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We employ the coupled dipole method [B. W. Kwaadgras et. al., J. Chem. Phys. 135, 134105
(2011)] to calculate the orientation-dependent interaction of polarizable colloidal rods with an ex-
ternal electric �eld. We project the angular distribution function of a system of such rods on a
quasi-two-dimensional slab, corresponding to the focal plane of a microscope, and show that the
3D nematic order parameter and its measurable projected analogue are very similar. We compare
our results to confocal microscopy measurements on the orientation distribution function of sys-
tems of polarizable colloidal silica rods in an external electric �eld, demonstrating reasonably good
agreement between theory and experiment without any free �t parameter.

INTRODUCTION

The self-assembly of Brownian nanoparticles received
much attention in recent years, which is to a large extent
due to their ability to form ordered structures. This is
of great interest for materials science, since these nanos-
tructures may yield new applications.

Electric �elds can be used to control the orienta-
tion and relative position of anisotropic polarizable col-
loidal particles [1�11], which is of great practical inter-
est, since it creates the possibility of in�uencing and di-
recting the self-assembly process of such systems. This
practical potential is demonstrated by applications such
as e-paper [12] and liquid-crystal displays [13]. Re-
cently, great progress has been made in the synthesis of
anisotropic colloidal particles, such as rod-like particles
[14�16], dimer particles [10, 11, 17�24] and bowl-shaped
particles [25�31]. For such anisotropic particles, the cou-
pled dipole method (cdm) has been employed successfully
to calculate properties such as the polarizability tensor
[8, 32], the orientation-dependent energy [8, 9], and the
electric-�eld induced dipole interactions [33]. This has
been done for many di�erent particle shapes, including
needles, bowls, dumbbells, cuboids [8] and many others.
Here, we use a similar theoretical framework to calcu-
late the orientation-dependent energy of a polarizable
colloidal rod in a high-dielectric solvent subject to an
external electric �eld, and from this its thermal orienta-
tion distribution function. We then proceed to compare
the theoretical predictions to experimental confocal mi-
croscopy measurements in dilute systems using a novel
experimental model system of colloidal silica rods of vary-
ing length L and diameter D.

Confocal microscopy [34] is an important experimen-
tal tool to quantitatively visualize the self-assembly pro-
cess or the resulting self-assembled structure using three-
dimensional (3D) data sets, which are built up from
stacks of 2D slices. 3D position coordinates for spherical

particles [34], and for rod-like particles also the orienta-
tion [35], can be obtained from such data sets. However,
if the dynamics of the individual particles is too fast com-
pared to the time it takes to obtain such 3D stacks, as
is the case with the rod-like particles studied in this pa-
per, this 3D construction process from many 2D slices
is not possible. One way to still follow the dynamics
or a self-assembly process under these conditions is to
acquire 2D slices as quickly as possible. An important
complication that manifests itself in this case in confo-
cal measurements of anisotropic particles is that only the
projection of each particle onto the focal plane, as deter-
mined by the width of the point spread function along the
optical axis [34], is observable. This not only leads to an
apparent polydispersity because di�erent orientations of
identical particles lead to di�erent projection shapes, but
it also leads to an orientation dependent detection e�-
ciency since particles with their center of mass outside the
plane may get detected anyway if a "tip" resides inside
the focal plane. In this paper we address these projection
and detection issues for the case of homogeneously �u-
orescently labeled micron-sized cylindrical rods aligned
by an external electric �eld. Interestingly, and perhaps
surprisingly, we will show that reliable information on
the full (unprojected) orientation distribution can be ob-
tained from measurements of the projected orientations.

Below we develop a method to compare the measured
orientation distribution function in an essentially two-
dimensional confocal slab of �nite thickness ∆ to the fully
3D-resolved distribution Ψ(θ) that follows directly from
our theory with θ the angle between the applied electric
�eld and the long axis of a rod. We �nd rather good
agreement between theory and experiment, without any
free �t parameter. In addition, we will also show that the
nematic order parameter obtained from rod-orientations
projected onto the focal plane agree remarkably well with
the nematic order parameter based on the fully 3D (un-
projected) orientations of the rods. This �nding is also
relevant for the interpretation of confocal microscopy ob-
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servations of other anisotropic particles that move too
quickly with respect to the time it takes to acquire 3D
data sets.

CDM OF A POLARIZABLE PARTICLE IN A

SOLVENT

We consider a single rod of dielectric constant ε1 in a
solvent of dielectric constant ε2 in a homogeneous and
static external electric �eld E that polarizes both the
solvent and the rod as illustrated in Fig. 1. We describe

Figure 1. Sketch of a colloidal rod of dielectric constant ε1 in
a solvent of dielectric constant ε2 exposed to a homogeneous
external electric �eld E.

the dielectric rod in terms of polarizable units that we
call atoms for simplicity. The atoms are located on a
�xed cubic grid of N lattice sites ri with 1 ≤ i ≤ N
such that they build up the rod. They are modeled as
Lorentz-atoms with a dipole moment pi = eui, with e
the e�ective electron charge and ui the displacement of
the e�ective electron cloud with respect to ri [8]. The
atom's polarization pi is linearly dependent on the local

electric �eld E
(i)
loc that atom i is subjected to, so

pi = αE
(i)
loc. (1)

Here, α is the molecular excess polarizability given by
the Clausius-Mossotti relation

α =
3

4π

ε2
n0

ε1 − ε2
ε1 + 2ε2

, (2)

where n0 denotes the number density of the dipoles in
the rod. We note that the Clausius-Mossotti relation
may lead to negative as well as positive values for α. It
is important to note that pi and ui are anti-parallel to

E
(i)
loc when α < 0. In other words, the physics for α > 0

is not identical to that of α < 0 because the induced
electric �eld due to neighboring atoms is to be added to
or subtracted from the applied electric �eld, as will be
made explicit below.

The Lorentz atoms couple to the external electric �eld
E by an energy −eui ·E and to each other through a pair
potential −e2ui ·T(ri − rj) · uj , where i and j represent
atoms separated by a spatial distance ri − rj and where
the dipole tensor is given by

T(r) =


3r̂r̂− I

ε2 |r|3
, if r 6= 0;

0, if r = 0,

(3)

with r̂ = r/|r| a unit vector, I the 3× 3 identity matrix,
and 0 the corresponding null matrix.
Note that a dipole at position rj generates an electric

�eld at position ri given by Tij · pj such that the local
electric �eld can be written as

E
(i)
loc = E +

∑
j

Tij · pj , (4)

where E is the external electric �eld as introduced above
and Tij is short for T(ri − rj).
Combining Eq. (1) with Eq. (4), we �nd

pi = αE + α
∑
j

Tij · pj , (5)

which we rewrite in matrix form as

(I − αT ) · P = αE . (6)

Here, P is a vector with 3N entries containing the N
dipole moment vectors pi, while E contains N copies
of the external electric �eld E. We also introduced the
3N × 3N unity matrix I and the 3N × 3N matrix T ,
which has entries that are given by the Tij . Eq. (6) is a
3N × 3N linear algebra problem for the dipoles pi that
can be solved numerically with standard methods. The
potential energy VE is the energy of N induced dipoles
given by [1, 8]

VE = −1

2

N∑
i=1

pi ·E = −1

2
E ·αc ·E, (7)

where the 3×3 excess polarizability tensor αc of the rod
is de�ned by ∑

i

pi = αc ·E, (8)

such that

αc = α
∑
i,j

Dij , (9)

with Dij given by the 3×3 dimensional sub blocks of the

3N × 3N matrix (I − αT )
−1

[8]. For a uniaxial rod-like
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particle, αc can be diagonalized with only two indepen-
dent entries, denoted by αc,‖ and αc,⊥. We then �nd
that the orientation-dependent excess potential energy
VE takes a particularly simple form [8],

VE(θ) = −1

2

(
αc,‖ − αc,⊥

)
|E|2 cos2 θ + const

= −1

2
Nα(f‖ − f⊥)|E|2 cos2 θ + const, (10)

where we used the angle θ ∈ [0, π/2] between the sym-
metry axis of the rod and the electric �eld. We introduce
the so-called anisotropy factor

(
f‖ − f⊥

)
, which is a di-

mensionless measure for the eigenvalue di�erence of the
eigenvectors of αc parallel and perpendicular to E, with
f‖ = αc,‖/Nα, and f⊥ = αc,⊥/Nα.
In order to solve Eq. (6) for P, we have to ensure

that all eigenvalues of (I − αT ) remain positive. Fig.
2(a) shows λmin, the smallest eigenvalue of (I − αT ),
as a function of α/a3, for three di�erent lattice spacings
a, for a spherocylinder of length-to-diameter ratio 2.4.
We see that the absolute value of α/a3 must not be too
large, otherwise the coupled dipole method breaks down,
a phenomenon known as the polarization catastrophe.
This catastrophe is due to an unphysically diverging po-
larisation, where the linear response relation of Eq. (1)
breaks down [32]. To avoid this, we must choose α such
that −0.12 . α/a3 . 0.19, where we note that the lower
bound is close to our experimental system of silica rods in
a solvent mixture of water and dimethylsulfoxide (see be-
low). We repeated these calculations for spheres and for
spherocylinders with L/D = 5, and found that this range
for α also holds in those cases. We also see from Fig. 2(a)
that λmin decreases as we decrease the lattice constant
(and hence increase the number N of dipoles that build
up the rod). This e�ect is more pronounced for negative
values of the polarizability than for positive ones. It ap-
pears from Fig. 2(b), however, that the anisotropy factor(
f‖ − f⊥

)
is not strongly dependent on the value of the

lattice constant a/D used. For comparison, we also plot
the anisotropy factor using the decoupled dipole method
(ddm), i.e., a grid with dipoles of equal magnitude and
direction pi = αE, yielding a potential energy of

V ddm(θ) = −α
2|E|2

2

∑
i 6=j

3 cos2 θi,j − 1

r3ij
+ const, (11)

where θi,j denotes the angle between rij and E, with
rij the vector between dipoles i and j, and rij = |rij |.
Note that here, each dipole has the same dipole moment,
disregarding the in�uence that other dipoles can have on
the magnitude and direction of each of them, an e�ect
that is incorporated in the cdm through the second term
on the right of Eq. (5). The anisotropy factor is given
by

fddm‖ − fddm⊥ = −2
V ddm(θ = 0)− V ddm(θ = π)

NαE2
. (12)

Note that Eq. (11) corresponds to the small-α limit of
Eq. (10), since αc = NαI + α2t + O(α3), where t =∑
i,j Tij is a 3 × 3 matrix that depends on the shape

of the particle. Within this limit we �nd that VE(θ) ≈
−α2(t‖ − t⊥) cos2 θ|E|2/2.
From Fig. 2(b) it is clear that for negative α, the

anisotropy factor
(
f‖ − f⊥

)
computed with the cdm con-

verges to that of the ddm. We thus �nd that the de-
coupled dipole method can be used to approximate the
anisotropy factor, yielding accurate results for negative
α, at least in the parameter regime of present interest.
This is a very useful result, since the computation of
anisotropy factors with the ddm is computationally less
involved than the equivalent cdm procedure, and is not
limited to as narrow a range of polarizabilities as the
cdm since it circumvents the polarization catastrophe. Of
course the actual accuracy of the ddm for deeply negative
polarizabilities is not guaranteed, we just have nothing to
compare it to in this regime.
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Figure 2. (a) The value of λmin, the smallest eigenvalue of
(I − αT ), of a spherocylinder with length-to-diameter ratio
L/D = 2.4, as a function of the polarizability α, as calculated
with the coupled dipole method for di�erent lattice spacings
a. The cdm is only applicable if this smallest eigenvalue is
larger than zero, corresponding to a range of approximately
−0.12 . α/a3 . 0.19. (b) Anisotropy factor

(
f‖ − f⊥

)
of the

system. The result for the decoupled dipole method (ddm) is
also shown (see text).

ORIENTATION DISTRIBUTION

We consider a dilute system of colloidal rods, modeled
as spherocylinders with cylinder length L and diameter
D, in a dielectric liquid medium exposed to the external
electric �eld E. The excess interaction strength between
one spherocylinder and the electric �eld is given by Eq.
(10), and hence the probability distribution Ψ(θ) of the
relative angle θ ∈ [0, π/2] between a rod and the electric
�eld can be written as the normalized Boltzmann factor
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associated with the energy VE(θ), which is given by [37]

Ψ(θ) =
e−βVE(θ)∫ π/2

0
dθ sin θe−βVE(θ)

, (13)

where β−1 = kBT with T the temperature and kB the
Boltzmann factor.

We introduce the order parameter

S =

∫ π/2

0

dθ sin θΨ(θ)
3 cos2 θ − 1

2
, (14)

which is a quantitative measure of the �eld-induced ne-
matic ordering of the rods, yielding S = 1 for perfect
alignment and S = 0 for an isotropic angular distribu-
tion function.

Although the distribution Ψ(θ) and the order parame-
ter S are natural quantities to consider from a theoretical
perspective, they are not necessarily the most convenient
measurable quantities. Below we will present confocal
microscopy measurements in which slices of 3D samples
are imaged, showing only projections of rods onto the
confocal imaging plane. In order to bridge the gap be-
tween theoretical and experimentally accessible quanti-
ties, we now calculate the projected 2D orientation dis-
tribution function Ψ2D(θ′) and the associated nematic
order parameter S2D from our fully 3D theoretical pre-
dictions as follows. In a single confocal microscopy im-
age the angle θ′ between the electric-�eld direction ê and
the projected particle orientation vector w′ is measured,
rather than the polar angle θ = arccos(ŵ · ê) between the
electric �eld and the actual orientation of the rod ŵ, see
Fig. 3. Here the projected orientation vector is de�ned
as w′ ≡ ŵ − (ŵ · n̂) n̂, where n̂ denotes the normal of
the focal plane. Note that w′ is not a unit vector. In our
experiments the focal plane is chosen such that n̂ ⊥ ê,
see Fig. 3. Elementary geometry relates the polar angle
θ and the azimuthal angle φ of ŵ to the measured angle
θ′ by

|sinφ| = tan θ′

tan θ
, (15)

where we use the convention that the azimuthal angle
satis�es ŵ · n̂ = sin θ cosφ and ŵ · x̂ = sin θ sinφ (and
hence ŵ · ê = cos θ). Our measurements are also a�ected
by the �nite depth ∆ of the focal plane (in the direction

parallel to n̂). If the size of ∆ is of the same order of
magnitude as the spatial dimensions of the rods in the
experiment, the probability of detecting a rod in the focal
plane is orientation dependent, with rods with ŵ ‖ n̂ hav-
ing relatively large detection probability since their end
may �stick� into the focal plane even though their center
of mass position is not in the focal plane. It is reasonable
to assume that a spherocylindrical rod of cylinder length
L, diameter D and orientation ŵ gets detected with a
probability that is proportional to ∆ +D+L(ŵ · n̂), cor-
responding to an e�ective length interval of the center of

Figure 3. (a) Schematic representation of the rod orientation
ŵ with respect to the focal plane of thickness ∆ and normal n̂,
in the presence of an in-plane electric �eld E. (b) Schematic
representation of the projection w′ of the rod orientation ŵ
onto the focal plane. Here, θ denotes the polar angle of ŵ
w.r.t. ê, φ the azimuthal angle of ŵ, and θ′ the angle between
ê and w′. Here, we choose the coordinate system such that
the x̂-direction is perpendicular to n̂ and ê, with the unit
vector ê ‖ E.

mass in which the rod can be detected in the direction
perpendicular to the focal plane (note that D+L(ŵ · n̂)
is the end-to-end length L+D of the rod projected onto
the normal direction). We furthermore assume that the
angular distribution is uniaxial about E such that it is
independent of the azimuthal angle φ. Using the weight
factor ∆+D+L cosφ sin θ to account for the orientation-
dependence of the probability of detecting a rod of ori-
entation (θ, φ), and taking into account the uniaxiality
and the geometric relation of Eq. (15), the probability
distribution for the projected orientation reads

Ψ2D(θ′) =

∫ π/2
0

dθ sin θ
∫ π/2
0

dφΨ(θ) (∆ +D + L sin θ cosφ) δ (|sinφ| − tan θ′/ tan θ)∫ π/2
0

dθ′
∫ π/2
0

dθ sin θ
∫ π/2
0

dφΨ(θ) (∆ +D + L sin θ cosφ) δ (|sinφ| − tan θ′/ tan θ)
, (16)

which is normalized such that
∫ π/2
0

dθ′Ψ2D(θ′) = 1 is ensured.
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The corresponding order parameter of the projected
angular distribution is de�ned by

S2D =

∫ π/2

0

dθ′Ψ2D(θ′) cos (2θ′) , (17)

and takes values between 0 (no ordering) and 1 (per-
fect ordering along ê). Fig. 4 compares S2D with
the three dimensional order parameter S for a variety
of dimensionless length-to-e�ective-plane-thickness ratios
l = L/(D + ∆), revealing that S2D ≈ S for all l and
S ∈ [0, 1]. In other words, measuring the projected order
parameter S2D yields a reliable estimate for the standard
3D nematic order parameters S, at least for the func-
tional form Ψ(θ) ∼ exp{C cos2 θ} that follows from Eq.
(10) and (13). Here C = β(αc,‖ − αc,⊥)|E|2/2 uniquely
determines S, leaving l as the only remaining dimension-
less parameter in the comparison between S2D and S.
We wish to remark here that in the experiments on silica
rods, which are described below, the length-to-e�ective-
plane thickness ratio l ranges from [0.9, 1.8].

 0
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 0  0.2  0.4  0.6  0.8  1

S
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l=0    

l=5    

l → ∞
S2D=S

Figure 4. The projected 2-dimensional order parameter S2D

as a function of the standard 3-dimensional nematic order pa-
rameter S for di�erent values of the length-to-e�ective-plane-
thickness ratio l = L/(D + ∆). For comparison, we also plot
the line S2D = S.

EXPERIMENTS

In this section we discuss the colloidal silica rods, and
the measurement of their projected orientation distribu-
tion functions when exposed to an external electric �eld.
We compare this orientation distribution function to the
results of the cdm.

L/D L [nm] D [nm] ∆fcdm ∆fddm

B47 2.4 1480± 160 620± 40 −0.4444 −0.4572
B31 2.7 1730± 190 640± 50 −0.4621 −0.4753
N51 4.0 2130± 230 530± 30 −0.5126 −0.5280
B35 5.0 2750± 270 550± 60 −0.5366 −0.5533

Table I: Dimensions of rods utilized in the experiments
and the corresponding values of ∆f = f‖ − f⊥ as com-
puted with the coupled dipole method for a lattice spac-
ing of a/D = 0.13 and the decoupled dipole method for
a/D = 0.05.

We synthesized four batches of micron-sized silica
rods [15, 16]. Systems B35 and B31 consisted of non-
�uorescent core particles with a 30 nm FITC-labeled �u-
orescent inner shell and a 190 nm non-�uorescent outer
shell. The rods of B47 had a FITC-labeled core and a 150
nm non-�uorescent shell. Systems N51 had a rhodamine
isothiocyanate (RITC) labeled core and a 150 nm non-
�uorescent shell. Due to the coated silica layers the parti-
cles had approximately the shape of a spherocylinder. We
denote by L the length of the cylindrical segment and by
D the diameter (values are shown in Table I). The total
length of the rods is therefore L+D. We prepared dilute
dispersions of these rods in a solvent mixture consisting
of dimethylsulfoxide (DMSO) with a dielectric constant
of 47 and ultrapure water with a dielectric constant of 80.
The volume ratio between DMSO and water was 10/0.85
yielding a dielectric constant ε2 = 50 for the medium.
The volume fraction of rods in the solvent was about
0.0025, which is a factor 200 below any expected order-
ing transition and so low that the interactions between
rods can safely be ignored [38]. For the sample cells,
0.2×0.2 mm capillaries were used, with two sides coated
with gold. A �eld perpendicular to gravity was created
by two 50 µm wires that were connected to the capil-
lary by silverpaint (SPI-paint), with each wire wrapped
around a standard electronic wire. For con�gurations in
which several layers of material are positioned between
the electrodes, which is the case when the electrodes are
on the outside of the capillary, the electric �eld inside
any of these layers can be calculated by:

Ei =
V

εi

(
ε1ε2ε3

d1ε2ε3 + d2ε1ε3 + d3ε1ε2

)
, (18)

with V the applied voltage, εi the dielectric constant of
the material the �eld strength is calculated in, ε1−3 the
dielectric constants of layers 1−3 and d1−3 the thickness
of layer 1 − 3. In our cells, which consist of two layers
of glass (d = 0.1 mm, ε = 3.5) and one layer of solvent
(DMSO/water, d = 0.1 mm, ε = 50), the �eld inside
the solvent can thus be calculated by E = 3.4 · 10−4V
(V/µm). A function generator (Agilent, type 33220A or
33120A) was used to generate a sinusoidal signal with a
frequency of 1 MHz and an amplitude of 3.0 V. The gen-
erated signal was send to the sample via a wide band am-
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pli�er (Krohn-Hite, 7602M)), which was used to control
the �eld strength in the sample cell. The �eld strength
was measured by an oscilloscope (Tektronix, TDS3012B
or TDS3052). We studied these systems in an exter-
nal electric �eld with a confocal microscope (Leica SP2),
with the electric �eld direction ê and the normal n̂ of
the confocal planes as indicated in Fig. 3, where we es-
timate ∆ ≈ 1µm. The projected orientation of the rods
was determined by analyzing 2D confocal images of rods
during sedimentation using an algorithm based on the
one described in Ref. [35]. By a counting and binning
procedure we measured the projected orientation distri-
bution functions Ψ2D(θ′) for our four di�erent batches
of particles, each at several di�erent �eld strengths. A
selection of these results is shown in Fig. 5, revealing (as
expected) that the rods can indeed be aligned by �eld
strengths of the order of several tens of V/mm, the more
so for stronger �elds. In Fig. 5 we also compare these ex-
perimental observations with the theoretical predictions
that follow from Eqs. (10), (13) and (16), where the
parameter α = −0.281 nm3 follows from Eq. (2) with

ε1 ≈ 3.5 and n0 = 19.07 nm−3 (silica), and ε2 ≈ 50.
The parameters f‖ and f⊥, the combination of which is
given in Table I, follow accurately from applying the cou-
pled dipole method, in particular Eq. (9), for N equal to
several hundred to a thousand dipoles on a cubic lattice
�lling up spherocylindrical shapes with cylinder length L
and diameter D [8, 9]. Note that the value of α is close
to the polarization catastrophe, prohibiting us from using
very small lattice spacings when applying the cdm. To
test our results for the anisotropy factors as calculated
with the cdm for a/D = 0.13, we compare them with
the results obtained with the ddm for a/D = 0.05, see
Table I. Both sets of results agree well, with a relative
di�erence of about three percent between them. Note
that f‖ − f⊥ increases monotonically with increasing as-
pect ratio L/D as expected. Using f‖ − f⊥, we calculate
the orientation distribution function and the projected
nematic order parameter. We see in Fig. 5 that the
agreement between the orientation distribution function
as measured in the experiments and computed theoreti-
cally is reasonable, where one should realize that no �t
parameter is involved.

In Fig. 6 we compare the theoretical prediction for S2D

with the experimental value

Sexp2D =
1

M

M∑
i=1

cos (2θ′i) , (19)

as obtained in the experiments for di�erent kinds of
rods as a function of the �eld strength E = |E|. Here,
M denotes the total number of rods detected (typically
M ∼ 100) and θ′i the measured angle of rod i with re-
spect to the electric �eld direction in the two dimensional
measurement plane, see Fig. 3. We see from Fig. 6 that
the E-dependence of S2D is quite strong, with S2D vary-
ing from 0 for

√
v0E . 5 · 10−6 Vm1/2 up to S2D ≈ 1 at√

v0E & 20 · 10−6 Vm1/2, where v0 denotes the volume of
the rod. The combination

√
v0E is useful since VE scales

linearly with v0 and E
2, and by using this combination on

the axis of our graphs the e�ects of the anisotropy factors
can be readily compared for the four di�erent batches of
rods, see Eq. (10). The errorbars in Fig. 6 denote stan-
dard deviations that stem from the size polydispersity of
the rods. Despite some systematic trends that will be
discussed in more detail below, a 95% con�dence inter-
val of two standard deviations reveals good consistency
between experiment and theory for the longer rods in (a)
and (b) and to some degree also for the shorter rods of
(c), but somewhat less so for the low-�eld regime of the
shortest rods in (d). A possible source of systematic er-
ror stems from the image processing routines that were
used to analyze the experimental images of the confocal
microscope [34]; the measurement of the exact orienta-

tion of the rods becomes more and more di�cult with
decreasing aspect ratio L/D, leading to a possible source
of systematic errors that is expected to be most severe
for the shortest aspect ratio of L/D = 2.4 [35]. Even
though we did not synthesize a su�ciently large number
of batches to make a de�nite statement about this e�ect
we do note that, indeed, the agreement between theory
and experiment is best for the longest and worst for the
shortest rods. Sample N51 (with L/D = 4) stands out
in the sense that the alignment of the rods with the �eld
as observed in experiments was less or equal than our
theory predicts over the whole range of �eld values sam-
pled, while for the other three samples a systematically
stronger alignment was observed in the experiments for
intermediate (but not high) �eld strengths. Interestingly,
there is indeed a di�erence between sample N51 and the
other samples, since sample N51 is the only one that con-
tains the dye RITC instead of FITC. Since the dyes are
located throughout the rod, this may a�ect the molecular
polarizability α and thereby also the cluster polarizabil-
ity, which scales with the volume v0 of the rod. However,
since the dye fraction in the rods is only of the order
of 10−3, this is most probably not the explanation of
this anomalous behavior of sample N51. Another pos-
sible explanation for the observation that the alignment
of the colloids in the �eld direction tends to be weaker
in the theoretical prediction than in the experiments for
intermediate �eld strengths for all but one set of rods
(N51), might be that the dimensions of N51 could have
been overestimated compared to the other three batches
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of rods, although we cannot o�er an explanation as to
why this could have been the case.

We conclude that our theoretical approach yields re-

sults that are in good agreement with the measured data
for all but the shortest rods as was demonstrated by the
favorable comparisons of Ψ2D(θ′) and S2D with the ex-
perimentally measured values.

SUMMARY AND OUTLOOK

We succeeded in employing the coupled dipole method
to calculate the orientation-dependent excess interaction
strength between polarizable colloidal rods and an ex-
ternal electric �eld. We showed that a decoupled dipole
method can be used to circumvent the polarization catas-
trophe for large negative values of the polarizability. We
proceeded to derive the projected orientation distribution
function of rods in a focal plane of �nite thickness using
simple geometric considerations, and found that the mea-
surable projected nematic order parameter S2D is a good
estimate for the full 3D nematic order parameter S for
all S ∈ [0, 1] and for all rod lengths L, rod diameters
D and confocal resolutions ∆. We also synthesized four
batches of colloidal silica rods, all with di�erent aspect
ratio, and used confocal microscopy to measure the pro-
jected orientation distribution and the associated order
parameter of very dilute samples in electric �elds. Our
theoretical predictions without any free �t parameter for
the projected orientation distribution and corresponding
nematic order parameter are in agreement with the ex-
perimental results, the agreement being within a 95%
con�dence interval for the longest rods and with system-
atic deviations that probably stem from a limited orien-
tation measurement for the shortest rods. We conclude
that our approach to the coupled dipole method in the
presence of a solvent can be used to calculate the order-
ing of dielectric particles of other shapes in an electric
�eld.
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Figure 5. The projected orientation distribution function Ψ2D(θ′) as measured and calculated for the di�erent types of rods,
(a) B35 (L/D = 5), (b) N51 (L/D = 4), (c) B31 (L/D = 2.7), (d) B47 (L/D = 2.4). Our experimental results are denoted by
symbols, our theoretical predictions by lines. Note that no �t parameter was used.
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Figure 6. The 2D nematic order parameter S2D as a function of the applied �eld strength times square root of the particle
volume for all four samples of rods as measured (symbols) and calculated from the presently developed theory (curves). The
error bars display the results covered within the range of size polydispersity of the rods as denoted in Table I. (a) B35
(L/D = 5), (b) N51 (L/D = 4), (c) B31 (L/D = 2.7), (d) B47 (L/D = 2.4).
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