recall curves at different IOU thresholds to determine the mAP for each class, then averages 
each of the classes together: 

This formula 
𝐴𝑃𝑖,𝐶𝑂𝐶𝑂 =

1
10∑𝑗 = 0.95

𝑗 = 0.5
∑𝑘 = 101

𝑘 = 1 {[𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) ― 𝑅𝑒𝑐𝑎𝑙𝑙(𝑘 + 1)] ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)}𝑡ℎ𝑟𝑒𝑠ℎ𝐼𝑜𝑈 = 𝑗

𝑚𝐴𝑃 =
1
𝐶∑𝑖 = 𝐶

𝑖 = 1𝐴𝑃𝑖,𝐶𝑂𝐶𝑂
#(3)

is a representation of the mAP for the COCO challenge [28, 43]. Microsoft released the MS COCO dataset 
in 2015 [44]. It has become a common benchmark dataset for object detection models since then. Here,  is 𝑗
a sum over the ten IOU thresholds in the COCO challenge (0.5 to 0.95 at intervals of 0.05),  is a sum over 𝑘
the 101 interpolated confidence threshold points on the precision-recall curve, and  is a sum of the number 𝑖
of classes, , used in the dataset. Thus, the metric incorporates how well a model performs when it is 𝐶
guessed correctly (precision), if the model guessed every time that it should have guessed (recall), and at 
different threshold levels. For this reason, we used the mAP calculation in our studies to determine model 
performance.

Fig. 3 Machine learning workflow for detecting cell-laden droplets and encapsulated cells. The left 
displays the steps taken to train and test the droplet model including the bounding box annotations, 
YOLO architecture, and droplet counting. The right displays the cell model after the droplet predictions 
are cropped and resized. Predictions are illustrated for both droplet and cell models for an example 
image in the production set.  The numbers displayed on the colored boxes indicate the confidence values 
of the predictions. 
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C.  Model Performance

Both YOLOv3 and YOLOv5 models were trained and tested on an NVIDIA Tesla P100-PCIE-
16GB GPU offered by Google Colaboratory Pro platform with a patience level of 100 epochs for early 
stopping. For the droplet model, YOLOv3 training took approximately 11 hours to complete 468 epochs 
with no improvements after epoch 367 while YOLOv5 training took approximately 4 hours to complete 
475 epochs with no improvements after epoch 374. Thus, the best weights were taken at epoch 367 and 374 
for YOLOv3 and YOLOv5, respectively. For the cell model, YOLOv3 training took approximately 25 
hours to complete 351 epochs with no improvements after epoch 250 while YOLOv5 training took 
approximately 4 hours to complete 139 epochs with no improvements after epoch 38. Thus, the best weights 
were taken at epoch 250 and 38 for YOLOv3 and YOLOv5, respectively. It is clear that YOLOv5 took a 
shorter amount of time for droplet and cell model training, most likely due to the optimized complete IOU 
loss implemented in the YOLOv5 objectness loss function [45].

During the droplet model training, precision and recall were calculated at each epoch for the 
validation set, as well as the mAP at 0.5 IOU and 0.5-0.95 IOU shown in Fig. 4 (a) and (b). The curves are 
quite similar for both YOLOv3 and YOLOv5 architectures, however, for the YOLOv5 model the mAP 
value seems to converge and stabilize quicker. Additionally, both models take around the same number of 
epochs to hit a patience level of 100 for early stopping. After training was completed, the model was 
evaluated with the test set to see the performance on data that it had not seen before. The performance of 
an object detector can be thoroughly described by the precision recall curve illustrated in Fig. 4 (c) and (d) 
for YOLOv3 and YOLOv5 models respectively. This curve (used for the mAP calculation) incorporates 
both precision and recall values as the confidence level of the predictions decrease [42]. The confidence 
threshold will not allow any of the proposed boxes with confidence value  lower than the threshold to be 𝐶
used as a prediction. For all four classes of the droplet model, the precision declines and recall increases as 
the confidence threshold decreases, symbolizing that the model is making healthy predictions in the test 
set.

An additional tool to evaluate model performance on the test set is a multiclass confusion matrix. 
In a confusion matrix the model predictions are compared to the ground truth labels. For a prediction to 
match with a ground truth box the IOU has to be greater than a certain threshold. If the classes match 
between the prediction and label, then the prediction is defined as a true positive. The confusion matrix in 
Fig. 5 represents how well the model does at predicting the right class for the bounding boxes. It is shown 
that only a small number of predicted labels are predicted as the wrong class (see Sec. 2D for model 
failures). Furthermore, most of the predictions are correctly predicted with the appropriate class.

To give a more in-depth comparison of the YOLOv3 and YOLOv5 models evaluated on the droplet 
model we compared test set metrics from the best weights after training. The mAP and FPS for both 
networks in Table 3 reveal that the mAP is nearly the same while the FPS in the YOLOv5 model is much 
faster. In addition to the average mAP comparisons, we provide a more comprehensive analysis for all 
classes of the droplet model in Table S1.
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Fig. 4 Droplet model validation (a, b) and test (c, d) set metrics for both YOLOv3 and YOLOv5 
networks. The validation metrics show the mAP at 0.5 IOU threshold and 0.5-0.95 IOU threshold for 
all epochs trained with both models. Since we used early stopping with a patience of 100 for both 
models, the best weights for YOLOv3 was taken at 367 epochs while the YOLOv5 weights were saved 
at 364 epochs. The test set metrics display the precision recall curve at 0.5 IOU threshold for each class 
in both models. This curve illustrates that as the bounding box confidence decreases the recall will 
increase and the precision will decrease.
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Table 3 Droplet model test set comparisons between YOLOv3 and YOLOv5 networks. (@ 
0.5 IOU) represents the mAP at 0.5 IOU threshold while (@ IOU 0.5:0.95) represents the 
mAP averaged between 0.5 to 0.95 IOU threshold with intervals of 0.05. The FPS is defined 
as inverse of the average inference time.

 Network/Metric mAP
(@ 0.5 IOU)

mAP
(@ 0.5:0.95 IOU)

FPS
(1/Inference)

YOLOv3 0.97 0.91 47
YOLOv5 0.97 0.91 68

Furthermore, the inference time of the cell model would also have to be fast since multiple droplets 
require cell detection in each frame (around 20 droplets per image). Each of the droplet images, after 
detection and cropping from the droplet model, are resized and ran through another YOLO pass for 
inference. Thus, it is critical that a fast object detector is utilized for the cell model so that the cells may be 
detected in real time for each predicted droplet. Table 4 demonstrates that both YOLO models allow for 
fast inference time with the newer YOLOv5 at 63 FPS reaching 16 FPS more than the original YOLOv3. 
Additionally, both networks reach a high mAP metric at IOU threshold of 0.5. However, as with all object 
detection models when the precision is averaged over all IOU thresholds from 0.5 to 0.95 the mAP 
decreases. This decrease to 0.72 is most likely due to the predicted box not exactly matching with the ground 
truth box, leading to incorrect predictions at IOU threshold of 0.9. Furthermore, with fast inference time 
and high mAP at 0.5 IOU, the predictions allow for the encapsulated cells to be visualized with high 
throughput during generation experiments. 

Table 4 Cell model test set comparisons between YOLOv3 and YOLOv5 networks. (@ 
0.5 IOU) represents the mAP at 0.5 IOU threshold while (@ IOU 0.5:0.95) represents the 

Fig. 5 YOLOv3 and YOLOv5 confusion matrix for the droplet model test set. The vertical axis represents 
the predicted droplets while the horizontal axis represents the ground truth droplets. The color bar 
on the right shows the colormap from 0 to the maximum predictions where darkest blue color 
represents the maximum predictions. The confusion matrices were evaluated at a confidence and IOU 
threshold of 0.25 and 0.45 respectively.
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mAP averaged between 0.5 to 0.95 IOU threshold with intervals of 0.05. The FPS is defined 
as inverse of the average inference time.

 Network/Metric mAP
(@ 0.5 IOU)

mAP
(@ 0.5:0.95 IOU)

FPS
(1/Inference)

YOLOv3 0.99 0.72 47
YOLOv5 0.99 0.71 63

A more detailed analysis of cell model performance is described in Fig. S5 and Table S2. A high 
precision was reached for all classes in both droplet and cell models. Specifically, a precision of 98% was 
realized from the cell model for both YOLOv3 and YOLOv5, 6% higher than previously reported single 
cell detection and 17% higher than cell aggregates in Howell et al. [35]. Our method can detect every cell 
in the droplet, allowing for cell aggregation events to be realized with distance analysis. Thus, both models 
together can not only detect the droplet itself containing different number of cells but a single cell or cell 
aggregates with high precision.

With YOLOv5 built as a lightweight model for fast inference, it was shown for both droplet and 
cell datasets to be greater than 15 FPS faster than YOLOv3 while sacrificing little performance in mAP. In 
production applications, droplets are produced at high frequencies, thus fast inference time in both models 
are critical. In result of both YOLO networks having similar test set metrics and YOLOv5 almost 50% 
faster than YOLOv3 we used YOLOv5 for further analysis and testing. Specifically, we used the YOLOv5 
model to examine model predictions and study Poisson statistics, however the results were similar with the 
YOLOv3 network.

D. Predictions and Cell Visualization

Only examining ordinary test set metrics without visualizing incorrect box predictions from YOLO 
results give a narrow view of model inference and performance [41]. For this reason, we compared 
predictions with ground truth labels for both droplet and cell models to examine model failures. An example 
prediction from the droplet model test set in Fig. 6 show that the predictions match with the ground truth 
labels. Here, Fig. 6(a) represents the ground truth labels, while Fig. 6(b) illustrates the YOLOv5 predictions 
with examples of negatives and positives. At a closer look, nearly all predictions are correct including the 
droplets that have less than 85% of the volume contained in the image. However, there is one false positive 
towards the bottom of the image signifying a droplet that most likely does not contain any cells. By only 
providing annotations for the droplets that contained more than 85% of the volume in the image the model 
was able to suppress nearly all the other droplets on the boundary of the image. This advantage from the 
YOLO model allows the ratio of droplets to be preserved with only one false positive on the boundary 
predicted as a droplet with zero cells. Furthermore, with around 80% volume in the image has a high 
probability that the droplet does not contain a cell on the right side. A larger set of random testing examples 
with predictions are provided in Fig. S6. 
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An object detector for the entire droplet boundary only gives the ratios of the different cell 
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encapsulation events. To obtain more information about the encapsulated cells, such as size, shape, or 
distance, another object detector is trained to detect bounding boxes around the individual cells inside the 

Fig. 6 Ground truth (a) and predicted (b) boxes for one test set image in the droplet model containing 
four classes. The predictions were ran using the YOLOv5 model weights while the NMS was 
conducted with an IOU threshold of 0.45. The confidence threshold for plotting bounding boxes 
was set to 0.6. Examples of a true negative, true positive, and false positive are provided on the 
bottom of the predictions.
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droplets. Several examples of ground truth labels (green) and predictions (red) in Fig. 7 (a-d) demonstrate 
that the predictions have a high IOU with the ground truth annotations. The top labels on the predicted 
boxes give the confidence value of that prediction in cyan. For the YOLOv5 predictions, the NMS was 
conducted with an IOU threshold of 0.6, while the confidence threshold for plotting the detections was 
fixed to 0.25. Since there were no false negatives or false positive predictions only true positive examples 
are shown. A larger set of random testing examples with predictions is provided in Fig. S7. This cell model 
could be used, for example, to display the individual droplets on a second screen during a droplet 
experiment, thus displaying exactly where the cells are inside the droplets. If many of the cells show a 
certain characteristic (perhaps a specific shape, size, or fluorescence) the system will alert the user of that 
specific property.

Fig. 7 Ground truth and predicted boxes for four test set images in the cell model (a-d). The green 
boxes show the ground truth annotations, while the red boxes show the YOLOv5 prediction with 
the objectness (confidence value) of each prediction in cyan.

E.  Comparison with Poisson Statistics

For an ML model to be ready for production implementation, the predictions must be compared at 
a higher level than ordinary mAP, precision, and recall. This is accomplished by hand counting droplet 
percentages and comparing directly to YOLOv5 predictions. Droplet totals from a collection of 1,000 
images in the production set were manually counted and stored so that proportions can be measured against 
the number of droplets predicted from YOLOv5. Subsequently, the YOLO output tensor is computed for 
the same set of images in the production set, droplets are totaled from the prediction results, and the two 
sets of proportions are analyzed in Fig. 8 (a, b). In this comparison the x axis represents droplets with zero, 
one, two, or greater than two cells encapsulated while the y axis represents the total percentages of those 
droplets. In both batches of 500 images the ratios determined from YOLOv5 predictions and hand counting 
are in good agreement. The representation of the number of droplets in this manner confirm that for a larger 
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set of images (500 in this case) the YOLO model will detect nearly the same droplet proportions as counting 
them by hand. To verify the statistics match with a reduced number of images, a random sequential batch 
of 50 images (equivalent to 0.5 seconds) from the two separate trials of 500 hand counted images is used. 
The random batch is chosen by defining a random seed in python (pseudo-random pool of numbers) and 
returning an integer between zero and nine. Furthermore, the manually counted droplet proportions for the 
smaller set of 100 images are compared to droplet totals computed from YOLOv5 model in Fig. S8. This 
comparison also shows good agreement indicating the YOLO model provides accurate droplet proportions 
for both small and large number of images.

Encapsulating cells delivered to the droplet-generation nozzle at random is a process which yields 
a resulting population of droplets with Poisson distributed cell occupancy [1, 7]. Cell encapsulation, and 
more importantly single-cell encapsulation experiments rely on this randomness to obtain statistical 
significance for rare cell enumeration. The probabilistic nature essentially represents a theoretical maximum 
for obtaining single cell encapsulation without contamination from multiple cell droplets [1]. The Poisson 
distribution can be described by the probability mass function:

Pr (𝑋 = 𝑘) =
𝜆𝑘𝑒 ―𝜆

𝑘! #(4)

where  is a discrete random variable,  is the number of cells in each droplet ( ), and  is the 𝑋 𝑘 𝑘 = 0, 1, 2… 𝜆
expected value of . Since the number of cells in each droplet can only be a whole number, the expected 𝑋
value, , can be calculated by multiplying the bulk concentration (in cell/mL) and droplet volume (in mL). 𝜆
It is imperative that during a cell encapsulation experiment the ratios generally follow this distribution to 
achieve statistical significance with the correct proportion of cells in droplets [10].

The Poisson distribution was determined with the expected value as the average number of cells in each 
droplet  and the probability mass function in Eqn. 3 to calculate the theoretical droplets with (𝜆 = 𝑐0 × 𝑣0)
zero, one, two, or more than two cells. A high cell concentration was used in our experiments to keep the 
class balance for the droplet model roughly even for healthy training. We utilized ImageJ over a period of 
multiple trials to determine the droplet diameter for the volume calculation ( , while the initial 𝑣0 = 212 𝑝𝐿)

Fig. 8 The fraction of droplets containing zero, one, two, or greater than two cells. Droplets are counted 
from YOLOv5 predictions (red) and by hand (green) for a total of 1,000 images over two trials. The 
images were preprocessed from the original video (taken at 100 FPS) resulting in a five second time 
frame for each trial. The NMS for the YOLOv5 model was completed with an IOU threshold of 0.45 
while the confidence threshold was set to 0.6.
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cell concentration was counted from the hemacytometer before droplet generation .  (𝑐0 = 7 × 106𝑐𝑒𝑙𝑙
𝑚𝐿)

This resulted in a lambda value of 0.15, typical of microfluidic droplet experiments. Production set images 
and YOLOv5 weights were used for droplet enumeration where the y axis defines the probability mass 
function (percentage of droplets) and x axis representing the number of cells in each droplet ( ). Illustrated 𝑘
in Fig. 9, images were collected from two separate trials with the same microfluidic flow rate and cell 
concentration for each. The videos were recorded at similar time points between the two trials so that they 
could be sufficiently compared. A trial consisted of first recording a video at the start of the experiment to 
know the drop numbers with a fresh syringe of cells. Then to investigate the droplet proportions after long 
operation time another video was recorded after the cell suspension ran for an extended period of time (after 
60 minutes). For the second trial, the syringe from the first run was replaced with cells from a new flask to 
simulate an alert system for cell replacement. The first trial in Fig. 9 (a) was executed with a total of 12,800 
images: 6,400 from the beginning of the trial and 6,400 at the end. 

The error bars were calculated by dividing the total amount of images in a trial by three and computing 
the standard deviation of the droplet proportions. This comparison reveals that in the beginning of the trial 
the proportion of droplets agree with the theoretical Poisson distribution. However, after a longer operation 
time the ratio diverges from Poisson statistics as the number of encapsulated cells decrease. This 
demonstrates that as the experiment runs the encapsulation events depreciate over time, thus using droplet 
detection to predict this divergence is beneficial. The second trial in Fig. 9 (b) reveals a similar trend with 
a favorable Poisson agreement in the beginning of the experiment. Therefore, having an automated alert 
system to detect this divergence, allowing for adjustments of the cell container with a feedback loop, would 
be advantageous for droplet generation experiments.

Fig. 9 The fraction of droplets containing zero, one, two, or greater than two cells in the first (a) and 
second (b) trials. For each trial a total of 12,800 images are used in combination with YOLOv5 model 
weights split between the beginning (red) and long operation time (maroon). The droplet proportions 
are compared with the theoretical Poisson distribution for each value of  (blue). The images were 𝑘
preprocessed from the original video (taken at 100 FPS) resulting in two 64 second time frames for 
each trial. The NMS for the YOLOv5 model was ran with an IOU threshold of 0.45 while the confidence 
threshold was set to 0.6.
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3. Conclusions

In this study we used both YOLOv3 and YOLOv5 CNN architectures to assemble an automated 
detector of whole droplets and the individual cells inside these droplets. A high precision was obtained for 
both droplet and cell models, indicating the number of false positives measured in the test set were low. 
The precision on the cell class itself was found to be approximately 11% higher as compared to previously 
reported studies on cell detection. We established that, for this dataset, the test set metrics were nearly the 
same while the YOLOv5 architecture outperformed YOLOv3 in inference time and training stability. As 
FPS is an important requirement for production applications, this finding shows that both algorithms, built 
as lightweight models to perform fast calculations, can detect microfluidic droplets with fast inference and 
high accuracy. More importantly, the YOLOv5 architecture has shown to be robust in microfluidic 
applications as well as slightly outperforming the YOLOv3 model in speed, therefore, alleviating some of 
the controversy associated with the PyTorch model.

After providing the relevant test set metrics for both models we manually counted droplet ratios for 
two sets of 50 sequential images and plotted them against the ratios determined from the YOLOv3 model. 
At small and large number of images our object detection droplet proportions were nearly identical to 
manually counting the droplets by hand, confirming operation close to human level performance. To 
illustrate that the trained model can be used for process control inspection we used the YOLOv3 model to 
compare with the theoretical Poisson distribution. We employed a total of 25,600 images from the 
production set and found that the ratio of droplets agree with Poisson statistics at first, but after running the 
suspension for long operation time the ratio of encapsulated cells dramatically decreases. This decay in cell 
encapsulation can be caused by several different factors, e.g., cell sedimentation or aggregation in the 
syringe, and illustrates the requirement for an automated detector with a real time comparison to the Poisson 
distribution. In the future we intend to optimize our droplet detector, explore more applications with droplet 
generation, and look for ways it can be seamlessly implemented in a production platform.

4. Experimental 

A. Materials

Polydimethylsiloxane (PDMS) (Sylgard 184) for device fabrication was purchased from Dow Corning 
Corporation. Silicon wafers were purchased from University Wafers while the SU-8 50 negative photoresist 
and SU-8 developer were purchased from Kayaku. The alginic acid used for the discrete phase solution was 
purchased from Sigma-Aldrich. For the continuous phase the 008-FlouroSurfactant was purchased from 
RAN Biotechnologies, Inc, and the HFE 7500 fluorinated oil from 3M Novec.

 B. Cell Culture

Human prostate cancer cell line PC-3 (ATCC CRL-1435™ VA) was cultured at 37 °C in F-12K 
growth medium containing 10% FBS and 1% penicillin/streptomycin with media changes every two days 
(Thermo Fisher). After cells reached around 80% confluency, they were released from culture flasks by a 
0.05% trypsin–ethylenediaminetetraacetic acid (EDTA) (Invitrogen, CA) solution at 37 °C. Since the 
Poisson distribution requires an accurate analysis of the cell suspension concentration, the cells were 
carefully counted by a hemacytometer. A large cell concentration of approximately 7 × 106 cells/mL was 
used to increase the number of droplets with 3 or more cells, thus decreasing the class imbalance for 
training. After uncovering the concentration from the cell counting plate, cells were centrifuged and 
suspended in 1 wt.% alginate solution before adding to pump syringe.

C. Microfluidic Device Fabrication
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The flow-focusing microfluidic device was fabricated by standard soft lithography method [46]. 
Specifically, the desired features were drawn by AutoCAD and printed on a transparent film as a mask for 
UV light. Then, SU-8-2050 was spin-coated on a silicon wafer. After soft-baking, exposure to light, and 
post-baking, the unexposed photoresist was dissolved by SU-8 developer to obtain the final master [47, 48]. 
The height of the master is approximately 90 microns. To fabricate the PDMS replica, PDMS with 10:1 
ratio of monomer to curing agent was thoroughly mixed and de-gassed for 30 minutes. After pouring on 
the SU-8 master and heating at 65 °C for two hours, the PDMS layer was detached from the SU-8 master. 
The droplet generator was formed by plasma treating the PDMS replica and flat PDMS slab, then bonding 
the two pieces together. The device surface was allowed to recover to a hydrophobic state after 3 days in 
an oven at 70 °C.

D. Experimental Setup

To gather images for model training and production testing, a proper experimental setup was 
necessary to collect sufficient data. Specifically, two microfluidic pumps (PHD 2000, Harvard Apparatus, 
Massachusetts, USA), a microscope stage system (Nikon eclipse TiU), a high-powered camera (Phantom 
v710 12-bit, Vision Research) and a desktop computer were used to capture high quality images from the 
experiment (Fig. S1). There are two syringe pumps for both the dispersed and continuous phase with cell 
suspension and fluorinated oil, respectively. The microscope stage holds the droplet generator while the 
digital camera is connected to the computer and microscope optical lens. This setup allows for the generated 
droplets in the expansion chamber to be effortlessly visualized for subsequent analysis and evaluation.

Data Availability

We believe that open-source code allows for greater innovation and cutting-edge research due to the 
ability of others incorporating additional features and testing. Scientific knowledge should not be contained, 
rather accessible for others to use freely in their own experiments. Furthermore, we would like to be 
transparent with this analysis and assist other researchers with more AI inspired microfluidic projects. For 
this reason, our adoption of YOLOv3 and YOLOv5 models along with the production set images can be 
found at https://github.com/karl-gardner/droplet_detection. Here, you can access the data associated with 
training, testing, and comparisons, for both droplet and cell models in a Google Colaboratory notebook and 
a shared Google Drive folder. We encourage others to contribute or use our trained model for testing or 
production purposes.
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