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Regio- and stereoselective multisubstituted olefin 
synthesis via hydro/carboalumination of alkynes and 
subsequent iron-catalysed cross-coupling reaction with 
alkyl halides†‡ 

Shintaro Kawamura,§ Ryosuke Agata, and Masaharu Nakamura* 

A new synthetic route towards multisubstituted olefins, which are recurring core units in various pharmaceutical 

and bioactive compounds, was developed based on the direct cross coupling of alkenylaluminium reagents which 

were prepared in situ by the hydro- and carbometalation of alkynes, with non-activated alkyl halides in the 

presence of an iron catalyst. For the first time, alkenylaluminium reagents participated in an iron-catalysed cross-

coupling reaction, following the activation of the aluminium reagents by a metal fluoride. The hydro- and 

carboalumination of alkynes and the subsequent cross-coupling reactions could be conducted in a one-pot manner 

and proceeded regio- and stereoselectively to give a variety of di-, tri-, and tetrasubstituted alkenes in good to 

excellent yields. 

The development of regio- and stereoselective synthetic routes 
towards multisubstituted olefins, which are recurring core units in 
various pharmaceutical and bioactive compounds, has been a long-
standing challenge in organic chemistry,1 despite the numerous 
related methodologies that have been described.2 Recently cross-
coupling reactions have revealed their utility in olefin synthesis; 
amply demonstrated by their use in the synthesis of complex natural 
products.3 A notable expedient approach in this regard is the 
hydro/carboalumination of alkynes and subsequent cross coupling 
with organic electrophiles in the presence of Pd or Ni catalysts (the 
Negishi protocol).4 While this sequential protocol is particularly 
useful to couple alkenyl sp2 carbon centres with other sp2 carbon 
electrophiles, it has notable drawbacks. When alkyl (sp3 carbon) 
electrophiles are employed, competing side reactions, such as β-
hydride elimination which is inherently associated with Pd and Ni 
catalysts,5 impair the cross coupling (Scheme 1a, path A).6 Therefore, 
the introduction of an alkyl group usually requires a circuitous 
synthetic strategy: the alkenylaluminium reagent is converted to an 
alkenyl electrophile, e.g., alkenyl iodide, which is then cross coupled 
with alkyl zinc reagents in the presence of Pd or Ni catalysts.3 In 
addition, alkylzinc reagents are typically prepared from alkyl halides 
with zinc metal (Scheme 1a, path B).7 The direct cross coupling of in 
situ prepared alkenylaluminium with alkyl halides represents a 
straightforward method to achieve Csp2–Csp3 bond formation for the 
synthesis of multisubsituted olefins, which has not been developed 
using conventional cross-coupling catalysts. We envisaged that iron-
catalysed cross coupling of alkyl halides would be feasible for this 
purpose because of the excellent selectivity and reactivity of iron 
catalysts in the cross coupling of non-activated alkyl halides, 
regardless of the presence of β-hydrogens.8–13 Herein, we describe 
that an iron catalyst enables the direct cross coupling of alkenyl 
aluminium reagents with alkyl halides in the presence of a metal 

fluoride, and can be applied in the regio- and stereoselective 
synthesis of multisubstituted olefins (Scheme 1b). 

 

 
Scheme 1. Synthetic routes to stereodefined alkylsubstituted olefins 
via Negishi coupling. 
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  We first examined the iron-catalysed cross coupling of 
alkenylaluminium reagent 1a, which was prepared by the 
hydroalumination of 1-octyne with diisobutylaluminium hydride 
(DIBAL–H) as shown in Scheme 2. Reagent 1a, generated in situ, 
was reacted with primary alkyl bromide 3a in the presence of a 
catalytic amount of an Fe-bisphosphine complex, FeCl2(TMS-
SciOPP) 2, which was previously reported to act as an efficient 
catalyst for the cross coupling of arylaluminium reagents.11b Under 
conditions developed previously for the coupling of arylaluminium 
reagents, the reaction of 1a with 3a gave the desired product in only 
8% yield, albeit with high stereospecificity. In Negishi’s original 
method for the Pd-catalysed cross coupling of alkenylaluminium 
reagents, it was observed that zinc salts were essential additives or 
co-catalysts to facilitate the cross coupling, as they form reactive 
organozinc or organozincate intermediates with the 
alkenylaluminium species.4a,14 However, the addition of ZnCl2 was 
totally ineffective here possibly due to the formation of an alkyl 
(isobutyl) zinc reagent, which may hamper the selective Csp2–Csp3 
coupling due to the formation of over-reduced iron species.15 

	
    
Scheme 2. Iron-catalysed cross coupling of 1-bromodecane 3a with 
alkenylaluminium reagent 1a, prepared by in situ hydroalumination. 
 
These preliminary observations prompted us to identify a new 
activation method for alkenylaluminium reagents in iron-catalysed 
cross coupling. Although a variety of reported activation methods 
are available,16 we envisioned that fluorides or alkoxides could 
directly activate the organoaluminium reagent via ate complex 
formation.17 Moreover, we previously demonstrated that 
organoaluminate species participated efficiently in iron-catalysed 
cross-coupling reactions.11c Table 1 summarises the results of the 
additive screening. The addition of NaF, KF, and CsF improved the 
product yield significantly (entries 2–4), whilst LiF and MgF2 had 
almost no effect on the reaction (entries 1 and 5). This is possibly  
Table 1. Screening of additives. 

 
aReactions were conducted for 3 h under the conditions described in Scheme 
1. bYields and ratios of stereoisomers were determined by GC analysis. 
cRecovery of the starting material 3a. dIsolated yield. e1-Fluorodecane was 
obtained in ca. 20% yield. fRun for 12 h. 

due to the strong bonding in the latter metal fluorides. Subsequently, 
the influence of the counter anion of a range of potassium salts was 
examined (entries 6–8). The product yield upon addition of KCl was 
almost the same as that without any additive (entry 6, 12% yield). 
The addition of t-BuOK decreased the catalytic activity (entry 8).18 
When Bu4NF (TBAF) was used, the desired coupling reaction did 
not proceed (entry 9). Where cross-coupled product was obtained, 
the reactions proceeded in a stereospecific manner (entries 1–10), 
and the addition of KF resulted in the greatest yield of the coupling 
product (entry 3, 76% yield).19 It should be noted that catalyst 
screening revealed that complex 2 facilitated the reaction most 
efficiently.20 

The reactions with substituted alkenylaluminium reagents were 
examined under the optimised conditions. Substituted 
alkenylaluminium reagents were prepared in situ by 
hydroalumination or Zr-mediated carboalumination of terminal and 
internal alkynes,4a–c and were subsequently used in the iron-
catalysed cross coupling with secondary alkyl bromide 3b (Scheme 
3). Alkenylaluminium reagents 1a and 1b, prepared by 
hydroalumination, were readily converted into the desired coupling 
products 4ab and 4bb in 91% (>99% E) and 86% (E/Z = 97/3) yield 
respectively (Scheme 3a). Reagents 1c and 1d, formed by 
carboalumination, also participated in the reaction to afford the 
desired multisubstituted olefins (86% and 19% yields respectively, 
Scheme 3b). Fortunately, the presence of concomitant zirconium 
species in the coupling reaction has no influence on the outcome of 
the reaction. Rate enhancement by KF was apparent regardless of the 
structure of the alkenylaluminum reagent used.19 Reagent 1c gave 
product 4cb with high stereospecificity; however, reagent 1d (E/Z = 
80/20) gave product 4db (E/Z = 70/30) with a slightly reduced 
stereoselectivity. This would be due to E/Z isomerisation of 
alkenylaluminum reagent under the coupling conditions.21 

 
	
  	
  

 
Scheme 3. The reaction of various alkenylaluminium reagents 
prepared by hydro/carboalumination. 
 

Table 2 illustrates the scope of viable alkyl halide substrates in the 
coupling reaction. In entries 1–7, the reactivity of a range of primary 
alkyl halides was examined. 1-Iodo- and 1-bromodecane (3a-I and 
3a-Br) gave the desired coupling product 4aa in 73% and 76% 
yields respectively (entries 1 and 2), whereas the reaction with the 
corresponding chloride gave 4aa in only 2% yield (entry 3). The 
reaction of 1-fluorodecane (3a-F) did not proceed at all (entry 4). 
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The results highlight the opposing reactivity profile of the present 
coupling reaction from that of Friedel-Craft-type substitution 
reactions with organoaluminium reagents, where the more 
electronegative fluoride reacts smoothly.22 Bromo- and 
chlorocycloheptane were successfully transformed into the desired 
product 4ab in 91% and 88% yield respectively (entries 5 and 6). An 
acyclic secondary alkyl chloride also participated in the coupling 
reaction to afford product 4ac in 86% yield (entry 7).  
Table 2. Substrate Scope. 

	
     
aSee the Supporting Information for details of the reaction conditions for each 
entry. bThe stereoisomeric ratio was determined by GC analysis. cYield was 
determined by 1H NMR spectroscopic analysis using 1,1,2,2-
tetrachloroethane as an internal standard. 

   The functional group compatibility of the organoaluminium 
reagents under the optimized conditions was demonstrated in the 
reaction of alkyl halides bearing nitrile (3d, 90% yield) and acetoxy 
groups (3e, 49% yield) as shown in entries 8 and 9. The observed 
stereochemical scrambling at the reaction centre of 3e could be 
ascribed to the formation of alkyl radical intermediates, as in related 
coupling reactions.8–13 Further evidence for an radical intermediate 
was provided by the reactions of 6-bromo-1-hexene 3f and 
(bromomethyl)cyclopropane 3g, which resulted in the formation of 
carbocycle product 4af and ring-opening product 4ag in 46%  and 
17%  yields (84% spectroscopic yield) respectively (entries 10 and 
11).  
   Various alkenylaluminium reagents (1e–g), prepared by Zr-
catalysed carboalumination with Me3Al, were subsequently 
employed in the reaction (entries 12–15). Alkylated (E)-styrene 4eb 
was obtained in 49% yield from the reaction of β-styrylaluminium 
1e (entry 12). Olefins bearing halogens on their side chains can serve 
as versatile building blocks, and thus the chemoselectivity of the 
reaction was investigated by comparing substrates containing Csp3–
Br, Csp3–Cl, and Csp2–Br moieties; the reaction proceeded selectively 
at Csp3–Br to provide desired olefins 4fh and 4fi in 78% and 76% 
yield respectively (entries 13 and 14). Finally, tetrasubstituted olefin 
4gj, bearing a coordinative pyridyl group, was obtained in 72% yield 
(E/Z = 64/36) (entry 15).21 It should be noted the chloro group on the 
pyridyl group remained intact during the coupling reaction, showing 
again the preference of Csp3–halogen bond cleavage. 

In conclusion, we have demonstrated that multisubstituted olefins 
can be synthesised in a highly regio- and stereoselective manner via 
alkyne hydro/carboalumination and subsequent iron-catalysed cross 
coupling between the resulting alkenylaluminum species and non-
activated alkyl halides. The use of KF as an additive to activate the 
alkenylaluminium reagents facilitates the unprecedented direct 
introduction of various alkyl side chains, thus reducing the steps of 
olefin synthesis in comparison with the one based on conventional 
Negishi protocol. We envisage that the present methodology based 
on the combination of an organoaluminum reagent and fluoride-
promoted iron-catalysed cross coupling will provide facile access to 
multisubstituted olefins as well as an expedient synthetic method for 
natural or bioactive complex molecules bearing olefin frameworks. 
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