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Tunable Stellate Mesoporous Silica Nanoparticles for 
Intracellular Drug Delivery† 

Lin Xiong,a Xin Du,a Bingyang Shi,a Jingxiu Bi,a Freddy Kleitz,b and Shi Zhang Qiao*,a 

Stellate mesoporous silica nanoparticles with special radial pore morphology were easily 
synthesized using triethanolamine as the base catalyst in a wide range of synthesis conditions. 
By adjusting surfactant composition, reaction temperature and time, and reagent ratio, the 
particle size of the material could be tailored continuously ranging from 50 to 140 nm and the 
pore size from 2 to 20 nm. By analyzing the effects of the different synthesis parameters, it is 
concluded that the particles are formed following a nucleation-growth mechanism and the 
reaction kinetics play an important role in determining the particle size and pore structure. 
These stellate MSNs can be conveniently functionalized with a nontoxic low molecular weight 
poly(ethylene imine) (PEI, 800 Da) by a delayed condensation method. The resulting 
nanocomposites not only possess auto-fluorescence for suitable particle tracking but also 
demonstrate good potential for intracellular delivery of the anticancer doxorubicin drug. 
 

 

 

1. Introduction 

Mesoporous silica nanoparticles (MSNs) have attracted great 
research interest because of their potential usage as drug 
delivery carriers.1, 2 For these sophisticated applications, a tight 
control over the particle size and the pore structure of the 
material is highly desirable. For example, the particle size of 
MSNs was reported to have an influence on the 
biodistribution,3 cellular uptake,4 nucleus entering5 and 
biocompatibility6 while the pore structure is related to the drug 
release profile7 and loading capability8, 9 of MSNs. Therefore, 
considerable efforts have been made towards a precise control 
over the size and pore structure of MSNs. 

To achieve passive accumulation of the drug carriers inside 
tumor tissues via the enhanced permeation and retention (EPR) 
effect,1 a particle diameter between 30 nm and 150 nm is 
desired. Although nano-sized silica nanoparticles can be readily 
prepared following the Stöber method,10 nano-sized MSNs 
were not successfully synthesized until about a decade ago, by 
controlling the reactant concentration11, 12 or adopting a dilution 
and quenching method.13 Later, other studies showed that the 
particle size can be controlled by introducing a second 
surfactant14, 15 and/or co-solvent in the synthesis mixture.16 
More recently, particle size control through reaction pH 
adjustment was also demonstrated.4, 17 However, the 
preparation methods in these previous reports usually involved 
highly diluted solutions, which led to difficulties in scale-up 
and isolation of the products. By employing triethanolamine 
(TEA) as the base catalyst, Bein and coworkers succeeded to 
synthesize MSNs with particle diameter below 100 nm and 
narrow particle size distributions, this time from concentrated 
solutions.18 

On the other hand, a large mesopore structure (pores > 5 
nm) possesses several advantages such as high drug loading19 
and capability of loading large biomolecules,20 e.g., proteins21 
or nucleic acids.22, 23 However, most of the reported pore sizes 
of MSNs are limited to 3-4 nm because of the commonly used 
surfactant template, cetyltrimethylammonium bromide 
(CTAB). Although using a pore swelling agent21 or dual 
surfactants24 can enlarge mesopores, these methods generally 
cannot guarantee maintaining uniform particles below 200 nm 
or require specific treatment such as prolonged hydrothermal 
process.25-27 Therefore, it is still a challenge to combine the 
features of small particle size, narrow particle size distribution 
and large mesopores within one MSN system.  

Very recently, Zhang et al. reported a facile procedure for 
synthesizing MSNs with size below 200 nm and mesopores up 
to 17 nm.28 Furthermore, these MSNs possess special radial 
pore morphology, the so-called stellate pore morphology, and 
this kind of structure was reported to facilitate mass transport 
inside the pores.29, 30 From the view point of synthesis, this 
work can be seen as an derivatization of the previous synthesis 
method of Bein18 in that, not only the base catalyst was 
exchanged from triethanolamine to several kinds of other small 
organic amines but also the standard CTAB surfactant was 
replaced by cetyltrimethylammonium tosylate (CTAT). 
Although the feasibility of using different catalysts and 
surfactants to control morphology and porous structure of the 
final particles has been explored, quantitative aspects of the 
synthesis protocol, such as the effects of using mixed 
surfactants, the ratio between reactants, reaction temperature 
and reaction time, must still be thoroughly substantiated and 
clarified. In this work, a significant influence of these factors on 
the final MSN products is demonstrated in a 
TEOS/CTAT/TEA/H2O system. We evidence that by tuning 
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Tunable stellate mesoporous silica nanoparticles are functionalized with low molecular 

poly(ethylene imine) for efficient label-free intracellular drug delivery. 
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