JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

ANALYTICAL POTENTIAL OF RF-PGD-TOFMS FOR DEPTH PROFILING OF OXIDIZED THIN FILM COMPOSITE

C. González-Gago¹, J. Pisonero¹, R. Sandín², J. F. Fuertes¹, A. Sanz-Medel³N. Bordel^{1*}

¹Department of Physics, University of Oviedo, Campus de Mieres, c/ Gonzalo Gutierrez Quirós,

33600 Mieres, Spain

²R&D Department. Acciona Agua S.A.U. Barcelona. Spain.

³Department of Physical and Analytical Chemistry, University of Oviedo, c/ Julian Clavería 8,

33006 Oviedo, Spain

* Corresponding authors. E-mail: bordel@uniovi.es

ABSTRACT

The capabilities of radiofrequency pulsed glow discharge time of flight mass spectrometry (rf-pulsed-GD-TOFMS) for the analysis of thin film composite membranes have been investigated in this work. These semi-permeable membranes, used for water purification and desalinization, consist of a thin film of polyamide on top of a polysulfone porous layer deposited on a support sheet of polyester. The analysed samples were four oxidized swatches obtained using NaClO or ClO_2 (diluted in seawater) as oxidant agents, and a non-oxidized virgin membrane.

The performance of the rf-pulsed-GD-TOFMS prototype was investigated for the detection of both positive and negative analyte ions. Improved depth profiles turned out to be achieved using an Ar pre-chamber that avoids air entrance in the discharge. The detection of polyatomic ion signals was needed to monitor properly the transition between the subsequent sputtered membrane layers. In particular, NH_3^+ and ${}^{12}C^{14}N^-$ polyatomic ions were mainly found at the polyamide layer (in the positive and negative detection modes, respectively), while ${}^{34}S^+$ and ${}^{33}S^1H^-$ ion signals appeared in the polysulfone layer. Qualitative depth profiles of the oxidized samples showed an intense Br ion signal in the polyamide layer. Moreover, Br ion signal was significantly enhanced when NaClO was used as the oxidant agent, in agreement with previous studies. It is considered that the incorporation of Br to the membranes is consequence of its presence in the seawater and of the oxidation process.

INTRODUCTION

Thin film composite (TFC) membranes are semi-permeable membranes used for water purification or desalinization.¹ These membranes used in reverse osmosis (RO) are typically made of a thin film of polyamide on top of a polysulfone porous layer deposited on a support sheet.² This configuration has the properties needed for high rejection of undesired compounds (e.g. salts), high filtration rate and good mechanical strength. One of the main drawbacks of TFC membranes is their oxidation since it is an irreversible process, which turns into lower salt rejection. This oxidation is caused by substances commonly employed in water treatment such as sodium hypochlorite (NaClO) and chlorine dioxide (ClO₂). RO membranes degradation by chlorine compounds involves a polymer deformation (produced by N-chlorination and/or ring chlorination) followed by a de-polymerization.³⁻⁵ Furthermore, the water matrix composition has a high influence on the oxidation processes. For instance, bromide ions in seawater in the presence of chlorine based oxidants could lead to the formation of bromine. Therefore, bromine can take the role usually played by chlorine when brackish or feed water is employed and can contribute to the degradation of the polyamide membrane.^{6,7}

The Fujiwara test has been traditionally used to check the polyamide membrane degradation by halogen exposure (e.g. a small quantity of a dye solution is dropped on the membrane surface, the dye will adhere to the support material that has been oxidized, and these damaged areas will appear as bright pink spots).⁸ Additionally, other techniques, such as ATR-FTIR (Attenuated Total Reflection–Fourier Transform Infrared) and XPS (X-ray photoelectron spectroscopy), have been also employed to determine the oxidation in RO membranes when NaClO acted as the oxidant agent.^{5,9} Those studies have demonstrated that these methods are able to detect the membrane degradation process earlier than the Fujiwara test.

In ATR-FTIR, the chemical degradation and structural modifications of the surface active layer can be detected monitoring changes in the characteristic infrared bands of the polyamide. The ratio between the transmittance bands observed for the degraded membrane and the virgin one can be used as a degradation index. The higher this parameter, the greater is the chemical attack to the polyamide layer.7

The elemental composition and the chemical state of the elements present on the surface of a solid can be measured by XPS. Therefore, it is possible to determine if the halogens present in the oxidized membrane are attached to the polyamide structure evaluating the

photoelectrons binding energy.6 Previous XPS studies found that the binding energy of the photoelectron Cl(2p) measured in membranes oxidized with NaClO or ClO_2 corresponds to chlorine bonded to C.¹⁰ Nevertheless, the main inconveniences of the XPS technique are the high instrumental cost, the high vacuum requirements and the long analysis time necessary for in-depth analysis (e.g. several hours for 100 nm). Therefore, the evaluation of alternative methods able to provide detailed information about the degradation of the polyamide layer in shorter times is of great interest today. In this context, Glow Discharges (GD) coupled to optical emission spectrometry (OES) or mass spectrometry (MS) are widely employed methods for direct solid chemical analysis. Moreover, the relatively soft and fast sputtering processes achieved by GD sources allow fast depth profile analysis with high depth resolution (~ nm).^{11,12} An enormous variety of applications have been developed, including not only the analysis of conducting samples but also of non-conductive materials when using radiofrequency glow discharges (rf-GD). In particular, the recent development of a new rf-pulsed-GD coupled to a time of flight mass spectrometer (TOFMS) has broadened the application fields of this technique, including the analysis of thin polymer films and the determination of anions from halogenated compounds.¹³⁻¹⁶

In this work, the analytical potential of rf-pulsed-GD-TOFMS is investigated for the development of a fast analytical method that allows the characterization of the oxidation degree of TFC membranes that were immersed in seawater. In particular, depth profiling of anion and cation species in oxidized TFC membranes is used to evaluate the membrane degradation as a function of the employed oxidants for water treatments (e.g. NaClO and ClO₂).

EXPERIMENTAL

Sample description

The samples used in this work were provided by Acciona Agua S.A. (Barcelona, Spain). The samples were obtained after treatment of a commercially available TFC membrane (SWHR-380, Dow Filmtec) that consists of a thin film of polyamide (200 nm) on top of a polysulfone porous layer (40 μ m), which is deposited on a support sheet of polyester (120 μ m). Figure 1 shows the sample structure and the layers composition. The virgin membrane (sample 1) was immersed in a solution of sodium bromide (50 mg/L) in milli-Q water and then dried at room temperature. This non-oxidized sample is used as

 reference for bromide ions adsorbed on the polyamide network. The oxidized TFC membranes (samples 2-5) were immersed in a solution of 50 mg/L of NaClO (Barcelonesa de Drogas) or ClO₂ (generated using the standard method 4500-ClO₂-B7,¹⁷ and its concentration determined by DPD, standard method 4500-ClO₂-D.¹⁷) in seawater for several hours, in order to achieve an accelerated oxidation processes. Table 1 shows the oxidant agent and the oxidation time for each sample and Table 2 shows the composition of the seawater solution employed for sample oxidation. Once the oxidation process was finished the membrane swatches were gently cleaned with milli-Q water to stop the degradation process and to ensure that all oxidant species were removed. Further details of about sample preparation are given elsewhere.⁷

Instrumentation

The thin film composite membranes were analyzed using a rf-pulsed-GD-TOFMS prototype developed in the frame of the European project EMDPA.¹⁸ The instrument has been described elsewhere.^{19,20} The GD ion source is a copper-based modified Grimm-type chamber (EMPA, Switzerland) with a 4 mm diameter anode and a 2.5 mm inner diameter flow tube to face the gas flow towards the cathode surface. This ion source is mounted in a GD unit (GD Profiler HR instrument, Horiba Jobin Yvon, France) and coupled to a fast orthogonal time-of-flight mass spectrometer (Tofwerk, Switzerland). The rf-GD-TOFMS instrument can record complete mass spectra with a frequency of up to 100 kHz, and has a mass resolving power of about 3000 (measured at m/z 208).

Rf-power is supplied to the plasma through the backside of the sample by an rfgenerator operating at 13.56 MHz. This generator can work either in continuous mode or in pulsed mode. However, due to the advantages of the pulsed mode,²¹ including reduced thermal effects, enhanced atomization, excitation and ionization by application of high short-term power, the experiments included in this work were carried out in the pulsed mode. After optimization a pulse width of 1ms and a duty cycle of 0.25 were selected for the analysis of TFC membranes.

Constant pressure (200 Pa) and constant forward power (30 W) were used for all the measurements. High-purity argon (99.999% minimum purity) from Air Liquid (Oviedo, Spain) was employed as discharge gas.

In addition, aiming at minimizing the effect of micro-leaks due to the porous nature of the samples, a sealed pre-chamber surrounding the sample was employed. Ar gas is

continuously flowing through this pre-chamber warranting an Ar atmosphere around the examined sample. A schematic showing the design of this pre-chamber can be seen elsewhere.²²

RESULTS AND DISCUSSION

Thin film composite membranes are flexible and porous materials; therefore, it was necessary to fix them to metallic discs using a double face tape in order to gain rigidity and to avoid sample deformation during the GD analysis at low pressure. Moreover, the samples were placed in a pre-chamber purged with continuous flow of Ar to avoid the entrance of air into the plasma region. Figures 2a and 2b show the mass spectra in the range between m/z 13 and 17 obtained for the analysis of virgin TFC membranes by rf-pulsed-GD-TOFMS, without and with using the Ar pre-chamber, respectively. As can be seen, ¹⁶O⁺ ion signal was strongly reduced when the Ar pre-chamber is used. Similar results were observed for polyatomic ions containing oxygen. For instance, (¹⁶O¹H)⁺ ion signal is significantly reduced allowing the determination of (¹⁴N¹H₃)⁺ ion signal, which is used to identify the external polyamide layer. As a result of this study, the Ar pre-chamber was used in all the measurements.

It is well-known that rf-pulsed-GD-TOFMS provides a dynamic plasma with different regions (e.g. prepeak, plateau and afterglow). In this sense, Figure 3 shows ion signal profiles of different analytes along the pulse period. It is observed that analyte ion signals are significantly enhanced in the afterglow region, just when the GD power pulse finishes. Therefore, it was selected as the integration region to obtain the analyte intensities.

Qualitative depth profile of virgin membranes.

Figure 4 shows the qualitative depth profile obtained for the virgin TFC membranes by rf-pulsed-GD-TOFMS at the optimized operating conditions. Since the virgin sample had been immersed in a 50 mg/L solution of NaBr, 23 Na⁺ and 79 Br⁺ ion signals were selected together with 14 N¹H₃⁺ and 34 S⁺. It is observed that there is no sharp interface between the polyamide layer (monitored by 14 N¹H₃⁺) and the polysulfone layer (represented by 34 S⁺).However, an intense 23 Na⁺ ion signal was detected with its maximum just after the one detected for 14 N¹H₃⁺, indicating that sodium is not adhered on the surface but absorbed in the polyamide layer. Conversely, 79 Br⁺ ion signal remains

 at low levels through all the depth profile, suggesting that the immersion of the virgin membrane in the bromide solution does not seem to produce a significant incorporation of this element in the membrane.

Qualitative depth profile of oxidized membranes.

Figure 5 shows the qualitative depth profiles obtained for different oxidized samples using rf-pulsed-GD-TOFMS. Figure 5(a and b) shows the depth profiles of the samples that were immersed for 1 and 3 hours, respectively, in seawater containing NaClO; while Figure 5(c) shows the depth profile of the sample that was immersed for 7 hours in seawater containing ClO₂. It is observed that all the oxidized samples present depth profiles with an intense $^{79}Br^+$ ion signal linked to the external polyamide layer. However, Cl⁺ ion signal was not detected in spite of having immersed the samples in NaClO or ClO_2 . The appearance of Br instead of Cl in the depth profiles is in agreement with previous results obtained by R. Sandín et al.,⁷ using XPS. In that study membrane swatches were immersed in two different solutions containing NaClO as oxidant agent. In one of the solutions Milli-Q water was the solvent while seawater was used in the other one. XPS spectra showed a peak corresponding to Cl(2p) for the sample oxidized in the solution with Milli-O water, but in the other case no peak for Cl was detected and an intense peak corresponding to Br(3d) was observed. These results showed that Br came from the seawater. Additionally, it was concluded that when the degradation process took place in Milli-Q water, chlorination was produced in the polyamide membrane; however, when seawater was used as solvent, bromination took place occurred due to the stronger halogenation effect of hypobromite in comparison to hypochlorite.23,24

As already mentioned, the oxidation of these membranes is typically checked by the Fujiwara test, dropping a small quantity of a dye solution on the membrane surface. A positive result is obtained if the oxidized material in contact with this dye solution brings about a bright pink colour. Interestingly, Fujiwara tests carried out for the membrane swatches exposed to seawater solutions containing NaClO or ClO_2 provided positive results only after exposure times longer than 3 hours in NaClO and after 13 hours in ClO_2 ²⁵ while the analysis by GD-TOFMS showed that the oxidation takes place before.

XPS analysis carried out for the virgin membrane and oxidized samples showed that the longer the oxidation time the higher the observed Br content; and that Br concentration

is higher for the samples oxidized with NaClO using the same oxidation exposure time.²⁵ Our results using rf-pulsed-GD-TOFMS also show the apparently faster Br incorporation to the membrane when the oxidation agent is NaClO. To properly compare the $^{79}Br^+$ depth profiles obtained for the different samples Figure 5d shows the normalized depth profiles resulting of plotting the ratio between the intensities measured for ${}^{79}\text{Br}^+$ and $({}^{14}\text{N}^1\text{H}_3)^+$ versus the sputtering time. These results show clearly the higher oxidation effect of NaClO as well as the increasing Br content in the polyamide layer when the samples are subjected to longer oxidation times. This effect is evident for the profiles of samples oxidized with ClO_2 solution for 1 and 7 hours. On the other hand when using NaClO as oxidant agent the maximum value of the normalized Br intensity is similar for samples oxidized for one and three hours but it seems that Br penetrates deeper when the oxidation time increase. Although the obtained depth profiles have shown good reproducibility, it cannot be completely discarded that other effects, such as for example small changes in the sputtering rates, could also influence in the resulting qualitative depth profiles. Further analysis of samples oxidized for different times would be necessary to investigate in detail the relationship between Br concentration and oxidation time.

Qualitative depth profile of TFC membranes in negative mode.

Although chlorine is the element introduced in the oxidant agents, the main change observed in the membrane when oxidized is the presence of Br in the polyamide layer coming from the seawater. These two elements have high ionization potential and therefore its detection as positive ions is not efficient in an Ar plasma (IP_{Cl}=12.97 eV, IP_{Br}=11.81 eV, E^{m}_{Ar} =11.55 and 11.72 eV). Nevertheless, their detection in negative mode could be analytically useful. Consequently, the performance of rf-pulsed-GD-TOFMS operating in negative mode for the analysis of the virgin and oxidized membranes was also investigated. To carry out such analyses in the negative mode, the glow discharge was operated at the same optimized experimental conditions (200 Pa, 30 W, 1 ms pulse width and 0.25 duty cycle.

Figure 6 shows the mass spectra obtained for the virgin membrane in the polyamide layer using both detection modes (e.g. positive and negative) of the rf-pulsed-GD-TOFMS. It is observed that high ion signals of Cl⁻ and Br⁻ are detected in the negative mode, even in the virgin membrane. In the particular case of Cl⁻, this signal was detected not only in the mass spectrum of the polyamide layer but also when the

polysulfone layer was sputtered. These results and previous evidences when analyzing other samples in negative mode indicated that Cl ions were coming from other parts of the GD source (e.g. background from o-rings or spacers used in the instrument). Moreover, it is noticed that different analytes dominate the mass spectra in the negative mode when comparing with the positive one. For instance, in positive mode ¹⁴N¹H₃ ion signal was used to depict the polyamide layer. However in negative mode at m/z=17 it is only observed the presence of ¹⁶O¹H (see inlet of Figure 6). Both ion signals ¹⁴N¹H₃ and ¹⁶O¹H can be resolved due to the high mass spectral resolution of the rf-pulsed-GD-TFMS system (Figures 2 and 6). Therefore, different layers of the TFC membranes: ¹²C¹⁴N⁻ was selected to monitor the polyamide, and ³²S¹H⁻ was selected to monitor the polysulfone (see inlet of Figure 6).

Figure 7a shows the depth profile obtained in the negative mode for the virgin membrane. In this profile, the in-depth distribution of the interface between the polyamide and the polysulfone as is similar to that obtained in positive mode (see Figure 4) and, as expected, it presents a low ⁷⁹Br⁻ intensity. Figure 7b compares the normalized -depth profiles of ⁷⁹Br⁻ (ratio between the intensities measured for ⁷⁹Br⁻ and $(^{12}C^{14}N)^{-}$ versus the sputtering time) measured for the virgin sample and for the different oxidized membranes. It is noticed that Br⁻ ion signal is significantly increased for the oxidized by NaClO. The results are in complete agreement with those obtained by rf-pulsed-GD-TOFMS in positive mode (Figure 5d): the Br content increases with the oxidation time, which is particularly clear when membrane oxidation took place in a ClO₂ solution while the effect of longer immersion in NaClO solution gives as a result the deeper penetration of Br inside the polyamide.

According to XPS analysis, Cl is present at the surface of the virgin membranes probably due to post-treatment that is used to change the membrane hydraulic properties (i.e. permeate flux and salt rejection). Moreover, oxidized sample had similar Cl content independently of the oxidation time or oxidizing agent.²⁵ Unfortunately, reliable information about Cl could not be extracted from the rf-pulsed-GD-TOFMS analysis due to its high background (e.g. background from o-rings or spacers used in the instrument). In consequence it is not possible to discern if Cl measured in the membrane analysis comes really from the samples or there are other contributions.

The potential of rf-pulsed-GD-TOFMS to collect complete mass spectra (up to m/z =250) at high repetition rates was used to detect the presence of relevant ion signals at high masses. For instance, Figure 8 shows the mass spectra obtained at the surface of the membranes in the interval between m/z=125 and m/z=131 for all the samples. It is observed that, for the virgin membrane, there is a prominent ion signal at m/z=127. This ion signal has not been assigned to any polyatomic ion because different combinations could be considered. This signal could correspond to a fragment sputtered from the polyamide layer but also could be the result of the recombination among smaller ion fragments present in the plasma. Surprisingly this ion signal is not so prominent in the mass spectra of the oxidized samples as can be seen in the Figure 8. Figure 9 shows the depth profile (e.g. first 25 s) of m/z=127 ion signal measured for the virgin sample and for the different oxidized membranes. Ion signal from m/z=127 is only present during the first seconds of the analyses while the maximum of the polyamide layer is obtained at around 50 s in the depth profile, so it seems that a very thin layer is formed in the surface of the membrane, which gets degraded when the sample is oxidized. Moreover, this degradation seems to be progressive with the oxidation time and also more effective when the oxidant agent is NaClO instead of ClO₂. The possible presence of a thin coating over the polyamide layer was investigated by C. Y. Tang et al. concluding that some commercial membranes contained an aliphatic coating layer rich in -COH groups over the polyamide layer.²⁶ Moreover studies carried out by A. Antony et al. showed that this coating could be lost during the oxidation.9

CONCLUSIONS

This work has shown that the rf-pulsed-TOFMS is a powerful tool for the fast analysis of flexible and porous thin film composite membranes. In particular, appropriate operating conditions can be achieved for the analysis of these membranes using a proper rigid support and an Ar pre-chamber that avoids the air entrance in the discharge.

The positive and the negative detection modes of the rf-pulsed-GD-TOFMS system provided adequate depth profiles of the TFC membranes (e.g. virgin and oxidized), showing that Br is incorporated in the whole polyamide layer and not only in the surface. Moreover, a higher content of Br is observed in the samples oxidized with the stronger oxidant agent (e.g. NaClO versus ClO₂).

In both positive and negative modes, it has been possible to confirm a correlation between the oxidation time and the normalized Br intensity in the profile. Moreover, the Page 11 of 27

detection of the negative polyatomic ions at m/z=127 seems to show that there is a certain "degradation" in the more external region of the polyamide caused by the oxidation process. In this case, a negative correlation between the oxidation time and the intensity of this signal is observed being this effect more pronounced when the oxidant agent is NaClO.

ACKNOWLEDGMENTS

Financial support from "Plan Nacional de I+D+I" through MAT2010-20921 (Spanish Ministry of Science and Innovation and FEDER Programme) and CTQ2013-49032-C2-2-R Spanish Ministry of Economy and Competitiveness and FEDER Programme is acknowledged. We also thank to Horiba Jobin Yvon for the loan of the rf-pulsed-GD-TOFMS prototype.

REFERENCES

- K. P. Lee, T. C. Arnot and D. Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci., 2011, 370, 1-22.
- [2] W. J. Lau, A. F. Ismail. N. Misdan, M. A. Kassim, A recent progress in thin film composite membrane: A review. Desalination, 287 (2012) 190-199.
- [3] S. Avionitis, W.T. Hanbury, T. Hodgkiess. Chlorine degradation of aromatic polyamides. Desalination 85 (1994) 321-324.
- [4] R. Singh. Polyamide polymer solution behavior under chlorination conditions. J. Membr. Sci., 1994, 88, 285-287.
- [5] G. Kang, C. Gao, W. Chen, X. Jie, Y. Cao and Q. Yuan, J. Membr. Sci., 2007, 300, 165-171.
- [6] C. Fritzmann, K. Lawenberg, T. Wintgens, T. Melin. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1-76.
- [7] R. Sandín, E. Ferrero, C. Repollés, S. Navea, J. Bacardit, J. P. Espinós and J. J. Malfeito, Reverse osmosis membranes oxidation by hypochlorite and chlorine dioxide: spectroscopic techniques vs. Fujiwara test. Desalin. Water Treat., 2013, 51, 318-327.
- [8] T. Uno, K, Okumura and Y. Kuroda, Mechanism of the Fujiwara reaction: structural investigation of reaction products from benzotrichloride, J. Org. Chem., 1981, 46, 3175-3178.
- [9] A. Antony, R. Fudianto, S. Cox and G. Leslie, Assessing the oxidative degradation of polyamide reverse osmosis membrane—Accelerated ageing with hypochlorite exposure. J. Membr. Sci., 2010, **397**, 159-164.
- [10] S. Beverly, S. Seal, S. Hong. Identification of surface chemical functional groups correlated to failure of reverse osmosis polymeric membranes. J. Vac. Sci. Technol. A. 2000, 18, () 1107-1113.
- [11] R. Escobar Galindo, R. Gago, A. Lousa and J.M. Albella, Comparative depth-profiling analysis of nanometer-metal multilayers by ion-probing techniques. Trends Anal. Chem., 2009, 28, 494-505.
- [12] J. Pisonero, B. Fernandez, R. Pereiro, N. Bordel, A. Sanz-Medel, Glow-discharge spectrometry for direct analysis of thin and ultra-thin solid films. Trends Anal. Chem., 2006, 25, 11-18.
- [13] N. Tuccitto, L. Lobo, A.Tempez, I. Delfanti, P. Chapon, S. Canulescu, N. Bordel, J. Michler, A. Licciardello, Pulsed radiofrequency glow discharge time-of-flight mass spectrometry for molecular depth profiling of polymer-based films. Rapid Commun.MassSpec., 2009, 23, 549-556.

- [14] L. Lobo, N. Tuccitto, N. Bordel, R. Pereiro, J. Pisonero, A. Licciardello, A. Tempez, P. Chapon, Polymer screening by radiofrequency glow discharge time-of-flight mass spectrometry. Anal. Bioanal. Chem., 2010, **396**, 2863–2869.
- [15] S. Canulescu, J. Whitby, K. Fuhrer, M. Hohl, M. Gonin, Th. Horvath, J. Michler, Potential analytical applications of negative ions from a pulsed radiofrequency glow discharge in argon. J. Anal. At. Spectrom., 2009, 24,178–180.
- [16] C. González de Vega, L. Lobo, B. Fernandez, N. Bordel, R. Pereiro, A. Sanz-Medel, Pulsed glow discharge time of flight mass spectrometry for the screening of polymer-based coatings containing brominated flame retardants. J. Anal. At. Spectrom., 2012, 27, 318-326.
- [17] D. Santos, Standard methods for drinking water and waste-water analysis. Madrid 1992
- [18] Sixth Framework programme, European Union, Priority [3] (NMP Nanotechnologies and nano-sciences, knowledge based multifunctional materials and new production processes and devices)- Contract STREP-NMP, nº 032202, (2006).
- [19] A.C. Muñiz, J. Pisonero, L. Lobo, C. Gonzalez, N. Bordel, R. Pereiro, A. Tempez, P. Chapon, N. Tuccitto, A. Licciardello, A. Sanz-Medel, Pulsed radiofrequency glow discharge time of flight mass spectrometer for the direct analysis of bulk and thin coated glasses. J. Anal. At. Spectrom., 2008, 23, 1239-1246.
- [20] M. Hohl, A. Kanzari, J.Michler, Th.Nelis, K. Fuhrer and M.Gonin, Pulsed r.f.-glowdischarge time-of-flight mass spectrometry for fast surface and interface analysis of conductive and non-conductive materials. Surf.Interface Anal., 2006, 38, 292–295.
- [21] L. Lobo, J. Pisonero, N. Bordel, R. Pereiro, A. Tempez, P. Chapon, J. Michler, M. Hohl and A. Sanz-Medel, A comparison of non-pulsed radiofrequency and pulsed radiofrequency glow discharge orthogonal time-of-flight mass spectrometry for analytical purposes. J. Anal. At. Spectrom., 2009, 24, 1373–1381.
- [22] L. Lobo, N. Bordel, R. Pereiro, A. Tempez, P. Chapon, A. Sanz-Medel. A purged argon pre-chamber for analytical glow discharge—time of flight mass spectrometry applications J. Anal. At. Spectrom., 2011, 26, 798–803.
- [23] K. Ichihashi, K. Teranishi, A. Ichimura, Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromiteions. Wat. Res. 1999, 33, 477-483.
- [24] E. A. Voudriast and M. Reinhard, Reactivities of Hypochlorous and Hypobromous Acid, Chlorine Monoxide, Hypobromous Acidium Ion, Chlorine, Bromine, and Bromine Chloride in Electrophilic Aromatic Substitution Reactions with *p* -Xylene in Water. Environ. Sci. Technol. 1988, 22, 1049-1056.

- [25] R. Sandín, E. Ferrero, C. Repollés, J. P. Espinós, N. Bordel, C. González-Gago, J. J. Malfeito, Oxidación de membranas de ósmosis inversa. Mecanismo de degradación en agua de mar. XAEDyR International Congress. Seville (Spain) 26-28 November, 2014
- [26] C.Y. Tang, Y.-N. Kwon, J. O. Leckie, Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements J. Membr. Sci. 2007, 287 146–156.

³⁴S lon Intensity (x10⁵ cps)

