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Environmental Significance Statement: DOI: 10.1039/D5VA00262A
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in
industrial and consumer products due to their thermal and chemical stability. However,
their resistance to environmental degradation, bioaccumulative behavior, and links to
serious health effects have raised global concern. Traditional removal methods, such as
adsorption and filtration, are limited by their inability to destroy PFAS, risking
secondary pollution. Fenton-based advanced oxidation processes offer a promising
pathway toward PFAS mineralization under mild conditions. This review provides a
comprehensive analysis of the mechanisms, effectiveness, and technological progress
of Fenton-based PFAS degradation. By highlighting current limitations and future
directions, it aims to guide the development of practical, scalable, and sustainable
remediation strategies for PFAS-contaminated environments, contributing to global

efforts in safeguarding ecological and human health.
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Abstract DOI: 10.1039/D5VA00262A

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with
widespread environmental and health threats due to their chemical stability and
bioaccumulative potential. The Fenton-based degradation of PFAS demonstrates
several advantages, including mild reaction conditions, operational simplicity, and cost-
effectiveness, while simultaneously facing challenges such as inefficient cleavage of
carbon-fluorine (C—F) bonds and low mineralization. This review comprehensively
summarizes the degradation of PFAS using Fenton-based reactions, focusing on
mechanisms, efficiencies, and technological advancements. Firstly, the reasons for
PFAS prevalence in human society, their pathways into biological systems, the
associated health risks, as well as their global distribution and contamination status are
elucidated. Secondly, the current major PFAS degradation approaches are summarized,

highlighting the principal advantages of Fenton-based degradation. Thirdly, a
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technologies are reviewed, including chemical-Fenton, electro-Fenton, photo-Fenton,
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and photo-electro-Fenton processes. Finally, the future research directions are
discussed, focusing on catalyst design optimization, structure-activity relationship, and
feasibility assessment for large-scale applications. This review provides a critical

foundation for advancing sustainable PFAS remediation technologies.

Keywords: PFAS degradation; Advanced oxidation processes; Fenton reaction;

Degradation mechanisms; Large-scale application
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1. Introduction

Per- and polyfluoroalkyl substances (PFAS) comprise a class of over 6,500 distinct
anthropogenic fluorinated organic compounds,'? characterized by fully or partially
fluorinated alkyl chains, terminated with polar acidic moieties such as carboxylates,
sulfonates, or phosphonates.’ Based on the carbon-chain length, PFAS are generally
classified into long-chain and short-chain types.* Long-chain PFAS, such as
perfluorononanoic acid (PFNA) and perfluoropentanoic acid (PP), with more than eight
carbon atoms, exhibit distinct physicochemical properties compared to short-chain
PFAS (such as perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA),
and perfluorohexanesulfonic acid (PFHxS), with four to seven carbon atoms). These
differences are especially evident in aqueous solubility and hydrophilicity, which can
be quantified by solubility measurements and octanol-water partition coefficients.>¢ For
example, short-chain PFAS contain fewer fluorine atoms and lack the pronounced
“molecular-brush” architecture of long-chain counterparts,'2 thus having stronger water
solubility and affinity for aqueous phases.’ Beyond chain length, the inherent stability
of PFAS stems from their abundant C—F bonds.” The high electronegativity of F atoms
induces strong electron localization, thereby giving the C—F bonds extremely high
polarity and bond energy (~110 kcal/mol).8 The thermally and chemically robust C—F
bonds endows PFAS with outstanding stability, unique lubricating and frictional
characteristics, driving their extensive industrial applications since the 1940s, such as
refrigerants, polymer-processing aids, pharmaceutical syntheses, adhesives,

insecticides, and flame retardants.5!0
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Figure 1. Migration process of PFAS in the environment.

PFAS were first detected in human serum in the 1960s,!" which prompted studies
on their environmental and biological risks. Their bioaccumulative potential is well
established, with pronounced biomagnification in aquatic food webs.”? Primary
producers (e.g., phytoplankton) capture PFAS and introduce it into ecosystem. For
aquatic vertebrates (e.g., cyprinus carpio, danio rerio), they directly absorb PFAS
through gills, establishing trophic transfer pathways.'* In particular, the perfluoroalkyl
phosphinic acids (PFPiAs) upregulate lipid transport genes (e.g., cd36, fabpl), leading
to hepatic steatosis. The disruption of p-oxidation and phospholipid metabolism
induces reactive oxygen species (ROS), activates NF-kB, elevates pro-inflammatory
cytokines (tnf-a, il-1p, il-6), suppresses il-10,'*'7 and triggers inflammation. The
perfluorooctane sulfonates (PFOS) analogues bind transthyretin, disturbing thyroid
homeostasis.'® In plants, PFAS are root-absorbed and transported to their above-ground

parts. In wheat, fulvic and humic acids (HA) promote uptake of 6:2 CI-PFAES via H-
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ATPase and Ca?*-dependent pathways.!®2 In arabidopsis, PEAS-induced ROS dtides’ > /00202

lipid peroxidation and structural damage.?'2¢ Structure-specific effects include PFOA-
mediated cation disruption,?? PFOS-induced amino acid dysregulation,” and 8:2 FTSA
conversion impacting lipid metabolism.?¢ In mammals, PFAS induce neuro-, hepato-,
and reproductive toxicity, and worsen gut inflammation.?”?® Dermal exposure models
confirm systemic accumulation via CD36-mediated uptake, particularly in
liver/kidneys.®3! Bioaccumulation is structure- and species-dependent, warranting
further mechanistic research.

Due to the bioaccumulative potential and ecotoxicity of PFAS, their
environmental contamination has become a pressing concern. Regulatory frameworks
demonstrate increasing recognition of PFAS risks. In 2016, the U.S. Environmental
Protection Agency (EPA) established health advisory levels at 0.070 pg/L for PFOS.
Recent revisions have drastically reduced these thresholds to 0.004 ng/L for PFOA and
0.02 ng/L for PFOS.?? The EU Water Framework Directive proposes a cumulative limit
of 0.1 pg/L for 20 prioritized PFAS compounds.* However, measured concentrations
of PFAS in drinking water and groundwater worldwide often far exceed these
thresholds (Figure 2).

Drinking water surveys reveal widespread contamination, with most urban
supplies containing >100 ng/L PFAS globally.?**' South Korea exhibits the highest
concentrations (644.6 ng/L) of the untreated drinking water (Figure 2a),’ attributing to
dense clustering of chemical plants, electronics manufacturers, and textile facilities

discharging PFAS-laden effluents. Conversely, Kampala, the capital of Uganda, shows
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minimal contamination (5.3 ng/L) (Figure 2a),* potentially due to water sourcinig {16t~/ 2026
Murchison Bay where lake dilution mitigates PFAS levels.

The groundwater system is more severely polluted, with the concentrations of
PFAS in it being 25 to 500 times higher than drinking water.*>* Extreme contamination
occurs near Swedish airports (51,000 ng/L) (Figure 2b),*” exceeding EU standards by
510 times, stemming from unregulated release of PFAS-containing firefighting foam
over several decades. A recent investigation in Shandong Province of China—home to
one of Asia’s largest fluorochemical industrial parks—identified severe PFAS
discharge into nearby streams.**5' Although the affected waterways are relatively small,
the industrial park’s emissions—totaling 8.4 t of HFPOs (hexafluoropropylene
oxides)—represent 85% of all HFPOs discharge into rivers across China.® In contrast,
North China Plain aquifers show relatively low PFAS levels (13.4 ng/L) (Figure 2b),*

correlating with limited industrial activity in the region. Recent reports indicate that
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variations over several orders of magnitude.* The overall PFAS levels observed in
these facilities are comparable to those recently reported in Korea for domestic
wastewater (>1000 ng/L) and industrial wastewater (>5000 ng/L),** as well as in
fluorochemical wastewater treatment plants in France (25260 ng/L).’* These cases
highlight that industrial wastewater discharge as the primary PFAS entry route into
ecosystems. The extreme environmental persistence of PFAS facilitates progressive

accumulation, posing severe ecological threats. Consequently, extensive researches
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: : : : DO-1Q.4 /D5VA00262A
now focus on developing effective PFAS degradation technologies and remédiatio
strategies.
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Figure 2. The concentration of PFAS in different water. (a) drinking water, and (b)

groundwater.

2. Prevailing PFAS Degradation Strategies

A wide variety of purification methods for PFAS have been developed to date,
including biodegradation approaches,®s’ physical adsorption,®** and chemical
degradation (oxidation and reduction processes).®*$> However, physical adsorption,
being a non-destructive process, may generate secondary waste such as spent
adsorbents, which pose a risk of re-releasing PFAS into the environment. In contrast,
biodegradation and chemical degradation aim at the permanent removal of PFAS.
Nevertheless, biodegradation is often incomplete, slow, and highly dependent on
specific environmental conditions.®* More importantly, it is difficult to break the
extremely strong C-F bonds of PFAS molecules. Among the chemical degradation

methods, advanced oxidation processes (AOPs), first introduced by Glaze in 1987, are
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characterized by the generation of highly reactive radical species as oxidants ghd at¢’>>"09202A
regarded as promising technologies with strong potential for the complete
mineralization of PFAS.%6 Among AOPs, the Fenton reaction is one of the most
classical and widely studied techniques. The Fenton reaction was first discovered in
1894 by the French scientist Henry.J. Fenton, who observed that tartaric acid could be
deactivated and oxidized in a ferrous ion (Fe?")/ hydrogen peroxide (H,O,) system at
pH 2-3.¢7 The key advantages of the Fenton process include its high oxidative
performance and operational simplicity under ambient temperature and atmospheric
pressure.®® Moreover, its toxicity is relatively low because H,0O, ultimately
decomposes into environmentally benign species such as water (H,O) and oxygen
(0,).” Mechanistically, utilizing Fe>" as a catalyst, it enables the continuous and stable
decomposition of H,O, to generate hydroxyl radicals (*OH) (shown in Eq (1) and Eq

(2)). These highly reactive hydroxyl radicals subsequently attack organic pollutants

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

present in water, initiating a cascade of oxidation reactions that ultimately mineralize
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the contaminants into carbon dioxide (CO;) and H,O, thereby achieving water
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purification.”".”2

Fe2* + H,0, + H*—>Fe3* + H,0 + *OH (1)

Fe3* + H,0,—>Fe2* +HO; + H* ()

For the complete mineralization of PFAS, the degradation pathway begins with

the initial activation of the molecule to generate perfluoroalkyl radicals (* C,Fau41).
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These radicals then react with *OH to form unstable perfluoroalcohol intermiédid
which readily undergo elimination reactions to release hydrogen fluoride (HF). The
resulting acyl fluoride intermediates are highly prone to hydrolysis, leading to the
formation of shorter-chain perfluorocarboxylic acids.” Through successive cycles of
similar reactions, PFOA can eventually be mineralized into CO, and HF (Figure 3).747
The ability of the Fenton system to continuously supply hydroxyl radicals makes it a
promising approach for driving the deep oxidative degradation and potential

mineralization of PFAS.

HF
CnF2n+1COOH | o
initial activation

CO,
H,0
Cn_1 an 1COF .CnF2n+1

Y 2 F92+

OOH - H202

HF ,
Fenton reaction
Elimination C,Fon+1OH

n=7,654..
Figure 3. Reaction mechanism for degradation of PFOA via the Fenton process. Upon
completion of each reaction cycle, the value of n decreases by one, initiating the

subsequent cycle.

However, the Fenton reaction also exhibits certain limitations. When treating
wastewater, its efficiency is influenced by factors such as pH and iron ion concentration
of wastewater. Neither low nor high pH values enable effective treatment of organic

pollutants. The optimal treatment efficiency is achieved within a pH range of 2.0—

t1é)§’9/D5\/A00262A
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4.0.767 Unfortunately, most organic wastewaters do not naturally fall within“thi§’p
range. The substantial amounts of chemical reagents are often required to adjust the pH
prior to treatment, which increases the overall cost of wastewater remediation.
Furthermore, while Equations (1) and (2) form the basis for the catalytic cycle of the
Fenton reaction, the rate of reaction (1) is approximately 6,000 times faster than that of
reaction (2),7® which severely hampers the regeneration of Fe?" from Fe** and leads to
the accumulation of Fe3* in the system. When the pH values above 3, Fe3* tends to
precipitate as hydroxide complexes—commonly referred to as iron sludge.” This
sludge is difficult to separate and recover, resulting in substantial loss of catalytic iron
species, reduced process efficiency, and the risk of secondary environmental pollution.
To overcome these limitations, various strategies have been developed to enhance the
Fenton reaction. Depending on the enhancement method, these approaches can be
categorized into chemical-Fenton,%% electro-Fenton,-* UV/visible/solar light-assisted
Fenton (photo-Fenton),’+'*' and solar photo-electro-Fenton (SPEF) systems.!02-107
Moreover, these technologies can be integrated in a synergistic or coupled manner to
minimize or even eliminate the limitations associated with individual processes.
Herein, we focus on the research progress in utilizing Fenton reaction systems for
PFAS degradation (Figure 4). Through a systematic discussion of various Fenton
systems, this review extensively elucidates degradation pathways, degradation
efficiency, the redox potentials of different radical species, byproduct formation, and
toxicity assessment. The primary objectives of this review are as follows: (1) to

summarize the pathways and mechanisms of different Fenton reaction system; (2) to

/D5VA00262A
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summarize the degradation efficiencies of various radicals involved in PFAS Fehiotaf/™>/ 2025+
under Fenton reaction conditions; (3) to systematically compare factors influencing
PFAS degradation efficiency; (4) to summarize byproduct formation across different
Fenton reaction systems and critically analyze their associated toxicity; and (5) to
outline future research prospects. This review aims to establish a theoretical foundation

for PFAS removal in practical applications.

Figure 4. Summary diagram of the contents in this review.
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3. Degradation of PFAS via Fenton reactions
3.1 Chemical-Fenton reaction system

Although the classical chemical Fenton reaction provides a stable and efficient
source of ¢ OH, these radicals alone have proven inadequate for the effective
degradation of PFAS. For instance, in the case of PFOA, studies have demonstrated
that even under high concentrations of H,O,, the degradation efficiency is significantly
low. Even with the addition of Fe?* and H,0,, negligible degradation of PFOA and
PFOS was observed, indicating the limited oxidative capacity of conventional *OH-
based systems in attacking the highly stable C—F bonds.!%.1® In response, considerable
efforts have been made to expand and modify chemical Fenton systems, employing
diverse strategies to enhance the degradation efficiency of PFAS, such as synergistic

effect of multiple radicals, reinforcing effect of radical reactivity, and radical-mediated

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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Figure 5. Progress in chemical Fenton reaction system toward PFAS remediation.
3.1.1 Synergistic effect of multiple radicals

To enhance the PFAS degradation ability of chemical Fenton reaction system, the
potential of multi-radical synergistic degradation was evaluated, Lo et al. developed a
chemical Fenton reaction system employing zero-valent iron (ZVI) to activate
persulfate (PS) and *OH for the decomposition of perfluorooctanoic acid (PFOA).% In
this system, PS acts as a sulfate radicals (SO4™) precursor, while ZVI serves as a catalyst
to lower the activation energy required for the generation of SO4™ (shown in Eq (3) to
Eq (6)). At the optimal temperature, the degradation rate of PFOA increased from 10%

(using *OH alone) to 68% with the combined action of SO, and *OH (Figure 6a),
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while the defluorination efficiency improved from 19% to 23% (Figure 6b) WithifZ"~>/ 20262
hours, indicating a significant synergistic effect between SO, and *OH radicals in

promoting PFOA degradation. Notably, SO,™ has a higher redox potential of up to 2.6

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

g
8
;3' V, exceeding that of *OH (2.3 V). Moreover, SO, demonstrate superior performance
3 in initiating the degradation of PFOA by facilitating the formation of perfluoroalkyl
=
2 radicals (Figure 6c¢).
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Figure 6. (a) Comparison the decomposition of PFOA in presence of persulfate (PS) at
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90 °C with or without ZVI. (b) The defluorination of PFOA with persulfate at"90 1§E08g/DoVA00262A

(c) The proposed synergistic mechanism of the *OH and SO, for PFAS degradation.

In order to further expand the reactive species involved in multi-radical coupling,
Watts et al. developed a *OH/superoxide (O,™)/ hydroperoxide anion (HO,')-based
multi-radical system, enabling a stable and efficient chemical Fenton process for the
degradation of PFOA.®' Through catalyzed hydrogen peroxide (H,O,) propagation
(CHP) reactions, H,O, can be continuously decomposed to generate O, and HO;
(shown in Eq (7) to Eq (9)). The O, contributes to maintaining the continuity of the
Fenton process by reducing Fe3* to Fe?*, while HO,' is generally regarded as a strong
nucleophile, capable of attacking electron-deficient carbon atoms in PFOA, particularly
those adjacent to the carboxyl group (e.g., the a-carbon). This process facilitate C—F
bond cleavage and thus promote both degradation and defluorination (Figure 7a)."° The
concentrations of H,O, affect the types and concentrations of free radicals. The
synergistic effect of multiple radicals (*OH, O,™, and HO,") was supported by the
optimal degradation efficiency exceeding 80% (Figure 7b). One mol of PFOA
molecules contains 15 mol F atoms, at a 1 M H,O, concentration, the ratio of F- ions to
PFOA molecules is approximately 15, indicating complete defluorination

mineralization performance (Figure 7c).

*OH + H,0,~HO0} + H,0 (7)

HO <05 + H* (pK, = 4.8) (8)
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Figure 7. (a) A schematic diagram of HO," radical attacking electron-deficient carbon

atoms in PFOA. (b) The defluorination and degradation efficiency of PFOA under the

different concentrations of hydrogen peroxide. (c¢) The ratio of moles of fluoride

released to moles of PFOA degraded under different concentrations of hydrogen

peroxide.®!

In addition, the combination of SO,~, *OH, and O, radicals has also proven

effective. Choi et al. developed an iron-modified diatomite (MD) catalyst capable of

efficiently generating SO,™, *OH, and O,", thereby promoting PFOA degradation

through synergistic radical interactions.®? The key advantage of the MD catalyst lies in
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its naturally abundant and low-cost material, as a stable and easily separable”Slpport’ ™" 0920

for iron loading. At the same time, its high surface area is conducive to the generation
of free radicals and the adsorption of pollutants. This system utilizes the catalytic ability
of Fe?* to activate H,O, and PS, and can continuously and stably generate *OH, O,™ and
SO, (shown in Eq(1), Eq(10) and Eq(11)). In conventional dual-radical systems such
as *OH/ SO4™, the cleavage of highly inert C—F bonds in PFOA remains limited.
However, the introduction of O,™ induces an additional reductive and nucleophilic
pathway targeting electron-deficient a-carbon atoms adjacent to the carboxyl group,
thereby enhancing C—F bond cleavage (Figure 8a). Moreover, the combination of SO,
(a strong oxidant 2.6 V) and O, (a moderate reductant —0.33 V) provides a more
diverse redox environment for Fe?"/Fe’* that improves the overall degradation
efficiency. As experiment demonstrated, MD was capable of catalyzing both the Fenton
reaction with H,O, and the CHP reaction, achieving a moderate PFOA degradation
efficiency of 60% (Figure 8b). When PS was further introduced into the reaction system,
the synergistic effect of SO,~, *OH, and O,™ radicals enhanced the degradation
efficiency to 69% (Figure 8c), highlighting the effectiveness of multi-radical

cooperation.

HO; + S,037-S0;~ +S03~ + HY + 03~ (10)

S,02~ +2H,0,-2S02~ +205~ +4H* (11)


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00262a

Page 19 of 84 Environmental Science: Advances

View Article Online
05" DOI: 10.1039/D5VA00262A

(a)

SO OH
C7F15COO0H——23oC;F 15— C;F450H ﬁcsﬁacm — > CO, HF

HF

(b)I .0 1.0

0.8 1

)
L)
S’

0.8 4
0.6 0.6 A

0.4 0.4 1

PFOA (C/C,)
PFOA (C/C,)

—8— HP+PS
—@— HP + Iron(ll) 024 —w— HP+PS+025gMD
—w—HP+05gMD —&— HP+PS+0.5gMD

g
o)
8
—
B
S
o
(=
-]
o
&
©
o
o]
£
£
Q
3
c
(=]
pd
&
=l
5
B}
< 0.0 0.0 . . . : .
c
o
£
£
Q
3
(]
>
8)
©
o)
o)
c
>
o
S
v
@
o
®
1)
2
'_

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Time (hours) Time (hours)

Figure 8. (a) The PFOA degradation mechanism of *OH, O, and SO,™ radicals. (b)
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(c) Decomposition of PFOA by different HP-activated PS systems.s> HP: hydrogen
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In summary, the development of multi-radical synergistic degradation strategies
within Fenton-based systems has shown significant promise for improving PFAS
treatment efficiency. The combined action of various reactive species—such as *OH,
SO, O,~, and HO,—can substantially enhance the degradation process. This
improvement is primarily attributed to: (1) the stronger oxidative potential of SO,™,
which can overcome the limitations of *OH in initiating the activation of PFAS

molecules; (2) the presence of a multi-radical environment that increases the probability
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and efficiency of radical attacks on PFAS compared to systems dominated by"a single’>>"92°*

radical species. However, multi-radical Fenton systems also face several limitations.
The complexity of the reaction environment, which makes it difficult to clearly
elucidate the underlying mechanisms and pathways of radical synergy. In addition, the
overall degradation efficiency remains insufficient to meet the demands of rapid and
effective PFAS removal. Therefore, efforts are being made to develop strategies aimed

at further enhancing the radical reactivity.

3.1.2 Reinforcing effect of radical reactivity

To enhance the activity of reactive radicals, researchers have focused on material
structural design with high specific surface areas, whose unique architectures provide
several key advantages: (1) increased number of exposed Fe active sites, particularly
on surfaces and within micropores; (2) limited diffusion pathways of PFAS molecules,
enhancing the contact between contaminants and catalytic sites; and (3) confined
microenvironments promoted the local accumulation and prolonged lifetime of reactive
radicals.

Wang et al. fabricated a composite material by anchoring Pb-doped BiFeO; (Pb-
BFO) nanoparticles onto reduced graphene oxide (rGO) nanosheets, forming a layered
architecture. The Pb-BFO nanoparticles were firmly immobilized on the rGO surface,
which effectively inhibited nanoparticle agglomeration and preserved high surface
reactivity. Moreover, the formation of nanoscale interlayer gaps between rGO sheets

facilitated rapid electron transfer, thereby enabling the localized enrichment of *OH
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within the confined interlayer space and the oxidative interaction between *OH dfid’>""097%*"
PFAS molecules (Figure 9a and 9b). Additionally, Pb doping improved the intrinsic
charge transport properties of BFO, while the oxygen-containing functional groups
(e.g., carboxyl and hydroxyl groups) of rGO were capable of activating H,O, to produce
*OH radicals, collectively contributing to the improved catalytic efficiency of the
composite system (Figure 9c). This approach achieved over 95% degradation efficiency
of PFOA within 5 minutes, with nearly half of the PFOA undergoing complete
mineralization (Figure 9d). These results underscore the feasibility of employing

porous materials to promote chemical Fenton-based degradation of PFAS.
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Figure 9. SEM images of Pb-BFO/rGO (a) and GO (b) composite. (¢c) The EPR spectra
of different catalyst suspensions. (d) Evolution of the F concentration and degradation

byproducts as a function of degradation time with Pb-BFO/rGO system.®3
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For the purpose of further understanding the influence of material structufé’off the'>>"9202

efficiency of chemical Fenton degradation of PFAS, Shi et al. extended the structure of
conventional two-dimensional reduced graphene oxide (rGO) into a three-dimensional
graphene-based framework (OG),* in which the abundant C—O—C bridging structures
were found to significantly enhance the Fenton reaction by promoting the generation
efficiency of *OH (Figure 10a).Notably, the OG material was derived from recycled
biomass waste, aligning with the principles of green chemistry and offering promising
advantages in terms of environmental sustainability and economic viability. Density
functional theory (DFT) calculations indicated that the C—O—C bridging structure of
OG was key to electron transport. Electrons from the C—F bonds in PFOA could transfer
to the OG surface via these bridges (Figure 10b), with the F atom's HOMO contribution
increasing significantly from 0.95% to 15.46% (Figure 10c). Moreover, the spatial
confinement effect of OG reduced the activation energy for H,O, decomposition (1.10

eV for OG vs. 1.60 eV for 2D graphene).
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Figure 10. (a) Energy profiles of H,O, decomposition on 2D and 3D graphene. (b)
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Comparison of the electrostatic potential distributions of porous graphene and mgdified ™" 92°*
graphene. (¢) HOMO and LUMO energies of free PFOA, PFOA adsorbed on OG and

PFOA intermediates during degradation.®

Similar to the above strategy, Zhuang et al. synthesized a Fe/S co-doped carbon
aerogel (PGFe),* in which sulfur doping played a crucial role in facilitating covalent
bonding between iron and carbon, thereby enhancing the electronic conductivity of the
material and accelerating the Fenton reaction by creating a more stable environment for
* OH generation. Additionally, the incorporation of polyvinyl alcohol during the
carbonization process promoted the formation of a highly porous structure, effectively
increasing the specific surface area and exposing a greater number of active sites.
Charge and electrophilicity analyses identified C7, C8, terminal F23, and electron-rich

024 atoms in the PFAS molecule as the most susceptible to *OH attack (Figure 11a),

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

providing a theoretical basis for predicting bond cleavage pathways (Figure 11b). This

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

study provides a solid theoretical foundation for understanding the PFOA degradation
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process. The PFAS degradation efficiency via PGFe modified chemical Fenton-based

reactions improved from 15% to 22% (Figure 11c).
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Figure 11. (a) Structure of PFOA denoted by sequence number: 1-8 carbon, 9-23

fluorine, 24-25 oxygen and 26 hydrogen. (b) Schematic diagram of degradation process

of PFOA in PGFe/H,0, Fenton system. (c) PFOA degradation rate in PGFe and

PGFe/H,0,; system.

To further investigate the relationship between material porosity and the

degradation rate of PFAS, Zhang et al. developed a layered iron oxychloride (FeOCI)

catalyst.’¢ By confining reactive species within a sub-nanometer spatial domain, the

hydration coordination number of O, radicals generated from the Fenton reaction was

modulated, reducing the average coordination number from 3.3 to 1.89 (Figure 12a and

12b). The decreased coordination number concentrated the negative charge on O,",
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strengthening its interaction with PFAS molecules. To further enhance spatidi“effédt; >>""002°*
the FeOCl was immobilized onto ceramic membranes, the active channels were
confined within a 20 nm scale (Figure 12c). As a result, the apparent reaction rate
constant (k,ps) reached 1.2 min™" (Figure 12d), which was 86 times higher than that of
a traditional batch-mode system (0.014 min™"). This study quantitatively demonstrated
the performance enhancement of PFAS degradation reactions achieved by confinement
effect of high specific surface area materials, and provides a feasible approach for future

investigations into the structure—activity relationship for PFAS degradation.
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Figure 12. (a) The RDF as a function of distance from free O, radicals and snapshot
of the free O, radicals in aqueous phase. (b) The RDF as a function of distance from
confined O, radicals and snapshot of the O, radicals confined inside the FeOClI
structure. (c) Cross-sectional SEM images of the FeOCl-incorporated ceramic
membrane. (d) Fast degradation of PFOA through heterogeneous Fenton reaction inside

FeOCl] membrane.3¢
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Although structural design of materials can effectively enhance the infefattiof’>>"%2%*"

between reactive radicals and PFAS, numerous unresolved issues remain—such as how
the sensitivity of spatial confinement to material dimensions influences radical
reactivity, and whether atomic-level features within the catalyst structure affect the
confinement effect. Additionally, the deep defluorination remains a challenge,

especially for the degradation by-products of short chains.

3.1.3 Radical-mediated phase separation

To address the deep defluorination of PFAS and the accumulation of short-chain
byproducts, Santos employed the abundant * OH generated in the Fenton reaction
system to oxidatively modify humic acid (HA) for phase separation of aqueous PFAS
and their short-chain byproducts.’” The HA molecules contain various functional groups,
such as carboxyl and phenolic hydroxyl groups, which may be oxidized or rearranged
during the reaction, resulting in the formation of new chemical bonds and larger
structural assemblies. Through the oxidative transformation and restructuring of
functional groups on HA, the interaction between HA and PFOA was enhanced,
ultimately facilitating the transfer of PFOA from the aqueous phase to the solid phase
via a co-precipitation and phase separation mechanism (Figure 13a).

As the structure of HA evolves, it may form larger polymeric or network-like
aggregates. These aggregates can physically entrap PFOA molecules adsorbed on their
surfaces, effectively encapsulating them within the HA matrix (Figure 13b). This

encapsulation hinders the re-release of PFOA into the aqueous phase, thereby
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facilitating its removal from water. However, this process does not involve the ¢hénficaf’ ™" 92°*
degradation of PFOA; rather, the molecule merely transfers from the aqueous phase to
the solid phase. Consequently, the development of effective strategies for the removal
of PFAS immobilized in solid phases has emerged as a critical focus area. Materials
such as graphene, metal-organic frameworks (MOFs), and covalent organic
frameworks (COFs) are being explored as advanced platforms capable of adsorbing
PFAS and enabling their subsequent solid-phase separation under catalytic or advanced

oxidation conditions.'!!
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Figure 13. (a) Illustration of HA-coupled Fenton reaction driving multiphase
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conversion of PFOA. (b) Residual PFOA and oxidant in hybrid treatment of PFOA
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solution with Fenton like reagent and humic acid.

Substantial progress has been made in understanding the application of chemical-
Fenton reactions for PFAS treatment. The chemical-Fenton system offers several
advantages, including relatively simple experimental conditions, high selectivity, the
synergistic action among multiple reactive radicals, and high achieving efficient PFAS

degradation through material structure designs. However, several limitations remain. (1)
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The requirement for high concentrations of H,O, (>1 M) not only leads to eXdessive ™" 00202

reagent consumption but also poses significant safety concerns. (2) The system
generally exhibits limited capacity to sustain the Fe*'/Fe’* redox cycle, raising
challenges for maintaining long-term Fenton reactivity. (3) Like conventional Fenton
systems, chemical Fenton processes have not overcome the inherent pH constraint,
typically requiring pre-acidification of the aqueous environment, which further restricts

their practical applications.

3.2 Electro-Fenton reaction system

The electro-Fenton (EF) process differs from the conventional chemical-Fenton
reaction in mechanism. Efficient PFAS mineralization typically requires the initial
activation of PFAS molecules into perfluoroalkyl radicals. In the chemical Fenton
process, the generation of *OH alone is often insufficient; therefore, additional more
potent oxidation species are needed to achieve effective degradation. In contrast,
electro-Fenton systems utilize electrocatalysis—one of the most powerful redox
techniques—to directly oxidize PFAS and form perfluoroalkyl radicals, thereby
promoting further *OH generation and overall degradation efficiency. Moreover, the
electro-Fenton process offers two additional advantages for PFAS remediation: (1) in-
situ generation of H,O, via the oxygen reduction reaction (ORR), reducing reliance on
external H,O, dosing; and (2) improved Fe?'/Fe’" redox cycling under optimized

electrochemical conditions, minimizing the formation of iron sludge (Figure 14).
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The electro-Fenton reaction represents a synergistic integration of chemical-

Fenton and electrochemical method. The anodes used in electro-Fenton systems are

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

commonly boron-doped diamond (BDD) or Magnéli phase titanium suboxides (T1407),
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similar to those in conventional electrochemical oxidation processes. These non-active

(cc)

anode materials are favored due to the following characteristics: (1) high chemical
stability and inertness, conferring long operational lifespans;''2!3 (2) wide potential
windows and high oxygen evolution potentials (>2.7 V vs. NHE), conducive to the
cleavage of C-F bonds;"+""s and (3) excellent corrosion resistance, enabling
compatibility with strong acidic or basic environments.''¢

The anode materials used in electro-Fenton systems are relatively fixed, ongoing

research focuses on developing efficient cathode materials to enhance ORR
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performance for H,O, generation. In this review, the electro-Fenton syst%?ﬁéo'
categorized based on the cathode materials: iron-containing cathodes and iron-free

cathodes.

3.2.1 Iron-containing cathodes

To evaluate the feasibility of a synergistic electro-catalytic system integrating
cathodic electro-Fenton and anodic oxidation for effective PFOA removal, Zhao et al.
synthesized a Fe—-Mn co-doped carbon aerogel material (Fe10MnC). In this system,
PFOA was initially activated at the anode, while the cathode facilitated the electro-
Fenton reaction to efficiently generate ¢ OH radicals (Figure 15a). Through the
strategic combination of these processes, an effective approach for the synergistic
degradation of PFAS was developed.®® BDD was employed as the anode material,
capable of generating *OH (H,O oxidation) with high efficiency. These radicals,
alongside direct anodic oxidation, contributed to the cleavage of C—F bonds in PFOA
(Figure 15b). Meanwhile, Fe10MnC acted as the cathode, enabling the in-situ electro-
generation of H,O, by ORR reaction, which was subsequently activated to produce *OH
under the catalytic effect of Fe and Mn (Figure 15¢). Surface valence analysis revealed
that Mn improved the selectivity for the two-electron ORR for H,O, production (Figure
15d). This system achieved a 97% PFOA removal rate within 4 hours of electrolysis,

without hydrogen peroxide added and no iron sludge produced.
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Figure 15. (a) Catalytic mechanism of electro-Fenton oxidation for efficiently
removing PFOA with Fe10MnC as the cathode and BDD as the anode. (b) EPR spectra
of DMPO*OH adducts with different anodes. (c) Fe and Mn XPS spectra of Fe10MnC

before and after PFOA degradation. (d) Productivity for H,O, of different cathodes.

For the purpose of further expanding the range of reactive radicals in electro-
Fenton processes, Cai et al. developed an iron—nickel co-doped carbon aerogel
(FexNiC), which enabled the coupling of SO, and *OH radicals for effective PFOA
degradation (Figure 16a).%° Unlike previous studies, a graphite electrode was employed
as the anode, which minimized anodic oxidation of PFOA and thus better highlighted
the superior performance of the cathodic material in the degradation process. By

adjusting the Fe/Ni ratio, the generation rates of SOs~ and *OH radicals can be
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modulated (Figure 16b). While iron is essential for Fenton chemistry, it tends 10 favo
the four-electron reduction pathway in ORR, producing H,O instead of H,0,.""” Ni
doping enhanced the selectivity toward the two-electron pathway, promoting efficient
H,0, generation. DFT calculations supported a synergistic degradation mechanism
involving SO, and *OH: initially, SO4™ attacks the carboxylic group of PFOA, forming
the carboxyl radical C;F;sCOO (AG = 139.33 kJ/mol), which undergoes
decarboxylation to form the perfluoroalkyl radical C;F;s* (AG =—103.56 kJ/mol). This
radical then reacts with *OH to yield perfluorinated alcohol C;F;sOH (AG = —443.02
kJ/mol), which undergoes HF elimination (AG = 97.48 kJ/mol) and hydrolysis (Figure
16¢), leading to stepwise chain shortening and eventual complete mineralization.

In real wastewater treatment scenarios (Figure 16d), for raw effluent from a
fluorochemical plant in Sichuan (PFOA = 8.69 mg/L), electro-Fenton treatment
achieved promising performance after biochemical treatment, with 81% degradation
and 52% defluorination within 4 h (Effluent II). Even for raw wastewater without
biochemical pretreatment, comparable results were obtained under the same conditions,
with 75% degradation and 58% defluorination after 4 h (Effluent I), clearly
demonstrating the application potential of this method. In terms of chemical oxygen
demand (COD) reduction, the process was likewise effective: for Effluent 11, COD
decreased from 47.7 mg/L to 26.4 mg/L, while for Effluent I, COD was reduced from
1060 mg/L to 540 mg/L, meeting the Chinese Surface Water Quality Standard
(GB3838-2002). Notably, the energy consumption for the treatment of Effluents I and

IT was approximately 0.39 and 0.018 kWh g™, respectively, further underscoring the
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viability of this approach for industrial applications.
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Figure 16. (a) Schematic of PFOA degradation in cathode-dominated electro-Fenton
process. (b) The quantitative and accumulate concentration of SO,~ and *OH in
different cathodes. (c) Profile of the potential energy surfaces for the PFOA degradation
dominated by SO, and *OH. (d) Flowchart of fluorochemical manufactory wastewater

treatment.®

In order to highlight the positive contribution of cathodic electro-Fenton reactions
for effective degradation of PFOA, Han et al. synthesized a bifunctional single-atom
catalyst with a Co-CN, configuration supported on an Fe,O; substrate (Co-CN,-Fe,0;)
(Figure 17a).® The critical role of the cathode in enhancing the generation of reactive
oxygen species and improving overall system performance were investigated. A
platinum anode was used to eliminate contributions from anodic oxidation, enabling a

focused assessment of cathodic degradation. In this system, the Co-CN, single-atom
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layer facilitated the two-electron ORR for efficient H,O, generation (Figure 176 fid’ > 72°*

17¢). The low-coordination Co sites in the Co-CN, structure weakened O, adsorption

and prevented O—O bond cleavage, thereby improving H,O, selectivity. The Fe,O;

substrate functioned as the Fenton catalyst to activate the in-situ generated H,O, into

*OH. This system achieved 96% PFOA degradation (Figure 17d) and defluorination

(Figure 17e) within 120 minutes, representing near-complete mineralization. Long-

term stability tests confirmed >95% degradation and defluorination over 10 cycles

(Figure 17f), while avoiding the formation of iron sludge commonly associated with

traditional Fenton systems.
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Figure 17. (a) Schematic of PFOA degradation in Co-CN,-Fe,O; cathode electro-

Fenton process. (b) The calculated H,O, selectivity as a function of the applied

potentials. (c¢) Concentrations of H,O, produced with Co-CN, as a function of

electrolysis time. (d) C and (e) F mass balance during PFOA degradation over Co-CN,-

Fe,0;. (f) The recyclability of Co-CN,-Fe,0; for electro-Fenton PFOA degradation.*
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With the intention of elucidating the interaction mechanisms underlying“PFGA">>00202A
degradation in the electro-Fenton reaction, Yu et al. conducted a systematic
investigation on a Fe/N co-doped graphene electrode (Fe/N-GE@GF) (Figure 18a).°' A
synergistic electrochemical process at the cathode was proposed, and key factors
influencing the efficiency of the electro-Fenton reaction were scientifically explored.
The co-doping of Fe and N introduced significant lattice distortion and structural
defects in the graphene framework, resulting in increased surface area and abundant
microporosity (Figure 18b). These features exposed more active sites for PFAS
degradation. Moreover, N-containing precursors such as pyridine promoted uniform Fe
dispersion and the formation of a robust three-dimensional porous structure. The
presence of N also enabled PFAS molecules to interact with the electrode material,
facilitating their enrichment near the reactive zones. Through precise spatial overlap of

radical generation sites and PFAS accumulation regions (Figure 18c), a “Focused

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Active Reaction Region” that significantly improved degradation efficiency was

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

established. This system achieved 95% PFOA degradation, 90% total organic carbon

(cc)

(TOC) removal, and 80% defluorination within 3 hours. Notably, the Fe/N-GE@GF
electrode was capable of generating *OH in neutral conditions by leveraging singlet
oxygen ('0;) as a supplementary oxidant (Figure 18d), thereby overcoming the
classical Fenton system’s dependence on pH environment. Under neutral conditions
(pH = 7), the PFOA degradation efficiency of Fe/N-GE@GF was nearly identical to
that observed under acidic conditions (pH = 3), reaching 92.7% compared to 92.8%. In

contrast, a marked decrease in degradation efficiency was observed under alkaline
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conditions (pH = 10), though a considerable efficiency of 58.8% was still achidvéd’™""9*°*"

(Figure 18e).
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Figure 18. (a) Schematic diagram of Fe/N-GE@GF preparation and degradation
experiments. (b) SEM images of N-GE@GF. (c) Possible catalytic mechanism of Fe/N-
GE@GEF for PFOA degradation. (d) DMPO-'0, by GE@GF, N-GE@GF and Fe/N-
GE@GF cathode in electrocatalytic process. (¢) PFOA adsorption performance of

Fe/N-GE@GF at different pH.*!

3.2.2 [Iron-free cathodes

While iron-containing cathodic materials have attracted considerable attention,
certain unique structural features of iron-free cathodes also exhibit interactions relevant
to PFAS degradation. Wang et al. developed an iron-free biomass-derived nitrogen and
sulfur self-doped porous carbon electrode (NSGC) for electro-Fenton degradation of
hexafluoropropylene oxide dimer acid (GenX) (Figure 19a), a widely used substitute

for the banned PFOA.%2 Previous studies have demonstrated that fluorine—fluorine
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(F---F) interactions between perfluorinated polymers and the perfluoroalkyl chaitis 6f/>>" 00202

PFOA play a critical role in enhancing adsorption from aqueous solutions (Figure
19b).1"¢ The incorporated perfluoropolyether into the NSGC framework exhibited
hydrophobic and fluorophilic, and significantly enhanced performance for GenX
removal, that is consistent with the DFT calculation results, where the adsorption
energy of Gen-X on F-NSGC was significantly enhanced from -35.93 kJ/mol to -46.91
kJ/mol in the presence of F—F interactions (Figure 19c¢). In the electro-Fenton system,
F-NSGC achieved an electro-adsorption efficiency of 59% for GenX within 60 minutes,
followed by a degradation efficiency of 96% and a defluorination efficiency of 63%
after 180 minutes (Figure 19d). These results indicate both excellent degradation
capacity and promising mineralization potential. The presence of competing anions
exhibited negligible impact, with removal efficiencies exceeding 95% in all tested

scenarios (Figure 19¢). When applied to real water samples—including lake water,

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

secondary effluent from a municipal wastewater treatment plant, and tap water—the

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

system consistently achieved over 90% GenX removal within 180 minutes (Figure 19f).

(cc)

To further explore the application potential of this method, the reaction setup was
adapted to continuous-flow reactors. Under a flow rate of 5 mL/min with a circulation
time of 180 min, the GenX removal efficiency of up to 94% was achieved. However,
excessively low flow rates reduced the contact between GenX and the catalytic material,

thereby limiting the overall degradation efficiency.
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Figure 19. (a) Degradation mechanism of GenX by F-NSGC in electro-Fenton system.
(b) Snapshots of molecular dynamics simulations of association of PFOA molecules
with the self-assembled block copolymers 5. (¢) DFT simulations to calculate the
adsorption energy of GenX by NSGC (left) and F-NSGC (right). (d) F- concentration
after degradation. (e) Influence of different anions on GenX removal. (f) Influence of

different water on GenX removal.”?

With the aim of broadening the applicability of combined electro-oxidation and
electro-Fenton systems for PFAS treatment, Luu et al. conducted a comprehensive
evaluation of the Fenton-assisted electrochemical advanced oxidation process for the
removal of 29 representative PFAS compounds, including both long- and short-chain
species, as well as linear and branched isomers.” Ti/BDD and Ti/IrO, were used as
anode materials for comparison, with Pt serving as the cathode. Fe;0, nanoparticles
were directly introduced into the reaction system as catalysts to enhance Fenton
reactions. The researchers systematically optimized operational parameters such as pH,

Fe;O0, concentration, current density, electrolysis duration, and electrolyte

© DOI- 10 1039/D5VA00262A
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concentration. Under optimized conditions, removal efficiencies ranging front'86% 16’

100% were achieved within 120 minutes, with a low energy consumption of just 9.0

kWh/m? (Figure 20a and 20b). Following the attainment of high PFAS removal

efficiencies, the study further investigated intermediate products and degradation

pathways. Using mass spectrometry and kinetic modeling, the plausible mineralization

mechanisms were proposed (Figure 20c). These mechanistic insights provide valuable

references for treating other recalcitrant organic pollutants using electro-Fenton-based

approaches.
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Figure 20. (a) PFAS removal efficiency via the Fenton-assisted electrochemical

oxidation process. (b) Energy consumption via the Fenton-assisted electrochemical

oxidation process. (¢) Intermediate compounds and degradation pathway of PFBS.%

Electro-Fenton reactions have demonstrated the capability for rapid PFAS

degradation, accompanied by significant improvements in defluorination efficiency.
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Notably, by expanding the sources of oxygen, the electro-Fenton process has oVerédteg’>> 00262

the pH limitations inherent to traditional chemical Fenton systems, enabling the in situ
generation of * OH under neutral conditions without the need for external H,0O,
addition, while also substantially reducing the formation of iron sludge. However,
several challenges remain. One of the primary limitations is the high energy
consumption associated with the electro-Fenton process, which has increasingly drawn
attention focused on techno-economic assessments. Reducing energy demand thus
represents a critical direction for future development. Additionally, improvements in
the durability and stability of electrode materials are necessary to achieve more
favorable life-cycle performance. At present, most research remains at a preliminary or
laboratory scale, and there is a pressing need for comprehensive evaluation data on the

treatment of large-scale contaminated water systems.

3.3 Photo-Fenton reaction system

Compared to electro-Fenton systems, which rely on externally applied electric
power to drive electron transfer processes, photo-Fenton reactions are generally
considered to be a greener and more environmentally friendly class of AOPs (Figure
21).119120 In a photo-Fenton system, UV or visible light irradiation facilitates the
photoreduction of ferric complexes to Fe?*, thereby accelerating the decomposition of
H,0,. Specifically, under mildly acidic conditions (pH 2.8-3.5), Fe3* forms light-
responsive ferric hydroxo complexes, such as [Fe(OH)]*",%812! which can undergo

ligand-to-metal charge transfer (LMCT) excitation, regenerating Fe?" and promoting
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further *OH production.”” Recent studies have also shown that Fe3* can' foifi/™°/ 2%
complexes with PFAS anions, and these complexes may exhibit enhanced photo-
response under irradiation, facilitating PFAS degradation.
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Figure 21. Comparison between electro-Fenton and photo-Fenton for the degradation

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

of PFAS.

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

Although solar light is more widely available and cost-effective, the efficient

(cc)

control and utilization of photonic energy remain a key research challenge in photo-
Fenton systems.'? These systems are typically classified into homogeneous and
heterogeneous processes, depending on the physical state of the catalyst. In
homogeneous photo-Fenton systems, both the catalyst and reactants are dissolved in
aqueous media, providing high dispersibility and intimate contact with contaminants.
However, the generally poor light absorption capacity of homogeneous species limits

their degradation efficiency, making this a focus for further optimization. In contrast,
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heterogeneous photo-Fenton systems exhibit greater capability for absorbiflg
converting light into chemical energy. Photoinduced holes generated on solid catalyst
surfaces can effectively participate in PFAS degradation. Nonetheless, rational design
of the catalyst surface and optimization of PFAS mass transfer to reactive sites remain

essential considerations for performance improvement.

3.3.1 Homogeneous photo-Fenton systems

Homogeneous photo-Fenton reactions were developed earlier than their
heterogeneous counterparts due to no complex catalyst design or synthesis steps
required.'?* The fundamental mechanism of PFAS degradation in homogeneous photo-
Fenton systems has been relatively well elucidated. However, limited solubility and
recovery challenges of homogeneous catalysts have constrained the application for
PFAS degradation.

To verify the feasibility of PFAS degradation via the photo-Fenton process, Tang
et al. developed a homogeneous ultraviolet-assisted photo-Fenton system with ferric
and ferrous sulfate dissolved in PFOA solution (Figure 22a).** The influence of reagent
stoichiometry (i.e., concentrations of Fe?" and H,0,) and solution pH on PFOA
degradation efficiency were systematically investigated. An optimal Fe>* concentration
of 2.0 mM was identified: at this level, more *OH radicals were generated to enhance
both PFOA degradation and defluorination (Figure 22b). However, excessive Fe**
could also act as a scavenger for *OH, thereby reducing the availability of reactive

species for PFAS oxidation. Solution pH was found to play a critical role (Figure 22c).

[ 10&83&/D5\/A00262A
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At pH < 2.0, H,0, is readily protonated to form H;0,", decreasing its reactivity ‘With'>>"?02°*

Fe?*. At pH > 4.0, Fe3* tends to hydrolyze rapidly, forming Fe(OH); precipitates, which
hinder both light penetration and complexation with PFOA. Accordingly, the optimal
pH range for homogeneous photo-Fenton reactions was determined to be between 2.8
and 3.5.

In addition to the *OH, the interaction between Fe3* and PFOA contributed to the
enhancement of the degradation process. A two-stage degradation mechanism was
proposed (Figure 22d). In the initial stage, *OH is present in sufficient concentrations
to directly activate PFOA anions, forming *C;F5 radicals. These radicals further react
with *OH to generate C;F;sOH, which undergoes hydrolysis and HF elimination to
yield short-chain PFAS intermediates, CO,, and HF. In the second stage, once *OH is
depleted, Fe’* forms a [C,F;sCOO-Fe]** complex with PFOA, which, under UV
irradiation, is photo-reduced to Fe?" and a carboxyl radical (C;F;sCOQ¢), initiating

another degradation cycle with the limited *OH available.
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Figure 22. (a) The diagram of the experimental set-up for homogeneous photo-Fenton
degradation of PFOA. (b) Effects of initial Fe?>" concentration on the defluorination
efficiency of PFOA. (c) Effects of H,O, concentration on the defluorination efficiency
of PFOA. (d) A two-stage mechanism for the degradation of PFOA in the homogeneous

photo-Fenton process.*

In order to further broaden the spectral utilization of the photo-Fenton process,
Alvarez et al. extended the conventional UV-based photo-Fenton system by introducing
visible light as an alternative irradiation source.® The potential of utilizing visible light
to effectively drive the photo-Fenton degradation of PFOA was proved. Visible light,
as one of the most green and renewable energy sources, offers significant advantages

for photo-Fenton degradation of PFOA. It greatly reduces the energy consumption of

DOIT10.1039/D5VA00262A
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the reaction, enhances operational safety, and lowers equipment requifém@nts?/>>""002¢2A
Therefore, visible light is considered an ideal energy input for such advanced oxidation
processes. Electron paramagnetic resonance (EPR) spectroscopy confirmed that *OH
was the primary reactive species (Figure 23a and 23b). However, the process required
prolonged treatment—28 days—to achieve 98% PFOA degradation (Figure 23c), with
only 13% defluorination, highlighting limitations in efficiency, particularly for the
degradation of short-chain PFAS. A plausible mechanism for PFAS degradation via the
photo-Fenton process was also proposed, which is generally consistent with those
suggested in previous studies. In this mechanism, *OH not only directly attack PFOA
but may also target the [C;F;sCOO-Fe]** complex. Fe3* is believed to further reduce
the activation energy barrier for * OH-mediated PFOA degradation. Additionally, a
more detailed pathway for the formation of intermediates was presented, indicating

broader recognition of this mechanism. (Figure 23d).
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Figure 23. (a) EPR spectra of radicals generated in different experimental groups. (b)
EPR spectra of radicals generated in Fe(I1I) - H,O, (2 mM) system; EPR samples were
taken after 10 min UV irradiation. (c) Comparison of PFOA degradation by different
reaction systems. (d) Proposed PFOA degradation pathway in the presence of Fe(IlI)

and sunlight.%

To further enhance the degradation efficiency of the homogeneous photo-Fenton
reaction and to gain a more comprehensive understanding of its underlying mechanism,
Zhang et al. developed a hybrid system combining Fe’/granular activated carbon
(Fe”’GAC) microelectrolysis with a vacuum UV-Fenton (VUV-Fenton) process for
PFOA mineralization.’ In this system, Fe%/ GAC was first mixed with PFOA to generate
numerous microscale galvanic cells that continuously supplied electrons and Fe?" ions,

facilitating the initial breakdown of the PFOA structure through enhanced electron
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transfer (Figure 24a). Following a pre-activation step, the photo-Fenton reaction'was’™>/"2%2%*"
conducted under UV irradiation at 254 nm (Figure 24b), resulting in a defluorination
efficiency of 47%, which represents a notable improvement compared to the 39%
achieved using the VUV-Fenton system alone (Figure 24¢). High-performance liquid
chromatography tandem mass spectrometry (HPLC/MS/MS) was employed to identify
and quantify degradation intermediates. The detected short-chain perfluorocarboxylic
acids (PFCAs)—including PFHpA (C7), PFHeA (C6), PFPeA (CS), PFBA (C4),
PFPrA (C3), and TFA (C2)—further confirmed the proposed degradation mechanism

of PFOA under photo-Fenton conditions.
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Figure 24. (a) Schematic representation of reactor iron carbon micro-electrolysis and
(b) VUV-Fenton. (¢) Photochemical defluorination ratio under VUV and Fe%/GAC

micro-electrolysis and VUV-Fenton systems.

3.3.2 Heterogeneous photo-Fenton systems
Compared to homogeneous photo-Fenton reactions, heterogeneous photo-Fenton

systems typically utilize iron-containing catalysts, which can reduce the need for
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additional anions and facilitate catalyst recovery through the magnetic prop@tiés'of/>>" 00202

solid-phase iron. Based on this concept, Urtiaga et al. employed a TiO,/reduced
graphene oxide composite catalyst (95% TiO,/5% rGO) for the photo-Fenton
degradation of PFOA.*” After 12 hours of UV—visible irradiation using a mercury lamp,
the PFOA degradation efficiency of TiO,—rGO reached 93 +7 %, representing a
substantial improvement compared with TiO, photocatalysis (24 + 11% removal) and
direct photolysis (58 + 9%) (Figure 25a). It was reasonably hypothesized that rGO
effectively captured photogenerated electrons from TiO,, thereby suppressing electron—
hole recombination (Figure 25¢). This process promoted PFOA degradation through
direct oxidation by photogenerated holes or via reactive radical pathways. The
progressive decomposition mechanism was further supported by the identification of
short-chain perfluorocarboxylic acids (Figure 25b) and the release of fluoride ions
(Figure 25¢), which closely matched the reduction in total organic carbon (Figure 25d),
in line with a stepwise degradation pathway mediated by photogenerated hydroxyl
radicals. These findings strongly verified the critical role of *OH radicals and the
stepwise degradation mechanism in PFOA removal by TiO,—rGO. Moreover, kinetic
studies revealed a clear correlation between degradation efficiency and molecular
structure, as the apparent first-order rate constants for UV—visible degradation of PFOA
and its intermediate perfluorocarboxylic acids increased with decreasing carbon chain
length (Figure 25b). In summary, the development of a heterogeneous photo-Fenton
system based on TiO,—rGO provides a feasible strategy for PFAS degradation and

offers detailed mechanistic insights, thereby laying a solid scientific foundation for
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TOC/TOC? using the simulated PFAS concentrations. (e) Photocatalytic pathways of

PFOA decomposition using the TiO,-rGO catalyst.*”

In order to achieve a more uniform distribution of iron on the catalyst surface and
to elucidate the mechanism of heterogeneous photo-Fenton degradation of PFAS,
Wang et al. synthesized a cellulose-based membrane (Co;O4@Fe;04) by coating Co;04

nanoparticles onto rod-like MOF-derived Fe;O,4 and incorporating the composite into a
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cellulose solution (Figure 26a). This membrane was then applied in a visiblg-Iighif>/>>""09202A

driven photo-Fenton system,”® where efficient energy conversion and a rich reactive
radical environment enabled effective PFOA degradation. The degradation mechanism
relied on the synergistic interplay among photogenerated electrons, holes (h*), and
various reactive species rather than a single dominant species. The photogenerated h*
directly attacked the carboxylic group (—COOH) of PFOA, initiating decarboxylation
and forming C;F,se radicals. The electrons (¢7) reduced dissolved oxygen to O,*-, which
contributed to further degradation, and also regenerated Fe?" from Fe**, maintaining
*OH production (Figure 26b). The Co;04@Fe;O4 membrane demonstrated outstanding
performance, achieving 95% PFOA degradation, maintaining 80% efficiency after five
cycles (Figure 26c¢), and exhibiting minimal metal leaching (Fe: 0.05 ppm; Co: 0.49
ppm). These results were attributed to the material’s architecture: regenerated cellulose
formed a 3D porous network under alkaline/urea/thiourea conditions, which helped
disperse the Co;04@Fe;O4 nanoparticles and prevent aggregation (Figure 26d). This
study provides valuable experimental and theoretical insights into the rational design

of heterogeneous photo-Fenton catalysts.
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To elucidate the synergistic mechanism between PFAS adsorption and
photoactivity, Zhang et al. developed ZIF-67@C;N; and MIL-100(Fe)@Cs;Ny4
composites with high specific surface areas and adsorption capacity for photo-Fenton
degradation of PFOA (Figure 27a and 27b).” Experimental results revealed that ZIF-
67@CsN4 and MIL-100(Fe)@C;N,4 achieved PFOA removal efficiencies of 79.2% and
60.5% (Figure 27¢ and 27d), respectively—substantially higher than unmodified C;Nj,.

Quenching experiments indicated that photogenerated holes (h*) played the primary
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adsorbed on the catalyst surface and oxidizing water to produce *OH (Figure 27¢).
Beyond the photon-induced pathways, PFOA adsorption and charge separation
mechanisms also contributed to the high degradation efficiency, such as. The catalyst’s

ability to accumulate PFOA near photoactive C;Ny sites, the enhanced visible-light

absorption and charge separation induced by heterojunctions.
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Integrating the heterogeneous photo-Fenton reaction and material structure design
for enhancing the radical reactivity, Chen et al. developed Fe(Ill)-saturated porous
montmorillonite (Fe-MMT) as a heterogeneous catalyst to enhance the photo-Fenton

reaction.'® The pore structure microenvironment facilitates effective collisions

0,/H,0, (0.68 V)

= H,0/-HO (2.34 V)

/l 4\0? ~wProducts

PFOA'

The heterostructure of MIL-100(Fe)@C,N,

role in photo-Fenton PFOA degradation, mainly by directly attacking PFOA midleéuies’>>""00%5%
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between * OH and PFOA, thereby establishing an alternative strategy for PFEA’">""00%5%
degradation. In a system containing 1 g/ Fe-MMT and 24 puM PFOA, approximately
90% of the initial PFOA was degraded within 48 hours. The enhanced degradation was
attributed to the generation of reactive oxygen species and LMCT mechanism involving
Fe species in the interlayer of MMT. Fe** coordinated with the carboxylate group (-
COO") of PFOA to form a PFOA-Fe?" complex (Figure 28a). Upon UV irradiation,
electrons were transferred from the PFOA ligand to the Fe3' center, producing
*C;F5COOQ radicals and Fe?*. This LMCT process significantly lowered the activation
free energy for PFOA oxidation from 163 to 59.3 kJ/mol (Figure 28b). Further
experiments demonstrated that the UV/Fe-MMT system maintained high PFOA
removal efficiency even in the presence of natural organic matter and inorganic ions,
indicating strong anti-interference capability (Figure 28c and 28d) and potential for

practical applications in diverse wastewater treatment scenarios. Moreover, the Fe-

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

MMT catalyst could be regenerated and reused, offering an economic advantage for

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

industrial-scale PFOA remediation (Figure 28e).
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Figure 28. (a) Proposed reaction mechanism for the photo-decomposition of UV/Fe-
MMT Fenton system. (b) Scheme of the potential energy surface for the degradation of
PFOA in the presence of Fe-MMT. Effect of NOM (c) and inorganic ions (d) on PFOA
degradation in UV/Fe-MMT Fenton system. (¢) PFOA degradation (black) and

defluorination (red) in consecutive batch runs of UV/Fe-MMT Fenton system.!%

Besides experimental validation of scientific hypotheses, theoretical modeling
also plays a crucial role in guiding experimental design. Zuniga-Benitez et al.
systematically optimized the key parameters (ferrous ion concentration and hydrogen
peroxide concentration) for the ultraviolet photo-Fenton (UV/photo-Fenton)
degradation of PFOA using response surface methodology (Figure 29a and 29b).'!
Under optimal conditions (Fe?" = 0.1675 g/L, H,O, = 14.0 g/L, pH 3.0), a 99% removal
efficiency was achieved within 60 minutes (Figure 29c¢). Interestingly, the presence of

natural water matrices (e.g., TOC = 2.895 mg/L, nitrate) enhanced degradation
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efficiency. In untreated surface water, the degradation rate was approximat&fy 3627 °°/A2026%
faster than in deionized water. When UV irradiation was replaced with natural sunlight
(A >290 nm), the system still achieved a 95% removal rate within 60 minutes under
optimized conditions (Figure 29d), suggesting that solar photo-Fenton processes offer

a low-energy alternative particularly suited for sun-rich regions.
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Figure 29. (a) Response surface for PFOA removal using photo-Fenton system. (b)
Main effects plot for PFOA removal using photo-Fenton system. (c) PFOA removal
under optimized conditions using photo-Fenton and direct solar radiation. (d) Effect of

the water matrix in the PFOA removal using photo-Fenton system.!*!

Homogeneous photo-Fenton reactions offer important mechanistic insights into
the degradation pathways of PFAS, while heterogeneous photo-Fenton systems further
reveal the structure-activity relationships between material architecture and degradation

performance. One of the most significant advantages of photo-Fenton processes is their
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use of renewable light energy, aligning closely with the principles of gre@
sustainable chemistry. However, compared to electro-Fenton systems that enable in situ
H,0, generation, the requirement for external H,O, addition in photo-Fenton reactions
remains a notable limitation. Furthermore, current research is predominantly focused
on UV light-driven systems, which, although effective, often entail higher energy
consumption. Although visible light has also been demonstrated to activate photo-
Fenton processes for PFAS degradation, the technological maturity of such systems still
requires further advancement. Additionally, the scope of photo-Fenton treatment must
be broadened to a wider range of PFAS species, particularly those with more complex
molecular structures and diverse chemical bond types, which demand more robust and

efficient degradation strategies.

3.4 Solar Photo-Electro-Fenton (SPEF) system

SPEF systems represent a promising and emerging advancement in the
development of Fenton-based processes. By integrating the benefits of photo-assisted
and electrochemical Fenton mechanisms, SPEF systems build upon traditional
chemical Fenton reactions to offer a greener and more energy-efficient approach for
pollutant degradation. In particular, 2e-ORR generates in situ H,O,, reducing the need
for external Fenton reagents. Simultaneously, photoinduced electron-hole transfer
further enhances oxidative efficiency while minimizing energy input.'> One of the
major challenges in SPEF technology lies in the system design,’?* which must

accommodate the simultaneous requirements of both photo-Fenton and electro-Fenton

Il;lloa’lﬁBC‘P/DS\/AOOZ62A
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processes, posing considerable demands on catalyst architecture and op&atidtaf’>>" %%
compatibility.

As an initial attempt to apply photo-electro-Fenton reactions for PFAS degradation,
Yu et al. developed a magnetic Fe;04@Si0,-BiOBr (FSB) composite, which was
integrated into a dielectric barrier discharge (DBD) reactor and employed as a
heterogeneous Fenton-like photocatalyst for PFOA degradation.'> The system
effectively established a photo-electro-Fenton framework. Compared to DBD alone,
the DBD-FSB system enhanced PFOA removal from 74% to 93% and TOC removal
from 29% to 63% within 60 minutes (Figure 30a and 30b). The energy efficiency also
increased significantly from 46.4 mg kW™'-h™! to 72.5 mg kW™'-h™". This performance
was attributed to multiple reactive species pathways: (i) generation of *OH, H,0,, and
O; by DBD plasma; and (ii) light-induced Fenton-like reactions on FSB. Multiple

PFOA degradation pathways were proposed (Figure 30c), including: (1) hole-driven

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

decarboxylation and radical formation on FSB; (2) direct oxidation in the plasma
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discharge; and (3) hydroxyl radical attack at the a-CF; site, triggering defluorination.
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The synergistic design improved both degradation efficiency and mechanistic

understanding.
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Figure 30. (a) PFOA removals in different treatment processes. (b) TOC removals in
different treatment processes. (c) Proposed mineralization mechanism of PFOA in the

DBD-FSB system. '

Subsequently, to further refine the photo-electro-Fenton system and expand the
variety of reactive radical species, Lin et al. successfully fabricated a graphene oxide—
titanium dioxide (GO-TiO;) photoelectrode.’> The efficient energy input of a
photoelectrochemical (PEC) system and the synergistic effects of multiple reactive
radicals, significantly enhanced the Fenton reaction efficiency and PFOS remediation
(Figure 31a). The process involved electron transfer, hydroxyl radical generation, and
superoxide anion radicals. The degradation pathway was investigated through
identification of 25 intermediate products, including perfluoroalkyl sulfonates (PFSAs)

(Figure 31b and 31c¢), perfluoroaldehydes (PFALs), and hydrofluorocarbons (HFCs).
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Two primary mineralization routes were proposed (Figure 31d): one via S&pwike’">" 00202
conversion to shorter-chain PFSAs, and another involving initial transformation to
PFOA-like structures followed by PFOA degradation. PFALs and HFCs were
confirmed as oxidation byproducts of perfluoroalkyl radicals (Figure 31d). The study
also showed that shorter-chain PFAS displayed lower degradation rates, indicating

stronger resistance and competitive inhibition in PFAS mixtures.
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Figure 31. (a) Schematic of PFOS degradation in photoelectrochemical system. (b) The
relationship between the carbon chain length and degradation efficiency ratio
(MmixtureMindividual) Of PFAS. (c) Formation of the transformation byproducts, F~ and
SO,* from PFOS degradation in PEC systems.!% (d) Proposed degradation pathway of

PFOS in the PEC system.
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The photo-electro-Fenton system was then further advanced into SPEF systet
utilizing a more sustainable and readily available light source—sunlight. Following the
design principles of SPEF, Wang et al. introduced a dual-function MOF/carbon
nanofiber (MOF/CNF) composite membrane (Figure 32a) for efficient solar photo-
electro-Fenton degradation of PFOA.'™ The bifunctional cathode was fabricated by
solvothermal growth of Fe/Co bimetallic MOFs onto electrospinning PAN-derived
CNFs, exhibiting both photo- and electrocatalytic activity. EPR analysis confirmed
enhanced *OH generation under solar irradiation. The system achieved 99% PFOA
removal within 120 minutes (Figure 32b). XPS analysis revealed valence changes of
Fe and Co, and a corresponding mineralization mechanism was proposed (Figure 32c).
In 2022, the same group advanced this design by integrating a glucose fuel cell (GFC)
with the SPEF system to create a sustainable biomass-powered platform for PFOA
degradation (Figure 32d).'% Oxygen-deficient CoFe alloy nanoparticles were anchored
onto CNFs (CoFe-OVs@CNF), enabling dual-function cathodes (Figure 32e). The
toxicity evolution of degradation intermediates was evaluated, confirming the system’s
potential to degrade PFOA and other persistent pollutants while mitigating toxic risks

(Figure 32f).

H439/D5VA00262A
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Figure 32. (a) SPEF degradation of PFOA under the natural solar light in outdoors
conditions. (b) Removal of PFOA by SPEF, electro-Fenton, electrocatalysis and
electrosorption, and electrosorption was conducted under N,. (¢) Mechanism of PFOA
mineralization by the MOFs/CNF constructed SPEF system.' (d) Glucose fuel cell
driven SPEF process for the degradation of PFOA. (e) Proposed mechanism of solar-
photocatalytic coupled Electro-Fenton process for PFOA degradation in GFC-SPEF
system. (f) MTT assay for the cell viability of L-02 cells incubated with various

degradation time (0—6 h) of PFOA. 105

To further expand the application scope of the SPEF system for PFAS degradation,
Hou et al. developed a Cu-based peroxidase-mimicking colorimetric sensor integrated
with an SPEF system for PFOA detection and removal (Figure 33a).1% The flexible,
freestanding CNF-Cu/C membrane was synthesized via solvothermal processing,
secondary seeding, and in situ thermal reduction (Figure 33b). Derived from MOF/PAN

precursors, the resulting 3D carbon network exhibited excellent conductivity,

/ View Article Online
D{I: 10.1039/D5VA00262A
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dispersion, and cycling stability (Figure 33d). The CNF-Cu/C membrane showéd’strong’ ™22
peroxidase-like activity and enabled rapid PFOA detection via inhibition of TMB
chromogenic reactions (Figure 33c), with a detection limit of 0.133 uM. Under
optimized conditions, the Cu-SPEF system achieved 98% PFOA removal within 180
minutes. This work illustrates a successful integration of SPEF degradation and real-

time detection, with significant practical potential.
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Figure 33. (a) Schematic illustration of PFOA degradation via MOFs-derived
Cu/Carbon membrane. (b) Schematic diagram demonstration of the preparation of
CNF-Cu/C. (¢) Corresponding photographs for the colorimetric detection of PFOA (top)
and selectivity of PFOA with other interfering substance (bottom). (d) Degradation
rates at different conditions: reusability tests of CNF-Cu/C-800 in SPEF (left), TOC

removal efficiency (mid), and defluorination efficiency (right).!°¢

In order to further elucidate the relationship between the structural characteristics
of catalytic materials and PFAS degradation efficiency in SPEF systems, Hou et al.

designed  two-dimensional layered = MOF-based CoFe nanosheets as
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photoelectrocatalysts.'” The material featured abundant unsaturated coordination &ités;’>>""20%5#
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which facilitated rapid mass and charge transport (Figure 34a). Notably, low-
temperature synthesis introduced oxygen vacancies (OVs) that modulated orbital
interactions between Fe d-bands and O LUMO states, enhancing PFOA adsorption and
reactivity (Figure 34b and 34c). These OVs reduced the bandgap and improved charge
separation, significantly boosting photoelectrocatalytic performance (Figure 34d). The
catalyst achieved effective degradation even in complex ionic matrices and real water
samples (Figure 34e), advancing the practical applicability of SPEF systems and

deepening mechanistic understanding at the molecular interface.
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Figure 34. (a) The preparation process of 2D CoFe-OVs@NADE cathode and the
construction process of SPEF system. (b) The density of states in 2D CoFe-OVs. (c)
The adsorption energy between PFOA and two materials. (d) Mechanism of solar-
photocatalytic coupled EF process for PFOA degradation in SPEF system. (e) The

effect of coexisting substances in the SPEF system.!??
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The solar photo-electro-Fenton (SPEF) system integrates the advantages of both
photo-Fenton and electro-Fenton processes by utilizing solar energy as a sustainable
light source to generate photogenerated holes for PFAS activation, while
simultaneously enabling the in-situ generation of H,O, and maintaining a stable
Fe?*/Fe’* redox cycle inherent to electro-Fenton systems. This allows for efficient and
environmentally friendly PFAS degradation without the need for external H,O,
addition. Moreover, SPEF systems can be coupled with colorimetric reactions to
develop highly sensitive, real-time detection platforms for PFAS, highlighting their
significant potential for future applications. However, the development of SPEF faces
considerable challenges. Due to the complexity of the integrated system, there are
stringent requirements for the structural design of materials used within the reaction
framework. Achieving optimal performance demands materials that can simultaneously
fulfill the distinct requirements of both photo-Fenton and electro-Fenton processes,
which remains one of the most critical barriers to the broader application of SPEF

technologies.
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Table 1. Recent studies on degradation of PFAS by Fenton reaction.

Oxidant
Target
Catalysts [PFAS], Experimental Conditions Degradation Defluorination reactive Ref.
PFAS
species
ZVI1 (3.6 mM); PS (5.0 mM); 90 °C; SO,
ZV1 PFOA 100 mg/L 68% 23% 80
microwave irradiation *OH
*OH,
Chemical
Fe(III) (0.5 mM); H,O, (1.0 M); 0,
-Fenton Fe(III) PFOA 100 pg/L 89% \ 81
pH=3.5; 20 °C and
reaction
HOZ'
HP (0.5 M); PS (0.3 M); SO4™,
MD PFOA 10 mg/L 69% \ 82
MD (0.5 g in 60 mL solution); *OH,
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Pb-BFO/rGO

PGFe

FeOCl

HA

Electro-

Fenton FelOMnC

reaction

PFOA

PFOA

PFOA

PFOA

PFOA

50 mg/L

50 mg/L

20 mg/L

41 mg/L

50 mg/L

pH=9.0
Pb-BFO/rGO (1.0 g/L);
H,0, (44.0 mg/L); 95%
microwave (300.0 W); 5.0 min

PGFe (1.0 g/L); H,O; (15.0 mM);

22%
pH=6.0; 25 °C
FeOCl (1.0 g/L); H,0, (2.0 mM);
57%
pH=5.2
HA (600.0 mg/L); H,O, (165 mM);
100%

Fe3* (3 mM); pH=3.0
Fel0MnC as cathode and BDD as
anode; O; (100 mL/min); Na,SO, as 97%

electrolyte; pH=3; j=2.85 mA/cm?

and Oy~

83

85

86

87

88
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Photo-

Fenton

reaction

FexNiC

CO-CNz-

F6203

Fe/N-GE@GF

F-NSGC

Fe(ID)

Fe(1II)

PFOA

PFOA

PFOA

GenX

PFOA

PFOA

50 mg/L

10 mg/L

20 mg/L

20 mg/L

8 mg/L

20 mg/L

FexNiC as cathodes, graphite sheet
as anode; O, (100 mL/min);
KHSOs (40 mM); pH=3.0; I=25 mA
Co-CN,-Fe, 05 as cathodes, Pt as
anode; O, (10 mL/min); Na,SO4
(0.05 M); pH=2; V=-0.06V
Fe/N-GE@GF as cathodes, DSA as
anode; Na,SO4 (0.05 M); pH=7
F-NSGC as cathodes, Pt as anode;
Na,SO4 (0.05 M); pH=3
Fe(II) (2.0 mM); H,O, (30.0 mM);
pH=3.0;UV lamp (9W)

Fe(III) (1 mM); H,O, (2.0 mM);

81%

96%

95%

96%

95%

98%

96%

80%

63%

53%

13%

SO4.-

and

&9

90

91

92

94

95



http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00262a

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:2

Thisarticleislicensed under a Creative Commons Attribution-NonComir

(ec)

Environmental Science: Advances

Page 68 of 84

Solar

Photo-

Electro-

Fe%/GAC

TiO,—+GO

CO304@F€304

Fe-MMT

DBD/FSB

GO-TiO,

PFOA

PFOA

PFOA

PFOA

PFOA

PFOS

50 mg/L

10 mg/L

20 mg/L

10 mg/L

20 mg/L

250 pg/L

UV light (4 W)

Fel (7.5 g/L); GAC (12.5 g/L);
H,0, (22.8 mM); pH=3; VUV light
TiO,—rGO (0.1 g/L); pH=3.8;
Hg lamp
Co;04@Fe;0y/cellulose as
membrane; H,O, (30 mM); pH=3;
Xenon lamp (300 W)
Fe-MMT (1.0 g/L); HC1O4 (0.1 M);
pH=3; Hg lamp (36 W)

FSB (100 mg/L); pH=4.28;

22 kV peak voltage

NaClO,4 (50 mM); pH=5.64;

93%

95%

90%

93%

99%

47%

98%

32%

20%

96

97

98

100

102

103



http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00262a

e 69 of 84

Thisarticleislicensed under a Creative Commons Attributi on-Non@)mrr

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 #314:-

(ec)

Environmental Science: Advances

Fenton
system MOF/CNF
CoFe-

OVs@CNF

CNF-Cu/C

CoFe-

OVs@NADE

PFOA

PFOA

PFOA

PFOA

20 mg/L

20 mg/L

20 mg/L

20 mg/L

=20 mA/cm2
Na,SO4 (50 mM); pH=3; V=-0.6 V
Na,S04 (50 mM); pH=3; O, purge;

Xenon lamp (300 W)

Na,S04 (50 mM); pH=3; O, purge;

Xenon lamp (300 W)

Na,SO,4 (0.5 M); pH=3; O, purge;

Xenon lamp (300 W)

99%

95%

98%

93%

59%

70%

63%

67%

02.-3
and

HOy
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4. Summary and outlook

The degradation of PFAS is inherently challenging due to the high bond
dissociation energy of C—F bonds, which requires not only large quantities of *OH but
also effective activation of PFAS molecules to form reactive *C,F,,.; intermediates.
Fenton reactions, owing to their ability to stably generate *OH, naturally emerged as a
leading strategy. However, *OH alone is often insufficient to initiate PFAS activation.
To overcome this limitation, multiple innovative approaches have been proposed.

Recent advances in Fenton-based strategies for PFAS degradation have been
systematically summarized (Table 1), providing a more intuitive comparison of the
relationships among reaction systems, operating conditions, and degradation
efficiencies. Distinct reaction systems rely on different oxidative reactive species,
which in turn lead to significant variations in PFAS degradation behaviors. In
traditional Fenton systems, various radical precursors have been introduced to promote
synergistic radical generation for enhanced PFAS degradation. Alternatively, spatial
confinement strategies have been employed to restrict PFAS and *OH interactions to
confined catalytic environments, thereby increasing the local radical concentration and
reactivity. Additionally, several physical techniques—including electro-Fenton, photo-
Fenton, and SPEF—have been developed to facilitate PFAS activation through direct
oxidation or electron-hole transfer, thereby enhancing coupling with ¢ OH and
subsequent defluorination steps. These hybrid methods not only circumvent the
limitations of chemical Fenton systems, such as excessive H,O, requirements, poor

catalyst stability, and strict pH conditions, but also open up new possibilities for the

DOI: 10.1039/D5VA00262A
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sustainable treatment of PFAS. However, these advancements come with "higw/ 2> 00262

challenges—particularly in the rational design of catalytic systems that can meet
multiple performance criteria.

Considerable research efforts are still required to fully understand and optimize
Fenton-based PFAS degradation. Continued exploration of Fenton-derived AOPs is
essential to broaden the scope of PFAS treatment and to proactively address the
challenges posed by emerging PFAS variants in future environmental scenarios.
Among these developments, multi-strategy coupled Fenton systems, such as the
recently proposed SPEF process, are regarded as some of the most promising
approaches. By integrating multiple mechanisms, these systems can overcome the
limitations inherent to individual methods. However, such integration also significantly
increases the complexity of system design and material engineering. Based on the

content of this review, the following research gaps and perspectives are proposed:

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(1) Most existing studies have focused on the degradation of PFOA and PFOS,

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

which are typically present at the highest concentrations in contaminated water.

(cc)

However, the PFAS concentrations (~10-50 mg/L) used in laboratory-scale
experiments are far higher than those typically found in natural waters. Therefore,
future research should focus on low-concentration PFAS degradation under
environmentally relevant conditions to better meet real-world treatment demands.

(2) Current Fenton-based degradation systems have been primarily developed for
PFOA, whereas studies on other PFAS species with diverse functional groups or

backbone structures remain limited. Expanding the applicability of Fenton reactions to
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a broader range of PFAS is therefore an important direction for future régedrchi?™>" 09202

Moreover, the influences of PFAS functional groups, backbone architectures, and
spatial conformations on the degradation efficiency, degradation pathways, and
byproduct formation in Fenton-based systems require further systematic investigation.

(3) Although novel Fenton-based systems have shown impressive performance,
achieving over 95% PFAS degradation within a few hours, the formation of diverse
transformation products—including short-chain intermediates, functional group
modifications, and possible backbone alterations—remains a major concern. The
limited identification of these byproducts and the lack of comprehensive toxicological
assessment raise the risk of secondary pollution. Addressing this challenge calls for
integrated, multidisciplinary frameworks that link degradation efficiency with
systematic analyses of byproduct formation, toxicity, and environmental fate. Future
research should therefore move beyond removal rates toward holistic evaluations that
ensure both treatment effectiveness and long-term environmental and biological safety.

(4) The development of increasingly sophisticated multi-method coupled Fenton
systems presents considerable challenges for catalyst design and material selection.
Future work should aim to elucidate the structure-activity relationships between
catalyst composition and PFAS degradation performance. Establishing general design
principles will enable the development of more effective catalytic materials specifically
tailored for PFAS treatment.

(5) Despite widespread attention to Fenton-based AOPs for PFAS degradation, their

performance in complex environmental waters has not been systematically evaluated.


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00262a

Page 73 of 84

Open Access Article. Published on 29 October 2025. Downloaded on 02/11/2025 7:14:23 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental Science: Advances

View Article Online

Moreover, current Fenton systems typically operate at relatively small tfeatihétie’™>""202%
volumes. Large-scale water treatment applications require comprehensive studies of
process scalability and techno-economic performance. In this context, life cycle
assessment (LCA) and techno-economic analysis (TEA) should be considered in future

evaluations of PFAS treatment technologies.
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