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11 Abstract

12 Photocatalytic CO, reduction is a viable solar-driven approach to sustainably
13 synthesize fuels and chemicals which provides great potential in response to the
14  urgent threat of increasing atmospheric CO,. Recently, graphene-based nanomaterials
15  have arisen as extremely compelling platforms due to their large surface area, superior
16  electrical conductivity and tunable electrical properties. This highlighted how new
17  developments in graphene-based photocatalysts as CO, reduction including

18  fundamental reaction mechanisms, thermodynamics, kinetics as well as light-induced
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19 charge separation. The presentation assessed different forms of grapheme (Graphene

20 Oxide (GO), Reduced Graphene Oxide(rGO), doped graphene and 3D graphene) both
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21  with respect to their synthesis, functionality and the role of functionalization

(cc)

22 including for co-catalysts. Certain aspects of improved charge transport and catalytic
23 activity are presented in the coupling of graphene with metal oxides, semiconductors,
24 metals, carbon nitrides and Z-scheme systems. The review critically evaluates
25  previous findings on the influence of differing synthesis methods on morphology,
26  performance and included mechanistic information from spectroscopic and density
27  functional theory (DFT) based studies. In addition to advances like single-atom
28 catalysis, hybrid systems and machine learning based design, the review also
29 discusses issues of catalyst stability, scalability and environmental issues. In the

30 conclusion, future directions for developing graphene-based systems towards
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effective, scalable and sustainable CO, photoreduction are also provided,inothg
review.
Keywords: Photocatalysis, Graphene Oxide (GO), Reduced Graphene Oxide (rGO),

CO; reduction; Charge transfer dynamics.
1. Introduction

Increasing levels of CO, in the atmosphere is an important factor associated with
global climate change and presents a massive challenge to human and environmental
systems [1]. CO, emissions have dramatically increased in the past century due to
fossil fuel combustion, industrial processes and changes in land-use that have resulted
in significant increases to global temperatures, extreme weather events as well as
ocean acidification[2]. It is critical to reduce CO, levels in order to create better climate
stability and ultimately sustainability [3]. Photocatalysis employs semiconductors to
absorb light resulting in the formation of electron-hole pairs that drive cellular redox
processes to convert CO, into hydrocarbons species such as methane, methanol and
formic acids [4, 5]. Despite the interest surrounding this research, it is often obstructed
by challenges surrounding conversion efficiency, poor selectivity and rapid
recombination of photo-generated charge carriers.

Recently, graphene-based nanomaterials have attracted great attention as new
components for photocatalytic systems [6]. Graphene-based materials in particular
graphene and its derivatives, e.g., GO, rGO and functionalized hybrids have shown
great potential to enhance photocatalytic performance based on a multitude of
properties when compared to more traditional photocatalysts including the large
surface area to mass ratio, high electron mobility, chemical stability/tolerance
towards oxidation and ease of modification of surface chemistry [7, 8]. Graphene-
based materials may enhance photogenerated charge separation, enhance light
absorption spectra and improve CO, adsorption to overcome limitations in more
traditional photocatalyst systems [9-11].

There is now considerable interest in investigating graphene-based nanomaterials for
photocatalytic CO, reduction from the scientific community and we have already seen

significant increases in publications and research activities in the past ten years.
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61 Interest in the area was less significant after 2015, though prior to that researgh/ 01y ore0;
62  graphene-based photocatalysts were also pretty limited, more so in and around
63  2010[12, 13]. This largely came down to the outcome that the coupling of
64  photocatalytic systems with graphene was a relatively new process and mechanism.
65  As the researchers recognized the potential of the electrical properties, functionalities,
66 large surface area and unique role as an electron mediator, the pressure to research
67 increased. After the cumulative number of research papers on graphene in
68  photocatalytic systems peaked around 2015, pressure again began to build due to
69  global climate crisis challenges, with an especially high need for improvements in
70  sustainable energy technology (to at least align in the same direction as work carried
71 out in fulfilling the promise of advancements in hydrocarbon energy technologies).
72 Newer syntheses, improved quality of graphene and hybrid photocatalysts between
73 semiconductor materials (i.e., TiO,, g-C3N4) and MOFs, created new constructive

74  waves in the research environment [14-16].

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

2800
w
S 2400
—
S 2000
S 1600
m ® Article = Review = Conference
‘e 1200
o Il Photocatalysis
-g 800 mm H,-Production
3 400
. o8B
A
SN e
L] n, (x) (n) N ’\
) & TV
f»
75 Year
76 Fig. 1 Publications per year about graphene-based nanomaterials for photocatalytic reduction of CO,
77 ,Reprinted with the Ref. 7], copyright@2024, RSC.

78  In the past few years, the overall number of publications has generally gone up with
79  ahigh frequency in high-quality journals in supplements with physics, chemistry and
80 environmental engineering being the most prolific disciplines are due to the
81  multidisciplinary nature (Fig.1). Overall, converging assumptions point towards a
82 maturing technological state and teaching a collaborative approach to research

83 devoted to using graphene and graphene nanostructures in purposeful experiences
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containing photocatalytic reactions aimed at reduction for possible commeggializatios
toward carbon neutral and carbon negative technologies.

This study reviews recent developments in graphene-based nanomaterials use in CO,
reduction by photocatalytic processes. It reviews the different types of graphene
composites and how they can enhance photocatalytic activity (and the scientific
principles), addresses current challenges, compares performance between systems
and discusses subsequent research avenues to advance this exciting subject into real-

life and industrial applications.

2. Fundamentals of Photocatalytic CO; Reduction

2.1 Basic Principles and Reaction Mechanisms

To initiate redox reactions in the surface-driven, light-induced process of
photocatalytic CO, reduction, semiconductors are used as photocatalysts that absorb
photons.[18, 19] The photons excite electrons (e) in the valence band (VB) to the
conduction band (CB) as long as they have an energy equal to or greater than the
bandgap energy (Eg) of the photocatalyst. When an electron is promoted to the CB, a
hole (h*) is created in the VB and the VB is now positively charged.

Semiconductor + hv —»e (CB) + h*(VB)

The holes tend to participate in water oxidation to provide protons and maintain
charge neutrality, while the photogenerated electrons can thermally decompose the
significantly adsorbed CO, molecules [20, 21]. Depending upon the particular nature
of the catalyst and reaction conditions, the reduction of CO, may follow a number of

paths with potentially complex multi-electron transfer steps.

CO, + 2H* +2e~ -CO + H,0 (E® = —0.53V vs. NHE)
CO, + 2H* + 2e~ >HCOOH (E° = —0.61V)
CO, + 8H" + 8e"—>CH, + 2H,0 (E° = —0.24V)

These reactions are thermodynamically uphill and require catalysts that can facilitate

multi-electron processes with minimal energy input and shown in (Fig. 2) [20].
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113 Fig. 2 (A) Band edge alignment and redox potentials for photocatalytic CO, reduction with H,O, (B)
114 General mechanism of graphene-based photocatalytic CO, reduction pathways, Reprinted with the
115 Ref. [22],Copyright@2020, RSC.

116

117 2.2 Thermodynamics and Kinetics of CO, Photoreduction

118 CO; is a linear and stable compound with a strong C=O bond (bond energy of
119  750k]J/mol) it is difficult to activate [23, 24]. Thermodynamic reductions of CO, to
120  products such as CO, CH4 or CH3;0OH must overcome significant energy barriers and
121 be utilized in conjunction with the redox potentials of the photocatalyst (Fig. 3). In
122 terms of kinetic functionality, the pathway to CO, reductions competes with

123 hydrogen evolution reaction (HER) which is often thermodynamically favourable
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126 Fig. 3 Schematic Representation of Thermodynamics and Kinetics of CO, Photoreduction Reprinted
127 with the Ref. [26], copyright@2020, Elsevier.
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So, kinetic control through catalyst surface modification, active site engineering.dfic
selective adsorption of CO, vs H' is important to increase selectivity [27].
Additionally, product formation is also very sensitive to the number of electrons
transferred: CO and HCOOH are 2e™ products while CH; and CH;OH are 8e™ and 6e”

products, respectively, making this kinetically more complicated.

2.3 Desired Products and Selectivity Control Reactions

Selectivity remains a central challenge in photocatalytic CO, reduction due to the
coexistence of multiple reaction intermediates (COOH, CHO, CH,OH) and competing
reduction pathways that lead to diverse products [28,29]. Depending on the
stabilization and transformation of these intermediates, the system can yield CO,
HCOOH, CH,, or CH30H, which serve as valuable chemical feedstocks, hydrogen
carriers or high energy density fuels. However, the intrinsic competition with the
hydrogen evolution reaction (HER) and the difficulty in controlling electron-proton
transfer steps often result in poor product distribution and low carbon efficiency.
Consequently, improving product selectivity is not merely a matter of enhancing
catalytic activity but also of directing the reaction mechanism toward well-defined
and desirable pathways which is essential for practical applications in solar-to-fuel
conversion.

A variety of strategies have been developed to enhance selectivity in CO,
photoreduction. Catalyst composition and morphology play a pivotal role, where
controlled doping with transition metals or nonmetals modulates electronic structures
and adsorption energies, thereby stabilizing key intermediates and suppressing side
reactions [30]. Similarly, rational engineering of the electronic band structure governs
the separation and distribution of photogenerated charge carriers, influencing surface
coverage and the reduction potential available for CO, activation [31]. Beyond
intrinsic material properties, the introduction of surface functional groups provides
specific anchoring sites that stabilize critical intermediates, improving the probability
of their conversion into targeted products. In addition, external factors such as
electrolyte pH, CO, partial pressure and the incorporation of co-catalysts can further
tune reaction kinetics, facilitating selective product formation under optimized

operating conditions [32].
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159  Graphene-based materials have emerged as highly effective platforms for Jmprovitig . coreo;
160  selectivity in CO, reduction owing to their unique physicochemical features. The
161  conjugated m-network and superior electron mobility of graphene enable rapid charge
162  transfer and efficient stabilization of electron-rich intermediates, thereby minimizing
163 unwanted back-reactions. Furthermore, the tunability of graphene through
164  heteroatom doping, covalent functionalization, and formation of heterostructures
165  provides versatile pathways to modulate CO, adsorption strength and intermediate
166  stabilization. These attributes, combined with graphene’s ability to integrate
167  synergistically with semiconductors and metal nanoparticles, make graphene-based
168  photocatalysts promising candidates for achieving high selectivity toward desired
169  products, thus offering a rational route toward efficient and sustainable CO,-to-fuels

170  conversion.
171 2.4 Role of Light Harvesting and Charge Separation

172 To use the photocatalytic process effectively, good light harvesting is important.
173 Ideally, photocatalysts should absorb a wide spectral extent, especially in the visible
174  region (~400-700 nm) where most solar energy is located [28, 29]. Many traditional

175  photocatalysts (such as TiO) has large bandgaps (>3.0 eV) that prevents further

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

176  efficient use of the sunlight [30].
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178  Fig. 4 Schematic Representation of light Harvesting and charge separation, Reprinted with the Ref
179  [31], copyright@2020, Wiley Online Library.

180

181  Since photogenerated electron-hole pairs rapidly recombine and this can drastically
182  reduce quantum efficiency, charge separation efficiency is thus also very important
183 and shown in (Fig.4)[32]. The following are some strategies for increasing light

184  absorption and reducing recombination. The overall performance of photocatalytic

7
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systems is characterized by the synergy that can be established through increased 1i
absorption, rapid charge carrier mobility and CO, adsorption on catalyst surfaces [33,
34].

2.4.1 Factors and areas of consideration

Bandgap engineering has been widely recognized as a fundamental strategy for
improving photocatalytic CO, reduction efficiency. By tailoring the band structure,
photocatalysts can extend their light absorption into the visible range while
maintaining the redox potentials required for CO, activation and subsequent multi-
electron transfer processes. Techniques such as heteroatom doping introduce
impurity energy levels that narrow the bandgap and tune the electronic structure,
while the construction of heterojunctions between semiconductors creates internal
electric fields that facilitate charge separation. These modifications not only improve
solar spectrum utilization but also influence the adsorption and stabilization of key
intermediates, thereby enhancing both activity and selectivity. In particular,
graphene-based heterojunctions with semiconductors provide unique advantages by
integrating extended light absorption with efficient charge transport pathways.
Z-scheme photocatalytic systems represent another promising approach, drawing
inspiration from the architecture of natural photosynthesis. In these systems, two
semiconductors are coupled in a manner that preserves the strong reduction potential
of one and the strong oxidation potential of the other, while photogenerated electrons
and holes in the less energetic bands recombine internally. This spatial and energetic
separation allows for simultaneous CO, reduction and water oxidation with high
efficiency. Incorporating graphene into Z-scheme systems further enhances their
performance, as graphene can act as a solid-state conductive bridge, promoting
ultrafast charge transfer while suppressing recombination. Recent studies have
demonstrated that such graphene-based Z-scheme systems exhibit superior stability
and selectivity compared to conventional type-II heterojunctions, making them highly
attractive for solar fuel production.

Surface plasmon resonance (SPR) effects associated with noble-metal decoration
provide an additional avenue for enhancing photocatalytic CO, reduction. Metals

such as Au, Ag, and Cu can generate localized electromagnetic fields under light
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216 irradiation, leading to strong absorption in the visible region and the exgitatioti o coreo;
217  high-energy “hot” electrons. These hot carriers can be injected into adjacent
218  semiconductors or graphene-based supports, where they participate directly in CO,
219  reduction reactions. Moreover, the synergistic combination of plasmonic metals with
220 graphene facilitates rapid hot-electron transfer due to the high conductivity and
221  extended m-conjugation of graphene, thus suppressing charge recombination and
222 improving reaction selectivity. Graphene itself also contributes by serving as an
223 electron sink and conductive channel, enabling spatial charge separation across
224 hybrid interfaces. Together, bandgap engineering, Z-scheme architectures, plasmonic
225 enhancement, and graphene-mediated charge transport constitute complementary
226  and mutually reinforcing strategies that can be rationally combined to overcome the
227  efficiency and selectivity bottlenecks in photocatalytic CO, conversion.

228  Although notable progress has been made with traditional photocatalysts for CO,
229  reduction, their overall efficiency is still restricted by inherent challenges such as fast
230 charge carrier recombination, narrow light absorption, and a limited number of
231  surface-active sites for CO, activation. To overcome these drawbacks, researchers
232 have increasingly focused on graphene and graphene-based nanomaterials, which

233 offer outstanding electrical conductivity, large specific surface area, and chemically

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

234 tunable interfaces. These features facilitate efficient charge separation and transfer,

235 enhanced light harvesting when coupled with semiconductors, and improved

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

236 catalytic reactivity. The subsequent section provides an in-depth discussion of the

(cc)

237  structure, properties, and photocatalytic roles of graphene and its derivatives in

238  advancing CO, conversion technologies.
239 3. Graphene and Graphene-Based Nanomaterials

240 3.1 Structure and Properties of Graphene

241  Graphene is a 2D carbon allotrope made up of a single atomic layer of sp2-hybridized
242 carbon atoms arranged in a honeycomb lattice and shown in (Fig. 5) [35]. This unique
243  atomic arrangement gives graphene many exceptional physicochemical properties
244  that make it a much-studied material with significant potential for a wide range of

245  applications, including photocatalysis[36]. Logically, every carbon atom is connected
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to three neighbours in graphene, forming a stable and delocalized m-electsgn sysfem
across the entire sheet [37]. The delocalization of electrons leads to the desired
properties of graphene electroconductivity, thermal stability, and typical mechanical
stability. For example, the intrinsic carrier mobility of graphene at room temperature
is above 200,000 cm? V™ s7!, with thermal conductivity beyond 5000 W m™ K™.
Graphene also has excellent flexibility and only absorbs ~2.3 % of visible light, giving
it apparent transparency, such as for optical electronic applications. It has the
theoretical highest surface area: 2630 m? g™ (simply meaning a large surface area for

chemical reactions or adsorption).[38]

(A)
Single lnyer graphene (SLG) Double lnyer graphene Multi layer graphene
(-} L
L OO
Graphene oxide (GO) Reduced graphene oxide (rGO)
(B)
525 nm
thickness
5-20 pm width i
, , Graphene (1-10 layers graphitc)
Graphene Nanoplatelets (GNPs) 0.34 -3.4 nm thickness

Fig. 5 A) Different structural forms of graphene and its derivatives: Single-layer graphene
(SLG),Double-layer graphene, Multi-layer graphene, GO with oxygen-containing functional groups,
RGO with partially restored graphitic structure (B) Morphological representations of graphene-based
materials: Graphene nanoplatelets (GNPs) with 5-25 nm thickness and 5-20 pm lateral size ,Few-layer
graphene (1-10 layers) with thickness of 0.34-3.4 nm. Reprinted with the Ref. [39]copyright@2019, Dove
Medical Press.

The unique characteristics make graphene a perfect medium for electron transport
and interfacial charge transfer processes specifically, which is vital for photocatalytic
processes [40]. However, pristine graphene is chemically inert, therefore lacks a
bandgap which prevents it from being useful by itself in this area of electronics [41].
Therefore, researchers have looked into graphene-based derivatives and composites
to both overcome the limitations of pristine graphene and take advantage of its

conductive and mechanical properties.

10
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3.2 Derivatives of GO, rGO, Doped Graphene, 3D Graphene DO 10,1039 baMAGO TS0
To prepare graphene for real photocatalytic and catalytic applications, numerous
derivatives have been created [42]. The goals of the derivatives generally relate to
introducing chemical functionalities, creating a bandgap, increasing dispersibility in

solvents, and establishing synergistic effects with other catalytic materials[43].

Figure: 6 Structural model of GO showing oxygen-containing functional groups such as hydroxyl (-
OH), epoxy (-O-), carbonyl (C=0), and carboxyl (-COOH) groups distributed on the basal plane and
edges of the graphene sheet. Reprinted with the Ref. [39]copyright@2019, Dove Medical Press.

GO is a heavily oxidized version of graphene, with many oxygen-containing
functional groups (e.g., hydroxyl, epoxy, and carboxyl) attached to its sheet structure
(Fig. 6). These oxygen-containing groups disrupt the conjugated m-electron system
(cause pi conjugation to cease), thereby diminishing the electrical conductivity of GO,
but markedly increasing its hydrophilicity and chemical reactivity [44]. GO is easily
dispersible in water, and other polar protic solvents, thereby permitting its use as an
important scaffolding material to support subsequent growth and immobilization of
photocatalysts [45]. Importantly GO when incorporated to make a composite material
with photocatalysts, shows improved interfacial interactions, charge transfer and
increased photocatalytic activity due to its higher density of functional groups and

defect sites[46].
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Fig. 7 Structural model of rGO, showing a partially restored sp? carbon network with residlyal gxygefyec °oe

containing functional groups such as hydroxyl (-OH), epoxy (-O-), and carboxyl (-COOH) groups
remaining on the basal plane and edges. Reprinted with the Ref. [39]copyright@2019, Dove Medical
Press.

RGO can be chemically, thermally or electrochemically reduced GO leaving behind a
partially restored m-conjugated network, some reduction in the oxygen content and
the possibility of partially restoring GO electrical conductivity, making rGO a better
candidate for electron mediator than GO itself [47]. The reduction also creates defects
and residual functional groups that can impact interfacial properties and device
performance. However, rGO provides a balance between good conductivity and
sufficient surface functional groups, when surface functionality is important in
encapsulating many photocatalytic systems (Fig.7)[48].

H Pyrrolic-N

Graphitic-N

@ Pyridinic-N
Fig. 8 Schematic representation of nitrogen-doped graphene showing different nitrogen configurations,
including pyridinic-N, pyrrolic-N, graphitic-N, and oxidized-N within the graphene lattice. These

doped sites significantly influence the electronic structure, surface reactivity, and catalytic activity of
graphene-based materials, Reprinted with the Ref [49],copyright@2021,Springer.

Doped graphene is graphene with heteroatoms (like nitrogen (N), boron (B), sulphur
(S) or phosphorus (P)) incorporated into the lattice as a substitution for carbon atoms
or attached to the surface (Fig. 8). Doping creates changes in the electronic structure
of graphene, creating localized states within the bandgap and changing work function
of the graphene [50, 51]. For example, N-doped graphene has been shown to have
better electron donor ability, so some of doped graphene's interactions increase
catalytic reaction activity and lead to an increased interaction with nanoparticles of
metals or semiconductors[52]. Each of these changes improve photocatalytic ability,

through better charge separation and transfer.
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Step 2-1. Omniphilic 3D Defected
structural graphene foam by graphene

Step 1. Formation of 30 oxygen plasma treatment

structural graphene foam
Step 2-2. Hydrophobic 3D Pristine

structural graphene foam by graphans
using pristine graphene

Step 2-3, Omniphebic 3D
structural graphene foam by x I
T e e HDF-S self:

Representalive 3D structural
ene

319 ’ 1 9rap Function of omniphobic graphene filter

320  Fig. 9 Graphene foam contains a variety of various functional groups for use in the selective separation
321  of gas, water, and oil. (a) Structure of graphene-foam. (b) 3D-graphene foam picture. (c) SEM-
322  micrograph porous structures. (d) Gas, water, and oil travel through deformed graphene. (e) Pure
323  graphene foam accepts gas and oil yet blocks water. (f) HDF-S-covalently bonded graphene can filter
324  gases, Reprinted with the Ref [53], copyright@2018, Wiley Online Library.

325

326  Three-dimensional (3D) graphene architectures[54] (e.g., graphene aerogels, foams,
327 and hydrogels) provide a macroporous and mesoporous scaffold, high surface area,
328  significantly enhanced mechanical stability and favourable mass transport properties

329  (Fig.9) [565-57]. These traits can be leveraged to support photocatalytic nanoparticles

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

330 and encourage light absorption and reactant diffusion [46].Furthermore, these 3D

331  graphene support materials can provide continuous conductive pathways for charge

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

332 migration, which will help reduce electron-holes recombination process.[56]

(cc)

333 In general, these graphene-based nanomaterials can be intelligently chosen or
334  designed based on the requirements of the photocatalytic system, for example, light
335 absorption capabilities, charge transportation features, reactant adsorption and/or
336 interfacial interactions.

337 3.3 Methods of Synthesis and Functionalization of Graphene and its derivatives

338  Graphene and its derivatives have unique physicochemical properties that can be
339  synthesized and functionalized to enhance those properties and tailor them for
340 specific applications[57]. This is particularly appropriate for photocatalysis for CO,
341  reduction. Graphene synthesis is separated into two major categories - top down and

342 bottom up (Fig.10) [58].
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TOP-DOWN

| REDUCTION
METHODS

Fig. 10 Methods of Synthesis and Functionalization of Graphene and its derivatives, Reprinted with
the Ref [59], copyright@2022, Springer.

The top-down method involves the exfoliation of bulk graphite into single individual
graphene sheets [60]. Mechanical exfoliation can produce high quality graphene, but
is not scalable. Chemical exfoliation methods, like the Hummers method and its
variations, are often employed for GO synthesis. Chemical exfoliation uses powerful
oxidizing agents (e.g. KMnO,, H,50,) in the oxidation of graphite adding oxygenated
groups which separate the interlayers and promote exfoliation. The GO produced can
then be reduced to rGO via chemical (e.g. hydrazine, ascorbic acid), thermal, or
electrochemical routes[61].

Bottom-up methods use graphene from molecular precursors, generally through
chemical vapor deposition. Chemical vapor deposition puts graphene films into high
purity, large-area films on metal substrates (Cu or Ni) [62]. CVD has great potential in
different electronic and optoelectronic applications, but it is not considered practical
for the production of graphene based photocatalytic composites due to cost and
scalability [59].

The functionalization of graphene is needed to bring usable chemical groups, improve
compatibility with other materials, and ultimately improve electronic properties[63].
Covalent functionalization takes place when chemical groups bond to the carbon
lattice (often through reactions with the oxygenated groups in GO, for example),
provides stable bonds and improved dispersibility for composites; however, this
process may limit the use of the conjugated structure of graphene and limit
conductivity. Non-covalent functionalization generally introduces molecules or
nanoparticles from the enveloping compound to the sp2 framework of graphene

through n-m interactions, hydrogen bonding and/ or electrostatic interactions[64, 65].
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370 In photocatalytic applications, functionalization strategies usually consist; 0f coreo;
371  decorating graphene with metal or metal oxide nanoparticles (TiO,, ZnO or CdS);
372 anchoring co-catalysts; or doping with heteroatoms to improve the potential of light
373  absorption, reactive sites and to improve charge separation [66]. Generally, methods
374 of synthesis/functionalization are the major factors in impacting the overall
375  performance of the graphene-based composites synthesized.

376  3.3.1 Chemical synthesis methods for graphite oxide

377  Extensive research has focused on understanding the structure of GO, the primary
378  precursor for graphene materials. GO is typically synthesized by intercalating and
379  oxidizing graphite powder using strong acids (e.g., HCl, H,SO,, HNO3) and oxidizing
380 agents (e.g., NaNO3;, KMnO,, KClO3). Several chemical synthesis methods (also see
381 Table 1) discussed below. Each method differs in its oxidants, advantages,
382  disadvantages, and resulting carbon-to-oxygen (C/O) ratios.

383  Brodie’s oxidation method was the first to synthesize GO by reacting graphite with
384 KClO; along with HNOj; at around 60 °C for three to four days.[67, 68] The process
385 involved repeated oxidation steps and drying at 100 °C. Although effective, it has
386  major drawbacks, including long reaction times and the emission of toxic gases.

387  Staudenmaier method improved Brodie’s process by using a mixture of concentrated

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

388 HNOg;, H,SO,, and gradually added KCIOj; to achieve higher oxidation in a single

389  vessel.[69] The reaction involved controlled heating, stirring, and subsequent cooling

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

390  with water, which is followed by filtration and washing. It produces highly oxidized

(cc)

391 GO but major disadvantages are long reaction times, explosion risks, and toxic
392 chlorine gas release.

393 Original Hummer’s method introduced a faster and safer alternative for synthesizing
394 GO using KMnO, and NaNOj; as oxidants in conc. H,SO, with graphite.[70] The
395 reaction proceeds through controlled temperature stages (0-4 °C, 35 °C, and 98 °C). It
396 takes about two hours. After oxidation, H,O, is added to reduce residual manganese
397 compounds, followed by washing and drying to obtain GO. The mechanism involves
398  four stages, which are Intercalation, Convection-diffusion, Oxidation and Purification.
399  During Intercalation, H,SO, and NaNO; generate HNOj3 and reactive oxygen species
400 that open graphite layers. KMnO, reacts with H,SO, to form Mn,0O,, which
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intercalates between layers in the step of Convection-diffusion. Further MusOassorsos

decomposes into O, and Og, oxidizing graphite into graphite oxide. The purification
is performed using H,O, and HC], it removes residual manganese compounds.
Improved Hummers methods aim to enhance the efficiency, yield, and environmental
safety while reducing toxic emissions. These modifications fall into several main
categories.

H,S0,/KMnO,-based methods eliminates NaNOj;, preventing toxic NO;/N;O,
release without reducing yield.[71] It enables large-scale, eco-friendly GO synthesis,
with oxidation levels adjustable by KMnO, concentration and drying temperature.
H,O, acts as a terminating agent, and its quantity influences the C/O ratio. The
reaction involves three stages: acid intercalation, oxidation to pristine graphite oxide,
and hydration to form GO. A “mild oxidation” variant (lower KMnO, ratio) yields
more crystalline, water-dispersible GO suitable for high-conductivity graphene.
Introduced by Marcano et al., H,SO,-H3;PO,/KMnO,-based methods replace NaNO;
with a 9:1 H,SO4:H3;PO, mixture, increasing oxidation efficiency and yield while
eliminating toxic gas formation.[72] It allows better temperature control (35-50 °C)
and produces three times more GO than the original method. Further optimization
studies refined intercalators and drying steps for faster, cost-effective, and scalable
production.

In case of Ferrate-assisted oxidation, KMnO, is partially replaced with K,FeO,, which
has higher oxidizing power and operates under milder conditions (<5 °C, 35-95 °C),
improving efficiency while reducing acid use and environmental impact. During
KMnO,-free methods, Eco-friendly alternatives, such as K,FeO,, ozone, peracetic
acid, and electrochemical oxidation, avoid toxic manganese by-products. Though
oxidation levels may be lower, these methods offer safer, scalable production routes.
Microwave-assisted oxidation approach rapidly heats reactants via dielectric heating,
reducing synthesis time from several days to about 20 minutes at 100 °C. It yields GO
with higher C/O ratios (less oxygenated) but is significantly faster and energy-
efficient.[73, 74]

3.4 Graphene as an Electron Mediator and Co-Catalyst
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431 Graphene-based nanomaterials are essential electron mediators and co-catalysts,itt HHE 5 ore0;
432 context of photocatalytic CO, reduction and photocatalysis processes (Fig. 11). Both
433  roles are important for charge separation, interfacial charge transfer, and the
434  recombination suppression of photogenerated electron-hole pairs[75]. As an electron
435  mediator, graphene illustrated an effective electron transport pathway between the
436  photocatalyst and the reaction interface[76]. The high electrical conductivity of
437  graphene and its massive m-conjugated system allows excited electrons to readily
438  transfer from a semiconductor photocatalyst to graphene, a charge sink or electron
439  reservoir, to prevent hols recombination and remain energized carriers[77]. In
440  TiO,/graphene composites, for example, photogenerated electrons can migrate away
441  from TiO, to graphene and, subsequently, to CO, molecules disposed on the surface,
442  providing for multi-electron reductions. The unique capacity of graphene produced
443  directional charge flow allowing for the increase in the overall quantum efficiencies
444 the system[78, 79].

445  Graphene serves as a support co-catalyst that supplies active sites for adsorption and
446  activation of CO, and other materials (Table 1). Functional groups, defects, or
447  impurities (dopants) in the graphene surface can serve as anchoring sites or functional

448  catalytic sites [76]. For example, in nitrogen-doped graphene, the lone pair electrons

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

449  of nitrogen can react with CO, and catalytically activate and reduce it[78]. Metal

450 nanoparticles deposited onto graphene, and the support themselves, can work

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

451  together to enhance catalytic activity. The electron rich graphene substrate can

(cc)

452  stabilize metal active sites, facilitate charge transfer, and modulate the electronic

453  environment of the catalytic centres.
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455  Fig. 11 (A) FT-IR-profiles of GO and CdS-RGO (B) Raman-spectra of GO-CdS-nanoparticles-and-CdS-
456 RGO, Reprinted with the Ref [80], copyright@2020, Springer.
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Graphene composites with semiconductors can form a Schottky junction or

heterojunction, which facilitates charge separation and selective pathway for reaction.

CdS/rGO systems provide an example, where rGO facilitates the charge process by

improving mobility of the electrons and also minimizing the photo corrosive

degradation of CdS material. Similarly, graphene composites with perovskites

improves electron transport enhancing rapid electron transport potential, stability,

and superior photocatalytic performance[75, 81].

Tablel: Summary of synthesis methods and their impact on catalytic performance

. . Impact on
SN. Synthesis Typical Surface Defe.ct Catalytic Remarks Ref.
Method  Procedure Area Density .
Activity
Oxidation f:t?\?: Cessites Common
Hummers”  of Moderate- High (due and electron  scalable: ’
Method graphite— High to oxygen . e but qualit ’
1 (Chemical Graphene (depends functional 9 Y [82]
P P may depends  on
Oxidation/ oxide — on groups, . .
. . . ; introduce reduction
Reduction) Reduction reduction) vacancies) o
to rGO recombinati  degree
on centers
Good
Graphene dispersion
oxide . of co- .
Hydrother  mixed High Moderate catalysts, Su1ta'ble for
. (porous, (controlle hybrids (e.g.,
2 mal/Solvot with strong [83]
few-layer d  defect . . graphene-
hermal precursors . interfacial .
structures) formation) metal oxides)
, treated at contact
high T & P improves
activity
Excellent
Hydrocar  Very High charge
Chemical bon gases (high _ Low (near transport; Expensive,
3 Vapor decompos crystallinit defect but fewer limited [84]
Deposition ed on y, large free) catalytic scalabilit
(CVD) metal domain sites unless y
substrate  size) doped/func
tionalized
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4. Recent Progress in Graphene-Based Photocatalytic Systems

Graphene-based materials can benefit photocatalytic systems and help reduce CO,
levels. When combined with different functional materials, such as metal oxides,
semiconductors, metals and carbon-based materials, they can result in advanced
nanocomposites with better charge separation, light absorption capacity, and surface
reaction sites [87, 88]. This section will talk about the recent developments in these
five fields: graphene/metal oxide nanocomposites, graphene/semiconductor
heterojunctions, graphene/metal-based nanohybrids, graphene/carbon nitride and
their 2D/2D heterostructures, and graphene-based Z-scheme photocatalytic

systems[89, 90].

4.1 Graphene/Metal Oxide Nanocomposites

Metal oxides are some of the most studied photocatalytic materials due to their
advantageous band structures, photostability, and availability, including tungsten
trioxide (WOj;), zinc oxide (ZnO), and titanium dioxide (TiO;) (Fig. 12) [91].
Unfortunately, the fast recombination of photogenerated charge carriers and the
limited visible light absorption often decreases the actual photocatalytic performance

of metal oxides. One successful strategy to overcome these limitations has been to
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combine these systems with graphene[92].Graphene/metal oxide nanoggmpesites
have emerged as highly effective photocatalytic systems owing to the synergistic
effects facilitating charge separation, light absorption, and surface reaction
kinetics[93].In these nanocomposites, graphene behaves as a conductive support and
electron mediator, and metal oxides are the primary photocatalysts. Graphene in
combination with TiO,, ZnO, Fe,O3;, and CuO not only improves photocatalytic
performance in CO, reduction under UV light, but also performs well in visible

light[94, 95].

Graphene-
based Metal
Oxide

Opto-electronic
Devices

Fig. 12 Nanocomposites of Graphene/Metal Oxide, Reprinted with the Ref [96], copyright@2024,
RSC.

Graphene/TiO, has been studied more than most other systems. Graphene is critical
to improving the photocatalytic efficiency of TiO,, as it increases light absorption in
the visible area and reduces electron-hole recombination[97, 98]. However, due to the
high electron mobility and high surface area of graphene, electrons can be transferred
quickly from the TiO, conduction band to a graphene sheet to lengthen the life of
photogenerated charge carriers. In addition, graphene has multiple active sites for
CO; adsorption, which is important for increasing photocatalytic conversion
efficiency[99, 100].

Graphene enhances the CO, photoreduction activity of many ZnO-based
nanocomposites. It is said that the graphene sheets intercalate and transport electrons
from the heated ZnO which reduces charge-recombination and improves the

production of the key intermediates CO,” and HCOO™[101-104]. Because of its m-
20
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509 conjugated electronic framework, graphene can produce enhanced interagtions, With coreo;
510 CO; through -1 stacking allowing for improved gas collection and activation on its
511  surface[105]. Graphene also enhances the photocatalytic activity of other visible-light
512 responsive metal oxides such as Fe,O; and CuO. Overall, the charge transport, and
513 increased absorption of light energy that is seen in graphene/Fe,O; composites
514 comparatively to Fe,O3; was likely due to the small bandgap of Fe,O3[106]. Graphene
515 performs similarly in the case of CuO as well since the heterojunction also has a
516 considerable charge transport factor while stabilizing reactive species for the CO,
517 reduction pathways[107].

518 The synthetic methods including hydrothermal synthesis, sol-gel procedures and in
519 situ growth are important factors that affect interfacial contact, particle size
520 distribution and electron coupling between graphene and metal oxides. Efficient
521 charge transport through the nanocomposite is dependent on creating strong
522  interfacial contacts that optimize electron transport pathways and facilitate lower
523 energy Dbarriers for charge migration[108, 109]. Graphene/metal oxide
524 nanocomposites are versatile photocatalysts that may be engineered for higher CO,
525  conversion performance, by tailoring materials design i.e., composition, shape, and

526 interfacial properties in unprecedented detail.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

527 Some recent studies have further highlighted the importance of rational design

528 strategies in advancing photocatalytic systems for energy and environmental

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

529  applications (Table 2). ZnO-based heterostructures continue to attract attention due

(cc)

530 to their cost-effectiveness and stability, though their intrinsic drawbacks necessitate
531  heterojunction engineering [110]. Both S-scheme and Z-scheme heterostructures have
532 demonstrated exceptional improvements in charge separation and redox capability,
533  with NbyOs/La;03 and ZnO-g-C3Ny4-CuO systems showing outstanding hydrogen
534  evolution rates and strong stability.[111-113] Similarly, the integration of CNTs with
535  Sr-doped ZnO and the ternary ZnO-Cu-CdS composite reveal that synergistic effects
536 between dopants, carbon supports, and mediators such as Cu can significantly
537 enhance light absorption, interfacial charge transfer, and pollutant degradation.[112,

538  114] These advances not only improve photocatalytic efficiency but also broaden
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539 application versatility, spanning H, production, dye degradation ,ang ,-Caxcoreos
540 reduction.[115]
541
542  Table: 2 Comparative performance of graphene-based photocatalysts for CO, reduction
Catalyst Synthesis €Oz Product ~ 2Uamtum g1 it
SN Svstem Method Conversion Selectivi Efficiency (h) Ref.
y Rate ty (QE) y
. Hydrothermal CO (70%),
1 OO asembly GO TR CHL (%), 05-12% 15200 [116]
P + Ti precursor) H & H, (10%)
Solvothermal o
p Craphene-ZnO -y rzno 3060 COSR) g3 089  10-15n [117]
heterojunction on GO pmol gth™  CH, (25%)
In-situ
N-doped . .
reduction with  ~120 pmol ~ CH, (65%), .,
3 grlaféhene- nitrogen e h CO (40%) 2.1% 30h [118]
2 precursor
Graphene-g- Thermal _ 0
4 GCN,2D/2D  polymerization _115}?_‘1“01 SSI (?5‘;/)’) ~2.5% 40h  [119]
heterostructure  of urea + GO & * °
. Photo
5 rcl;a(zr;Aoii—;rlOZ deposition of ~200 pmol ~ CO (90%), ~3.0% 50h [120]
5 stem Ag NPs on g 'h™ trace CH, P
y rGO-TiO,
Graphene- Hydrothermal ~100 pmol  CO (75%), o
6 MoS, hybrid co-assembly g'h™ CHy, (20%) 1.8% 2>h [121]
Sol-gel with
B-doped ~85 pmol CH, (60%), o
7 Graphene-TiO, boron e h1 CO (30%) 1.0-1.5% 20h [122]
precursor
543
544 4.2 Graphene/Semiconductor Heterojunctions
545 Besides the classic metal oxides, graphene has been paired with a number of
546  semiconductors with lower band gaps and tunable properties to generate competitive
547  photocatalytic heterojunctions[123, 124]. There have been a large number reporting
548 the hybridization of graphene with the semiconductor’s bismuth vanadate (BiVO,),
549 molybdenum disulphide (MoS;), cadmium sulphide (CdS), and graphitic carbon
550 nitride (g-C3N,) along with hybrid hierarchically porous catalytic metal oxides where
551  the changing properties to metal oxides were complimentary as shown in (Fig.13)
552 [125].
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Graphene/Si surface junction

Sil.C\)u Graphene Fé:bz | |

553 6 Holes ’ Electrons
554 Fig:13 Schematic of a graphene on-semiconductor Si heterojunction photovoltaic cell Top,
555 Reprinted with the Ref [126], copyright@2019, Nature.

556 Kim et al. successfully synthesized ZnO nanostructures with nanoneedle and
557 nanowall morphologies directly on few-layer graphene sheets.[127] In their approach,
558 mechanically exfoliated graphene was transferred onto SiO,/Si substrates, followed
559 by the growth of ZnO using a metal-organic vapor phase epitaxy (MOVPE) process
560 carried out without any catalyst assistance. The study revealed that both the aspect
561 ratio and spatial arrangement of the ZnO nanostructures — whether aligned vertically
562  or organized in rows—were strongly influenced by the growth temperature, which
563  affected nucleation behavior at the step edges of the graphene surface. Furthermore,

564 the optical characteristics of the ZnO/graphene hybrids were examined through

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

565 photoluminescence (PL) spectroscopy conducted in the 17-200 K temperature range,

566 providing insights into their structural and electronic quality.

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

567 Zinc sulfide (ZnS), one of the earliest studied semiconductors, shares structural and

(cc)

568 electronic similarities with ZnO but offers distinct advantages such as wider band
569 gaps (3.72 eV for cubic and 3.77 eV for hexagonal forms), making it ideal for UV-
570 selective optoelectronic applications like photodetectors and sensors.[128, 129]
571  Although various low-dimensional ZnS nanostructures have been synthesized,
572  systematic studies on ZnS nanostructure arrays have only recently advanced,
573 unveiling new opportunities to exploit their unique properties.[130] Furthermore,
574 growing research on ZnS-graphene nanocomposites highlights the synergistic
575 interaction between the two materials, leading to improved photocatalytic and
576  electronic performance.

577 4.3 Graphene/Metal-based Nanohybrids
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Photo-corrosion represents a significant limitation to direct bandgap semiggnducters
like CdS (~2.4 eV) which have relatively good properties for visible spectrum light
harvesting. Beyond stabilizing the photocatalyst, encapsulating CdS with graphene
would help with charge separation[131]. Acting as an electron sink, graphene
minimizes recombination losses and improves durability, by lowering operating rates
while light is present. The CdS/graphene systems have experienced promising CO,
reduction rates and high quantum yields[132].

Another layered semiconductor with better catalytic properties and hydrogen
evolution properties is MoS,[133]. When combined with graphene, MoS, can reduce
CO, by facilitating charge transfer and providing extra edge sites[134].
MoS;/graphene composites demonstrate high rates of conversion of CO, to CH,
when exposed to visible light and the fact that they are hybrids ensures good

interfacial contact and effective separation of photogenerated carriers[135].

Flexible
devices

Small
electronics

WY Electrical
= Metal Oxide o 5 I
o] vehicle |
RN i‘

Fullerene

h' * Aviation & aerospace

@ equipment

Fig. 14 Graphene/Metal-based Nanohybrids, Reprinted with the Ref [96], copyright@2024,
RSC.

In order to solve cost issues, the incorporation of accessible non-noble metals (Ni, Co,
Cu) has emerged[136]. These metals are catalytic, and have adequate proximity to
graphene, and increased efficiencies of electron transport pathways. Ni/graphene
composites provide enhanced CO, adsorption and activation abilities, making them
appealing candidates for photoreduction applications[137]. Co and Cu NP's help

support the dynamics of charge carriers while also participating in multi-electron
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600 transfer processes[138].In metal type nanohybrids shown in (Fig.14),graph@fe o eo;
601 functions as a conductive support medium and as a functional medium to stabilize
602  metal particles, limit aggregation, and manipulate electrical properties at the interface,

603  thus improving photocatalytic performance[139].
604 4.4 Graphene/Carbon Nitride and 2D/2D Heterostructures

605 2D/2D heterostructures of graphene and other two-dimensional materials provide a
606 new architecture to help in photocatalysis as shown in (Fig.15). In a layered composite
607 format, conducive photocatalytic CO, conversion occurs because composites allow

608 improved proximity, faster charge transport, and light absorption [140].

(a) (b) (<)

Transition metal
dichalcogenides (MX,)

0D-2D

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

609 2D-2D
610 Fig. 15 Frontiers of 2D-materials used in catalysis and their heterostructures,
611 Reprinted with the Ref [141], copyright@2019, Wiley Online Library.

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

612  Graphene/g-C3N, 2D /2D heterostructures represent a new area of interest due to

(cc)

613  their synergistic properties. g-CsN, absorbs visible light and has photocatalytic
614  activity, while graphene has solid-state conductivity and promotes charge
615  transport[142]. Thus, a combination of these material properties provides substantial
616 improvements to the standard photocatalytic performance observed in methane and
617 methanol yields under simulated solar light exposure. Other two-dimensional
618  materials, such as MoS;, WS,, and layered double hydroxides (LDHs), have been used
619  as van der Waals heterojunctions with graphene[143]. These heterojunctions improve
620 charge separation with electric fields formed in-plane and overlapping conduction

621 and/or valence bands[144]. A heterojunction of MoS,/graphene hybrid
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superstructures improves CO, reduction reaction activity and stability becausesihié
edges of MoS, form catalytic sites and graphene is a very effective conductor[145].

The very thin dimension of 2D materials generates a high surface-to-volume ratio,
resulting in a greater density of exposed active sites, drastically reduces the charge
diffusion distances, and has the potential to improve CO, and photoreduction
kinetics, but facilitates coupling to light-harvesting systems like sensitizers and

dyes[146, 147].

4.5 Graphene based Z-scheme Photocatalytic Systems

Z-scheme systems incorporate two semiconductors to accomplish efficient charge
separation while utilizing both reduction and oxidation potentials, simulating natural
photosynthesis as shown in (Fig.16) [148]. In Z-scheme transistor topologies,
graphene has been and is used as an electron mediator, allowing for fast electron
transport and therefore improved charge carrier dynamics[149]. In traditional Z-
scheme processes with two semiconductors, a redox mediator physically connects two
semiconductors with semi-ideal band alignment and free charge movements and
generates problems of low efficiencies and back reflexes[150]. For example, graphene
facilitates electron transfer from g-C3N, to TiO, pigment so that the redox potentials
stay high and the photocatalytic efficiency of the CO, photoreduction products
improves[151, 152].

A Redn(lmn c
,.? Reduction
f ,? Reduction
3 s
\( e
(old CLoT
==

Oxidation) “‘*—' Oxidation oy Oxidntionr*-l-l/'

Fig. 16 Schematic illustration of different types of Z-scheme photocatalytic systems: (A) traditional Z-
scheme photocatalytic system, (B) all-solid-state Z-scheme photocatalytic system, (C) direct Z-scheme

photocatalytic system, Reprinted with the Ref [153], copyright@2024, Frontiersin.

There have also been dual-component systems that involve graphene improving the
interfacial contact, as well as reducing direct charge recombination, such as

BiVO,/Graphene/g-C3N, and CdS/Graphene/ZnIn,S,. These arrangements utilize
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648  the conductive pathway of graphene in order to create directed charge flow, whHith coreos
649  enhances quantum efficiencies and product yield[154].
650 In addition, heterojunctions are more structurally robust when supported with
651  graphene allowing for greater resistance to changing environmental situations[155].
g
& 652 High rates of CO2 reduction have become achievable due to the wide variety of
—
g 653  applications humans have created for such designs, particularly under visible to solar
Q.
2 654 light[156].All and all, Z-scheme graphene-based systems are a complex photocatalytic
S ™
S E 655  architecture which should promote reduction and charge recombination losses while
d E
> & 656 maximizing light harvesting and redox potential. The potential for these to scale up
SR
<=l
3% 657 solar to fuel technology is exciting[157-161].
% S
= 5 . . .
§ 2 658 In recent years, various other graphene-based composites have emerged as highly
g2
g 2 659 efficient photocatalysts for CO, reduction owing to their superior conductivity, large
g £ . . .
8§ 660 surface area, and ability to promote charge separation. A concise summary of
82
i 8 661 representative systems, their photocatalytic performance, and the resulting products
2 0
§ 2 662 is presented in Table 3.
z &
23
% g 663 Table: 3 Overview of CO, photocatalytic conversion into solar fuels and value-added
% s 664 chemicals using graphene-based composite photocatalysts
S3 665
5 0 Composite Light Reac:clon Main Photocatalytic performance [Ref.]
8= photocatalyst source medium products
@ Graphene- Xenon CO; and CH, Conversion rate: 0.89 pmol [162]
2 WO; nanobelt lamp, 300 gaseous h™ (after 8 h of irradiation)
§_ composite W H,O
o Znln,S,/N- Xenon 84 mg CO, CH,: 1.01 pmol ht g [163]
8 graphene lamp (300 | NaHCO;, CH,OH, CO: 2.45 pmol htg?!
W) 2M H,SO, CH,4 CH;0H: 1.37 pmol h? ¢!
Graphene-g- Daylight CH, CH, 5.87 pmol g™ (after 9 hour) [164]
C3Ny bulb, 15 W 2.3-fold than that for g-CsN,
(15 wt%)
Modified 300-Watt CH,0OH CH,0OH Conversion rate: 0.172 pumol | [165]
graphene oxide | halogen g lht
(GO) lamp (Six-fold higher than the
irradiation pure TiO2)
Cu-Nanoparticle | one-pot Cu(NOs), 3 Conversion rate: 6.84 pmol [166]
Decorated microwave | HOin g-cat'th
Graphene Oxide | process (2 | ethylene (60 times higher than that for
h of visible | glycol pristine GO)
irradiation)
Platinum Xenon C,H;OH Conversion rate: 1,130 [167]
modified rGO lamp, 300 and nmol/ (h cm?)
with W CH;COOH
TiO, nanotubes
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Gra‘phe‘ne . Mercury Methanol, | Ethanol production Rate: | | -t [168} /S Ohne
derivative TiO2 | vapour Ethanol 144.7 pmol gt h™ at pH
lamp 11.0.
Methanol production Rate:
47.0 pmol g™ h™* at pH 4.0.
Noble metal Xenon arc CO; and CH, Conversion rate: 1.70 pmol [169]
nanoparticles lamp, 500 H,O vapor Seat !
(Pt, Pd, Ag, Au) | W
immobilized on | (6 h of light
rGO-TiO, irradiation)
Graphene- 300 W Xe CO, +H,O | CO 70.8 mmol g* h™ CO yield [170]
supported TiO, | arc
nanocrystals lamp
with coexposed
[110] and [115]
facets (G/TiO,-
001/101)
Reduced visible light | CO, Methanol Pristine CuO nanorods [171]
graphene oxide | irradiation showed low photocatalytic
(rGO)-copper activity due to fast charge-
oxide carrier recombination,
nanocomposites producing only 175 pmol g™
methanol.
rGO-Cu,0O nanocomposites
exhibited a fivefold
improvement, yielding 862
pmol g™ methanol.
rGO-CuO nanocomposites
achieved a sevenfold
improvement, yielding 1228
pmol g™ methanol.
GO-supported xenon CO; and Methane Methane (CH,) yield: 3.450 [172]
oxygen-TiO, arc lamp H,O vapor pmol geat™ 2017
(400 nm)
CuO/Cu;O Xenon arc CO, +H;0 | CO Enhanced CO production [173]
nanowire (NW) | lamp, 500 compared to bare
arrays grafted 4 CuO/Cu,0O NWAs due to
with reduced slower charge recombination
graphene oxide and efficient electron
(CuO/CuO transfer through rGO
NWAs@rGO) nanosheets
Carbon monoxide (0.31 and
0.20 mmol cm-2)
Pt-sensitized 300 W Continuous | CH,, C;Hg | 259 pmol g™ CH,, 77 pmol [174]
graphene- Xenon flow- g1 C.He (7.9% AQY;5.2%
wrapped defect- | lamp through CH.,, 2.7% C;Hg), stable for
induced blue- CO, + H,0O 42 h
colored TiO,
graphene oxide | 450 W CO, Formic acid | Formic acid yield: 96.49 [175]
modified with Xenon pmol in 2 h.
cobalt lamp
metallated
aminoporphyrin
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In,0;3-rGO Visible CO, +H,O | CH, 953.72 pmol g™* oo 10 O LS oS
nanocomposites | light
a-Fe,0O3-Zn0O Visible CO, + H,0O | CH;O0H Under visible light: 1.8 pmol | [177]
rod/reduced light & UV- g 1h™, total 5.3 pmol g™1in 3
graphene oxide | Vis light h; Under UV-Vis: 3.2 pmol
xGO) g 1h™, total 9.7 pmol g™ in 3
heterostructure Xenon h; ~10x higher than ZnO;
Lamp stable (90% activity retained
after 3 cycles)
Poly(3- Visible Gas-phase | CH3;0OH CO,-to-CH3OH production: | [178]
hexylthiophene) | light CO, (methanol), | 3.4x higher than pristine
nanoparticles/g | (sunlight) CH;CHO | GO; total solar fuel yield:
raphene oxide (acetaldehy | 5.7x higher than GO;
(P3HT de) improved dispersion with
NPs/GO) SDS nearly 2x higher yield
than without SDS; overall
solar-to-fuel conversion
efficiency 13.5% higher than
GO
Chlorophyll- Visible CO; + H;O | C;Hg (only | 68.23 pmol m™2 h™ C,Hs [179]
Cu/graphene light (420 product) yield; 1.26% AQE; high
(Chl- nm) selectivity and stability over
Cu/ graphene) 18 h
Au-TiO, Xenon CO; + H,O | Methane Electron consumption rate: [180]
decorated N- lamp, 300 vapor (CHa,, 742.39 ymol g™ h™* (for
doped graphene | W (1>420 highly ANGT?2); catalytic activity
(ANGT-x, nm) selective) ~4x higher than ANGT0 and
optimized ~60x higher than binary Au-
ANGT2) TiO;; best reported PCO,R
rate under comparable
conditions
rGO-grafted Xenon CO; + H;O | Formaldeh | 421.09 pmol g™t h™ (=4x [181]
NiO-CeO, lamp, 300 yde higher than pristine CeO5)
nanocomposite | W (HCHO)
G-Tip.010; 300 W CO,and CO, CH, CO: 891 pmol gt h™? [182]
hollow spheres | xenon H,O vapor CH,: 1.14 pmol g™t h™
lamp ~5x higher total CO,
conversion than Tig.910;
spheres; CO dominant;
enhanced charge separation,
electron transfer to
graphene, and photon-
trapping from hollow
structure
CuxO/ graphene | Xenon Aq. Ethanol, Ethanol yield: 162 pM cm™2 [183]
oxide (GO)/Cu- | lamp150 electrolyte | Methanol after 4 h; improved charge
MOF (Cu-BTC) | W,AM15 | +CO;, and separation and CO, binding
ternary flter Propanol confirmed by DFT; Cu-BTC
composite (100 mW composites reported alcohol
photocathode cm-2) yields up to 2217 nmol h™*
cm 2 (MeOH, EtOH, PrOH)
RGO-CdS Visible CO; and CH, 2.51 mmol h™-g™%; >10x [184]
nanorods (0.5 light, 300 H,O vapor higher than pure CdS;
wt% RGO) W xenon outperforms Pt-CdS under
lamp same conditions; RGO acts
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as electron DOL: 10.1039/D5M007509
acceptor/ transporter,
enhancing charge separation
and CO, adsorption

SWCNT-TINS UV (365 CO, CH, Under UV: SEG-TiNS [185]
(1D-2D) and nm) and (water- showed up to 3.5% higher
SEG-TiNS (2D- | visible saturated CH, production vs TiNS,
2D) (>380 nm) | atmosphere while SWCNT-TiNS
nanocomposites | light ) showed 2x improvement.
Under visible: SWCNT-
TiNS showed up to 5.1
improvement, SEG-TiNS
3.7x, compared to TiNS.
SEG-TiNS superior under
UV (73.5% more CH, than
SWCNT-TiNS), while
SWCNT-TiNS superior
under visible due to
photosensitization.
Graphene-TiO, | 300 W CO, + H,O | CH,, CHg | CoHg, 16.8 pmol ht g7%; [186]
(G-TiOg, 2 Wt% xenon vapor CH4 8 pmol ht g7%;
graphene) lamp system Solar fuel production rate is
1.7-fold of TiO,
Ag NW- Visible H,O (for H,, CO, H,: 70.6 pmol (7x higher [187]
RGO/CASNW | light, 300 water- CH,, than CG-2 wt%); CO: 3.648
(ACG-2 wt%) W xenon splitting), reduced pmol g1, CH,: 1.153 pmol
lamp H,O/CO; | nitro- g™, nitro-aromatic reduction
(for CO, aromatic enhanced compared to CG-2
reduction) | compound | wt%
s
Au- Visible CO; saturat | CH;OH 18.80 ppm cm™ h™ methanol | [188]
Cu/graphene/C | light, 300 ed H,O production rate
u20 (3D coaxial | W xenon
NW array) lamp
Cu,0O/RGO Simulated | CO, + H,O | CO, CH, Nearly 6% higher activity [189]
solar light, than optimized Cu,O and
500 W 50% higher than
xenon Cu,0/RuOx after 20 h;
lamp apparent quantum yield
(400 nm) ~0.34% at 400 nm; enhanced
photocurrent and stability
due to efficient charge
separation and RGO
protection
ZnO-RGO Simulated CO, saturat | CH;OH 4.6 pmol h™ g7, 1.7 times [190]
solar light, | ed higher than pure ZnO
500 W NaHCO; so
xenon lution
lamp
Fe2V4013/RGO | Visible CO; and CH, 2.3 pmol h™ g™%; 1.5-fold [191]
/CdS light, 300 H,O vapor higher than Fe,V,043-CdS
W xenon
lamp
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Graphene- TiO, | Mercury CO,, CcO CO conversion rate: " 1@3%%?5\‘ ‘S 537”5“83
lamp (200 | triethylami 1.26 pmol mg!
W) ne vapor
MOEF-808/ Xenon CO,, H,O CcO CO conversion rate: 14.35 [193]
reduced lamp pmol -g?
graphene oxide
ZnO/N-doped Xenon 84 mg CH;OH CH3;0H conversion rate: [194]
reduced lamp (300 | NaHCO;, 1.51umol h™*-g™* 2021
graphene oxide | W) 2M H,S0, (2.3 and 4.7 times higher
than that of the pristine ZnO
and commercial ZnO)
RGO-P25; UV light: CO; and CH, Under UV light: [195]
SEG-P25 100 W H,O vapor -1.9pmol m™2h7,
mercury comparable to TiO,
vapor lamp - 8.5 pmol m2h™, 4.5 times
Visible higher than TiO,
light: 60 W Under visible light:
daylight -1.3 pmol m™h, 2.3 times
bulb higher than TiO,
-4.0 pmol m™2h™, 7.2 times
higher than TiO,

5. Mechanistic insight and charge dynamics in graphene based photocatalytic CO,
Reduction

Rational design of graphene-based materials with enhanced photocatalytic properties
necessitates some understanding of the mechanisms governing photocatalytic CO,
reduction. The addition of graphene and its derivatives can significantly alter band
structures, light harvesting efficiencies, and charge carrier dynamic behaviours[196].
In this section, we will also discuss the nature of interfaces that separate and transport
charge in conjunction with graphene's contributions to improve the performance of
photocatalysts, as well as the theoretical and experimental frameworks that support

these operational mechanisms[197].

5.1 Charge separation and migration at graphene interfaces

The effective production, separation, and transportation of photo-induced electron-
hole pairs are key to photocatalytic efficiency. Rapid recombination of these carriers
due to charge carrier motion limits the number of electrons available for reducing CO,
on typical semiconductor photocatalysts[198]. The unique structure of graphene acts
as both a mediator and an electron acceptor at the interface to eliminate this

challenge[199]. Photogenerated electrons from the CB are transferred to the graphene
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sheet because of the energy level alignment and difference in the two Fgxmi leséls ;o0
when semiconductors like TiO,, ZnO, or g-C3N, are combined with graphene, or
rGO[200]. Transfer of these electrons decreased their chance to recombine and
increases their time to interact with the adsorbed CO, on the surface as shown in

(Fig.17) [201, 202].

hv

(@)
charge separation \(\3'0

______ 0.2

conduction band

* " interfacial transfer
O

valence band

electron Graphenel reduction roaction

\/ CH,, CH30OH, CO

electron transfer HCOOH

Fig.17 Mechanistic insights in charge transfer dynamics. Reprinted with the [203], copyright@2025,
RSC.

Moreover, the two-dimensional structure and high conductivity (~10* S/cm) of
graphene provide a rapid and directional pathway for charge migration[204]. This
network of conductive sheets reduces the distance between separate photocatalytic
nanoparticles and therefore facilitates a more uniform distribution of charge carriers
across the surface of the catalyst, and greater electron migration between adjacent

particles[205].

5.2 Synergistic roles of graphene in light absorption and carrier mobility

Even without a bandgap, pristine graphene lacks the characteristics of an intrinsic
photoactive substance; nonetheless, when combined with other materials it can
improve light harvesting and charge transportation capabilities in
photocatalysts[206].By limiting nanoparticle agglomeration in the composite and
ultimately increasing light scattering centers throughout the composite material,

graphene enhances the light absorption via improved light harvesting[207]
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706  Fig.18 Plausible Mechanism of the Photocatalytic Degradation Process of RhB Containing the R-ZT
707  Catalyst under Solar Light Irradiation, Reprinted with the Ref [208], copyright@2022, ACS.

708 In addition, when graphene is mixed with plasmonic metals like Au or Ag, it will
709  modify the optical response of the composite system[209]. The localized surface
710 plasmon resonance (LSPR) of noble metal-graphene hybrids will lead to an
711  enhancement in visible light absorption and induce hot electrons that may be
712 transported to graphene and used in CO, reduction as shown in (Fig.18)
713 [210].Graphene also significantly enhances the mobility of charge carriers. Due in
714  large part to the delocalized m-electron system, the energy wasted when carriers
715 migrate is minimized since it offers a fast transport path. Graphene can act as

716  reasonably inert, solid-state electron mediators in Z-scheme photocatalytic setups,

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

717  recombining less energetic electrons and holes from the two different semiconductors

718  in a selective manner, while still retaining the high redox potential of the remaining

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

719  charge carriers[13, 211, 212]

(cc)

720 5.3 Experimental and theoretical investigation

721 A large body experimental and theoretical evidence supports the application of
722 graphene modifications to photocatalytic reactions [213].Charge dynamics in
723 graphene-based photocatalysts have been assessed by the use of methods such as
724  surface photovoltaic (SPV) measurements, electrochemistry and impedance
725  spectroscopy (EIS) measurements, photoluminescence (PL) spectroscopy, and time-

726  resolved fluorescence[214-216].
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Fig.19 The Schematic illustration of the Origin and the transformation of graphite to graphene's atomic
structure. The transformation process shows that graphene, a 2D basic unit of carbon can be folded into
(©) 3-D Graphite (D) rolled into 1-D Nanotubes (E) and folded into 0-D Fullerene, Reprinted with the
Ref [217], copyright@2023, ACS.

For examples shown in (Fig.19), hybrids containing graphene often showed reduced
emission intensity in PL spectra, which indicates reduced electron-hole
recombination[218].The increased interfacial conductivity was demonstrated by EIS
measurements, which generally show reduced charge-transfer resistance for
graphene-based composites as compared to clean semiconductors[219, 220]. Transient
absorption spectroscopy (TAS) and time-correlated single photon counting (TCSPC)
offer direct insight of charge carrier lifetimes, with graphene-based materials with
much increased lifetimes - often by orders of magnitude[221, 222]. Surface
photovoltage imaging experiments showcase better charge separation and charge
carrier dispersion on graphene-modified surfaces[223].

Modelling approaches utilizing DFT have assisted in elucidating interfacial
charge transfer, modification of the band structure, and CO, adsorption energies[224].
DFT simulations suggest charge transfer to heteroatom-doped graphene (for example
N-doped, B-doped) exhibits higher CO, binding energy and far lower energy barriers
for multi-electron transfer processes[225]. Coupling with graphene may better align
semiconductor conduction or valence band edge with CO, reduction redox potentials,

as simulations have indicated[226, 227].
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749 5.4 Graphene induced defect engineering and bandgap modulation DO 10,1039/ DAMAGO 7509

750  Defects can markedly alter the electrical properties and reactivity of graphene for both
751 intrinsic defects and defects created during synthesis[228]. Specifically, functional
752 groups, vacancies, Stone-Wales defects and dopants allow for effective sites for CO,
753  adsorption and activation, due to their capacity to modify the band structure and
754  introduce localized electronic states[229, 230]. Defect engineering in GO or rGO opens
755  up possibilities for bandgap tuning and reactive oxygen-bearing functionalities (such
756  as -OH, -COOH, -C=0) that not only act as anchoring sites for the nanoparticles, also
757  allows for dipole and hydrogen bonding with CO, molecules to enhance contact of
758  CO, with the reaction sites[231, 232]. These defects can also be potential charge
759 trapping sites to stabilize catalytic intermediates and extend charge separation
760  steps[233].

761  Heteroatom doping with N, S, B, or P can change the electronic density and bandgap
762  of graphene to improve photocatalytic activity further. For example, N-doped
763  graphene establishes electron-rich regions which can facilitate proton-coupled
764  electron transfer and activation of CO, because of the lone pairs which donate
765  electrons to nearby carbon atom(s)[195, 234]. Engineering the band structure of

766  graphene in a heterojunction is also possible with 2D/2D heterojunctions.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

767  Heterojunctions with layered materials such as MoS, or g-C3N, provide strong

768  interfacial interaction with few 2D materials while spatially separating electrons and

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

769  holes through the band alignments result in staggered band alignments (type-II or Z-
770 scheme)[235, 236].

(cc)

771  Oxygen-doped graphene (GO and rGO) plays a particularly important role due to
772 the abundance of oxygen-containing functional groups, which not only improve the
773 dispersibility of graphene but also provide abundant active sites for anchoring
774  semiconductor species[237]. Residual oxygen groups in rGO are reported to enhance
775  electron transfer by serving as electron-accepting and shuttling sites, while also
776  inducing bandgap narrowing in semiconductor composites through chemical
777  bonding (e.g., Ti-O-C linkages) as shown in (Fig.20) [238]. This leads to red-shifts in

778  light absorption and enhanced photocatalytic performance. However, oxygen
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functionalities also introduce a trade-off: while they increase absorptivity,:dfic
porosity, they may reduce carrier mobility by disrupting the m-network. Interestingly,
graphene oxide can also act as a standalone semiconductor with a tunable bandgap,

although its photoactivity is limited by instability under prolonged irradiation.

|
CBM of TiO, (Ti 3d)
e e e

visible

W
‘rl?orbi!als of GO

{VBM of TiO, (O 2p)

y

Fig. 20 Schematic representation of Ti-o-c chemical bonding which introduce a localized state and
render band gap narrowing, Reprinted with the Ref[239] copyright@2019, Springer.

Nitrogen-doped graphene (NGR) has attracted significant attention as a superior
alternative to rGO due to its ability to preserve more of the sp? carbon network while
introducing active nitrogen sites[240]. Nitrogen atoms contribute additional -
electrons, thereby improving the electronic density of states near the Fermi level and
markedly enhancing conductivity compared to rGO as shown in (Fig.21) [241]. This
increased conductivity promotes efficient electron-hole separation, delays
recombination, and boosts photocatalytic durability. Furthermore, different nitrogen
configurations — graphitic, pyridinic, and pyrrolic—introduce distinct surface states
that act as catalytic centres and improve interfacial contact with semiconductor

nanoparticles, thereby strengthening photocatalyst-support interactions.
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Fig 21. Left: the transient photocurrent of Tio,, RGO/ Tio,and NGR/ Tio, to a chopped light irradiation.
Right: Nyquist plot of electrochemical impedance spectra for Tio,, RGO/ TiO, and NGR/ TiO,,
Reprinted with the Ref[242], copyright@2025, Elsevier.

Phosphorus-doped graphene (P-G) has also shown promise, as P atoms induce
semiconducting behaviour in graphene and open a tunable bandgap (up to ~2.85 eV),
enabling visible-light-driven photocatalysis[243]. The incorporation of P atoms
reduces defect density while simultaneously enhancing the material’s electronic
properties. In particular, P-doping Favors hydrogen evolution reactions under visible
light, outperforming GO and rGO analogues in photocatalytic hydrogen
generation[244].

Sulfur doping, particularly in nitrogen-sulfur co-doped graphene quantum dots (N,
S-GQDs), further extends visible-light absorption due to new surface states
introduced by sulfur functionalities (C=S, S=0)[245]. These dopants enable broad
absorption bands in the visible region and confer sensitizing properties, allowing
GQDs to act as efficient electron donors when coupled with semiconductor
photocatalysts like TiO,[246]. The enhanced photoluminescence and surface charge
properties imparted by sulfur doping strengthen the structure-activity relationship in
such composites.
Taken together, these heteroatom modifications significantly broaden the
photocatalytic capabilities of graphene-based materials. Oxygen doping primarily
facilitates surface reactivity and bandgap modulation, nitrogen doping enhances
conductivity and electron mobility, phosphorus doping introduces stable bandgap

engineering with reduced defect states, and sulfur doping expands visible-light

utilization. The synergy of these dopants not only improves charge separation and
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transport but also enables selective production of solar fuels and chemigals under

tailored reaction conditions.

6. Influence of synthesis strategies on photocatalytic efficiency

The structural attributes of graphene-based photocatalysts chiefly determined
through the synthesis approaches of the working moieties - are directly related to their
performance in CO, reduction[247].The various approaches will affect the shape,
defect density of the material, crystallinity, surface chemical properties and interfacial
contact between the graphene component and the active components of the composite
all impact the catalytic efficiency, charge separation and light absorption[248]. This
section will raise discussion about the impact that various synthesis approaches have
on the photocatalytic activity and sustainability of graphene-based materials, focusing

on hydrothermal, electrochemical, photoreduction and green synthesis processes.

6.1 Hydrothermal / Solvothermal approach

Graphene-based nanocomposites are frequently developed by hydrothermal and
solvothermal methods, which are also economic and scalable methods with the
possibility of producing well-crystallized forms that may have good interfacial contact
between graphene and active components[249]. During the
hydrothermal/solvothermal method shown in (Fig.22), GO or rGO is readily
dispersed with metal precursors in aqueous or organic solutions before heating and
pressurizing a sealed autoclave[250]. Over these heating and pressurizing conditions,
nucleation and growth of semiconductor or metal oxide nanoparticles (e.g., TiO,,
ZnO, BiVO,) can occur directly on the peeled-off GO or rGO sheets. Greater interfacial
coupling is also known to improve photocatalytic CO, reduction via better electron
transfer and suppressing electron-hole recombination.

Fine tunings of synthesis conditions have the potential to induce vast differences in
the catalytic activity of hydrothermally synthesized materials. A good example is how
different reaction temperatures alter the crystallinity of the precipitated nanoparticles.
Elevated temperatures often help promote the crystallinity or order of solid, thus
minimizing structural defects that act as recombination sites for charge carriers, whilst

also increasing the lifetime of charge carriers. This outcome was associated with ZnO-
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graphene hybrids, where increased CO, to CO conversion efficiencies,:dfidorso;
crystallinity resulted from elevating the hydrothermal temperature from 120 °C to 180
°C, and several crystallinity defects resulting in reduced conversion efficiencies.
Conversely, if the temperature is too high charge carriers can act as glues between
nanoparticles resulting in agglomeration which reduces both the surface area and
number of active sites in a sample which can subsequently decrease CO, adsorption
ability. Time is also critical; longer hydrothermal times frequently enhance stability
and increase the relative size and homogeneity of nanoparticles, whilst promoting
better interactions in the hybrid structure of nanoparticles-graphene. However,
prolonged growth also reduces defect density which may limit the availability of
catalytically active sites. In contrast, shorter reaction times can generate smaller
nanoparticles with higher defect density, potentially increasing catalytic activity by
creating additional active centers, albeit at the expense of structural stability.

(a)

(b)

UV-light
Irradiation
o=

U
Absortance (Counts)

Visvetength (am)

MB Degradation

GO ZnOo@GoO

Fig.22 Illustration of the (a) hydrothermal Reprinted with the Ref [251] copyright@2016, Elsevier and
(b) solvothermal synthesis of ZnO/GO nanocomposites, Reprinted with the Ref [252], copyright@2024,
MDPI.

The pH of the precursor solution and the concentration of metal salts are just as
important as temperature and time for nucleation and growth of the nanoparticles.
On graphene, we typically produced smaller, more evenly dispersed nanoparticles

from faster nucleation rates at higher pH. This is important for the effective electron
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transport of the composite. The precursor concentration affects loading depsity.oftHg
nanoparticles: mid-range concentrations evenly distribute the loaded nanoparticles
and help maintain graphene conductivity and improve electron-hole separation,
while extreme concentrations can lead to nanoparticle collisions with one another,
blocking graphene surfaces and limiting charge mobility. The ultimate impact on
photocatalytic activity, photon absorption and CO, reduction rate is dependent on the
balance of factors of crystallinity, defect density, surface chemistry and interfacial
contact - all determined collectively from a balance of these interdependent

factors[253].

6.2 Electrochemical and photoreduction method

For producing graphene-based photocatalysts both electrochemical and
photoreduction technologies have become attractive alternatives to conventional
chemical reduction. As they can be applied in relatively mild conditions, and because
they offer precise control of both the level of reduction and nanoparticle deposition,
both methods are considered to be "greener" since they do not use harsh reducing
chemicals. For these reasons, they are suitable for making composites with electrical
and structural properties which can be tuned to directly affect their efficiency for
photocatalytic CO, reduction.

Electrochemical Reduction, involves the application of an electrical bias to GO films
or dispersions in an electrolyte medium, removing oxygen functional groups while
partially reforming sp2-hybridized carbon networks[254]. Extent of reduction is
directly linked to applied potential, reduction time, and electrolyte composition[255].
GO deoxygenation accelerates with applied voltage; the higher the applied voltage,
the greater the extent of deoxygenation, increasing electrical conductivity and
enabling rapid electron transfer across rGO films. However, excessive reduction may
strip too many oxygenated groups from the rGO, leading to a decrease in surface
polarity and the number of CO, adsorption sites, marking a negative effect on catalytic
selectivity. Reduction duration is equally important in rGO production: short
reduction times yield partially rGOs with a predominance of oxygen functionalities
that subsequently act as anchoring sites for metal nanoparticles, while long reduction

times increase conductivity, but decrease oxidation and thus limit surface
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906  reactivity.[256] As ionic strength and metal cation presence can regulate ngnopatticle;coreo;
907 nucleation and dispersion, the electrolyte's composition can also influence this
908  process. When noble metals (Ag, Au, and Pt) or TiO, are deposited on rGO substrates
909 by electrochemical reduction, for example, there is a close interfacial contact, which
910  aids in effective electron transmission and better charge separation at the graphene-
911  semiconductor interface.

912 On the other hand, photoreduction is a process that makes use of light irradiation
913  (typically UV or visible light) along with appropriate sacrificial agents (for example,
914  ethanol, methanol, or other organic donors) to reduce GO, or reduce metal ions to
915  graphene sheets in parallel to reducing GO. This is advantageous because it delivered
916 ananohybrid where there was a clean surface free from any (chemical) residual, unlike
917  traditional chemical reduction routes. The parameters of photoreduction that
918  influence it include: (1) the wavelength of light, and the intensity of light; (2) the time
919  of illumination using the light; and (3) the concentration of sacrificial agent present.
920  Short wavelength UV light, gives high energy photons that can drive highly
921  efficacious GO reduction, and rapid nanoparticle nucleation; while visible-light-
922  assisted photoreduction, is greener and more amenable to scale up. Long illumination

923  times will likely enhance the level of reduction, and nanoparticle loading; however,

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

924  excessive illumination can result in particle overgrowth or photothermal

925  agglomeration. Additionally, sacrificial agent concentration also plays a role:

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

926 moderate concentrations will facilitate the efficient transfer of photogenically

(cc)

927  generated electrons to GO or metal precursors, and high concentrations will result in
928  either incomplete reductions or residual by-products that may passivate catalytic
929  sites.

930  Electrochemical and photoreduction techniques are most effective when creating
931  nanohybrids with uniformly dispersed nanoparticles good interfacial contact and
932  tunable surface chemistry. These characteristics promote charge transfer efficiency,
933  increase carrier lifetimes, and provide large active surface sites for the adsorption and
934  activation of CO,, all of which in turn have a direct influence on the catalytic
935 efficiency. Additionally, these techniques produce low energy and less toxic by-

936  products while allowing for nominally room- to low-temperature reactions, benefiting
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sustainability — goals for the scalable production of graphene-based
photocatalysts[257].

6.3 Green synthesis and sustainability concern

Due to growing emphasis on green chemistry, green synthesis protocols for graphene-
based photocatalysts have gained significant attention[258]. With regard to
conventional protocols that occasionally employ toxic solvents, high redox agents or
high energy requirements, green protocols involve non-toxic solvents, biological
redox agents or energy-saving protocols such as microwave-assisted or
mechanochemical syntheses. The new technologies both minimize environmental
effects and offer new surface functionalities that enhance photocatalytic CO,
reduction[259].

One of the most frequently adopted green methods is biogenic and plant-extract-
mediated reduction. Plant-derived, fungus-derived, or bacterial extracts comprise
polyphenols, flavonoids, alkaloids and sugars that serve both as reducing and
stabilizing agents while converting GO to rGO and depositing metal nanoparticles.
The composition of the extracts directly affects catalytic properties. Polyphenol-laden
extracts improve the incorporation of the surface graphene's oxygenated functional
groups, increasing hydrophilicity and CO, adsorption ability. Flavonoids and
proteins however, may act as a capping agent and decrease nanoparticle size and
improve dispersion[260].

Microwave-assisted synthesis is another sustainable approach, where precursors are
fairly uniformly heated quickly, and the time of reaction and energy consumption is
reduced significantly versus traditional hydrothermal processing. The microwave
power and exposure time will greatly determine the end material properties. In
general, higher microwave power leads to better crystallinity and interfacial coupling,
by promoting a faster reduction of GO and nucleation of metal/semiconductor
nanoparticles. Extreme microwave power or excessive irradiation times can cause
uncontrolled growth or agglomeration of nanoparticles, decrease the active surface
area and affect mass transfer. With that stated, optimal microwave parameter
manipulation allows the creation of highly porous nanocomposites with controlled

shapes, large surface areas and enhanced light absorption efficiency.
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968  Mechanochemical (solvent-free) synthesis is another environmentally-frield@lyi o eo;
969 method that does not require an organic solvent. In the mechanochemical process,
970  graphene sheets and catalyst precursors are closely combined by mechanical forces,
971  including ball milling. The choices in milling speed, duration of milling, and ball-to-
972  powder mixing ratio will directly affect the surface roughness, defects, and anchoring
973  of nanoparticles on graphene. For example, in terms of CO, adsorption or electron-
974 hole separation, short or low energy-modified milling may create mild defects,
975  allowing for better homogenous dispersion of catalyst in the graphene encapsulated
976  sample. In contrast, large defects created by long milling time (or high energy) can
977 serve as charge recombination sites, reducing the overall catalytic activity of the
978 catalyst. Therefore, optimization is required in order to properly assess the trade-off
979  between the disadvantage of deterioration of structural integrity, and the opportunity
980 to engineer better defects from persistent mill.

981 Taken collectively, green synthesis methods offer benefits that are considerable in
982 terms of scalability and sustainability and options for tuning the electrical and
983  structural properties of graphene-based photocatalysts as shown in (Fig.23). Often,
984  they lead to composites with lower crystallinity and more heterogeneity compared to

985  conventional hydrothermal or chemical methods, which can detract from long-term

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

986  stability and reproducibility. Therefore, future studies should focus on optimizing

987 these methods for green chemistry and catalysis, perhaps allowing controlled
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988 parameter tuning and hybridization, such as biogenic reduction followed by
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989 microwave irradiation[261].
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Fig.23 Green preparation method of rGO, Reprinted with the Ref [262], copyright@2025, %8#}6%8%%?&‘;[8 hos

6.4 Morphological tunning and surface area control

The catalytic efficiency of graphene-based photocatalysts is typically determined by
controlling morphology and surface design rather than the selection of the synthesis
method[263]. The morphological parameters of the composite material which
contribute to photocatalytic efficiency through their influence on light absorption,
charge separation, kinetics of surface reaction and CO, adsorption are equally as
important as the innate electrical properties of the material[264]. Therefore, it is
progressively more common to use rational modification of morphology when
seeking to optimize catalytic efficiencies.

The finest strategy to produce a 3D graphene material is to produce it in the form of
hydrogels, foams or aerogels. These are composite structures usually produced via
hydrothermal self-assembly or freeze-drying, yielding connected porous networks
comprising extremely high porosity and large surface areas[265]. Not only does
increased porosity increase light exposure into the catalyst matrix and mass transfer
of the CO, molecules to/from the active site, but increased porosity also increases
active sites due to the increased surface area. For example, size distribution of pores
will be affected by the rate at which it is frozen. Rapid freezing yields small closed
holes with potential accessibility issues, while slow freeze-drying creates larger
interconnecting pores, which can be beneficial for gas diffusion. Thus, this parameter
can directly affect the kinetics of CO, adsorption and reduction.

The size and spatial distribution of nanoparticles on graphene supports are important
factors. During synthesis, the kinetics of nucleation, the use of surfactants or
templates, and the concentration of precursors can be varied and achieve
morphological control. Smaller and more uniformly dispersed particles form more
catalytically active sites and smaller distance of electron transport channel. However,
overcrowding of particles from excessive nucleation can reduce graphene's
conductivity and disrupt charge mobility. On the other hand, larger nanoparticles can
decrease the density of surface-active sites while promoting crystallinity. Producing a

suitable morphology will require controlling the syntheses conditions in such a way
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1022 to find a suitable balance between exposer of active surface sites and the efficienc$ioforo;
1023 charge separation.

1024  Morphological modification also depends upon defect engineering. Localized states
1025 that act as charge-trapping or catalytic sites are added to graphene's band structure
1026  when structural defects such as vacancies, edge sites and even heteroatom dopants
1027 (N, S, and B) are embedded (i.e., with an atomic localization)[266]. Because defects
1028  modified during the synthesis improve CO, adsorption via more significant binding
1029 interactions with intermediates such as CO, as formed and adsorbed at these sites,
1030  defects also help morphology-based modification. Defects must be controlled since
1031  stability might be compromised and non-radiative recombination could be enhanced
1032  if defect densities are too high. For example, nitrogen-doped graphene aerogels can
1033 exhibit increased selectivity to the production of CO by stabilizing COOH
1034  intermediates, but too much nitrogen-doping can lead to distortion of the carbon
1035  lattice structure which can reduce conductivity.

1036  Finally, hierarchical and mesoporous structures enhance photocatalytic performance
1037 by combining mesopores (to provide a greater active surface area) and macropores
1038  (for mass transfer). Template-assisted synthesis allows precise control on pore size

1039 and connectivity. Surfactant/template to precursor ratio is important; if too little

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

1040  surfactant is used the porous structure may partially collapse, while more surfactant

1041 loading typically adds to the pore volume and surface area. The use of morphological
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1042  control mechanisms provides the following synergistic balance of surface area, mass
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1043  transport and charge transfer dynamics.
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1045 Fig. 24 Taking Advantage of Graphene’s Surface Area for Advanced Applications, Reprinted with'ries =10
1046 the Ref [267], copyright@2025, MDPI.
1047  Surface engineering and morphological tuning are successful strategies for increasing
1048  photocatalytic CO, reduction capability in graphene-based composites as shown in
1049  (Fig.24)[268]. From careful manipulation of physical features (i.e., pore shape,
1050  nanoparticle size and dispersion, and defect density) it is possible to optimize light
1051  harvesting, facilitate charge separation, and uncover a large number of catalytic sites.
1052  The strategies we have proposed help bridge the gap between material development
1053  and functional performance.
1054  Table 4: Summary of Synthesis Methods and Their Impact on Catalytic Properties
Synthesis Key . . Impact on CO;,
SN Method Parameter Effect on Material Properties Photocatalysis Ref.
Higher crystallinity at Improves charge
Hydrothermal/ elevatgd temp?rature; carrier lifetime;
1 Solvothermal Temperature excessive heating causes excessive [269]
nanoparticle aggregation temperature reduces
and surface area loss CO; adsorption
Longer times — larger
particles, lower defect Balances stability
2 Hydrothermal/ Reaction Time density; shorter times — and catalytic site [270]
Solvothermal . . .
smaller particles, higher density
defect density
Hydrothermal/ pH/ Cont‘rols nucleation ‘ Enhances interfacial
3 Precursor density and nanoparticle contact and electron [271]
Solvothermal . . .
Concentration dispersion on graphene transfer
Higher voltage improves
. . o Improves electron
Electrochemical Applied conductivity but may e
4 . . mobility but may [272]
Reduction Potential reduce surface oxygen o
lower CO, binding
groups
Ionic strength and cations  Better nanoparticle
Electrochemical Electrolyte influence nanoparticle anchoring, enhanced
5 . o " . . . [273]
Reduction Composition deposition density and interfacial charge
distribution separation
. UV enables fast GO Generates clean-
Light reduction; visible-light surface composites
6 Photoreduction =~ Wavelength & . & s P [274]
. more sustainable but with high electron
Intensity
slower transfer
Sacrificial E/f[fci) Siil;itielc?Zi’ldsoTOeTcoetses Affects nanoparticle
7 Photoreduction ~ Agent ) loading and catalytic [275]
. may leave residues and .
Concentration efficiency

passivate sites
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Polyphenols, flavonoids
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Improves %%@‘E&W%vg%wmomm

Green Synthesis Extract add functional groups and CO; affinity;
8 . . e . . e [276]
(Biogenic) Composition  enhancing CO, adsorption variability limits
and selectivity reproducibility
. . . Reduces reaction
. . Rapid, uniform heating .
Green Synthesis Microwave improves crvstallinity: time and energy
9 (Microwave- Power & pros Y Yi input; optimized [277]
. . excessive power causes
assisted) Duration . power enhances
agglomeration . .
porosity and activity
Creates defects and Enhances CO,
Green Synthesis Milline Soeed dispersion; excessive adsorption via
10 (Mechanochemi / Timeg P milling may cause too defects; excessive [278]
cal) many recombination defects cause
centres recombination losses
. . Slow rate — larger pores, Enhances mass
11 MorP hological  Freeze-drying better diffusion; fast rate transport and light [279]
Tuning Rate .
— smaller, closed pores penetration
. Surfactant / Controls mesopore Increases active
Morphological . surface area and
12 . Template volume, active surface .. [280]
Tuning . catalytic site
Ratio exposure
exposure
Introduces localized Stabilizes
o Do e e pemedie
Engineering Concentration ping Y [281]

lattice, lowers
conductivity

excess defects hinder
performance

1055

1056

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

7. Photocatalytic Performance Evaluation

7.1 Experimental Conditions and Reactor Configurations

The evaluation of photocatalytic performance requires standardized and
reproducible experimental setups. The three main reactor configurations
employed are slurry reactors, flat-panel reactors, and microreactors each
providing distinct benefits for light distribution and reactant flow. To ensure
comparability, parameters such as light intensity (W/m?), irradiation
wavelength, CO, pressure and flow rate and reaction temperature must be
carefully controlled.[282] For instance, slurry reactors with simulated solar
light (AM 1.5G, 100 mW/cm? have been widely used, while microreactors
allow higher precision with CO, pressures up to 2 bar and light intensities
ranging from 50-150 mW/cm?. The use of monochromatic LEDs (420-650

nm) in some studies enables direct correlation between catalyst absorption
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and activity, providing more detailed insights into charge,.transfes

mechanisms.
7.2 Effect of CO; Pressure, Light Source, and Co-Catalysts

Photocatalytic activity exhibits high sensitivity to external operating
conditions. Increasing CO, pressure enhances reactant solubility and
adsorption, leading to higher yields[283]. For example, graphene-TiO,
composites achieved a CO production rate of 120 pmol g'* h™* at 1 atm CO,,
which increased to 210 pmol g7! h™ when the pressure was raised to 3 atm.
Similarly, the choice of light source strongly influences activity: visible light
irradiation (A > 420 nm, 300 mW /cm?) resulted in a 2.3-fold higher CH, yield
for N-doped graphene/g-C3N, compared to UV-only excitation. The addition
of co-catalysts such as Pt, Cu, or Ni facilitates electron trapping and catalytic
site formation. For instance, Pt-decorated graphene-ZnO composites
exhibited an AQE of 6.2% under 365 nm irradiation, significantly higher than
the bare composite (2.8%).

7.3 Performance Metrics its Yield, Selectivity and Quantum Efficiency

The primary performance indicators for CO, photoreduction include product
yield (pmol g* h™), product selectivity (%), apparent quantum efficiency
(AQE), and solar-to-fuel efficiency (STF)[284]. Recent reports demonstrate that
graphene-based hybrids significantly outperform conventional
photocatalysts[258]. For example, graphene-Cu,O systems achieved a CO
yield of 320 pmol g™ h™ with 82% selectivity under AM 1.5G illumination (100
mW /cm?), while TiO, under identical conditions produced only 75 pmol g™*
h™! with 45% selectivity. Similarly, graphene/g-C3;N, composites delivered CH,
yields of 210 pmol g! h™* with AQE values of 5-8%, whereas pristine g-C3N,
typically showed <2% AQE. Reaction profiles are routinely characterized via
gas chromatography (GC) for gaseous products and high-performance liquid

chromatography (HPLC) for liquid intermediates.

7.4 Benchmarking with Conventional and Other Advanced Photocatalysts
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Systematic benchmarking against conventional and advanced photgcataly/sts
provides quantitative insight into the role of graphene[285]. For instance,
under identical AM 1.5G conditions, graphene-perovskite composites
achieved CO, conversion rates of 410 pmol g™! h™ with 85% CO selectivity
and stability exceeding 120 h, compared to bare perovskites which exhibited
only 160 pmol g™! h™ with 62% selectivity. Likewise, graphene-modified ZnO
maintained stable activity over 100 h, while pure ZnO lost 40% of its activity
within 30 h. Statistical analysis and recent studies reveals consistent trends:
(i) graphene incorporation enhances quantum efficiencies from 1-3% to 5-
12%; (ii) CO, conversion rates increase 2-5 fold relative to pristine
semiconductors; and (iii) selectivity toward CO and CH, improves by 20-40%.
These results underscore the importance of graphene as an electron mediator
and structural stabilizer, establishing reliable structure-activity relationships

for future catalyst design as shown in (Fig.25).

Define Control Measure
Experimental External Performance
Conditions Variables Metrics

®

I o | . I .

. | .
®@ @

L 4

Select Reactor Use Co- Benchmark
Configuration Catalysts with Other
Materials

Figure: 25 Experimental setup and performance evaluation of graphene

8. Challenges and Limitations

8.1 Stability and Recyclability of Graphene-Based Catalysts

Extended use of graphene based photocatalysts often causes oxidation, mechanical
delamination or photodegradation. Examination of recyclability calls for stability
tests involving several photocatalytic cycles and extended illumination. Protective
coverings or core-shell construction could help to reduce degradation issues.

8.2 Scale-Up and Cost-Effectiveness
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The commercial deployment of these materials faces challenges because of Jarge;s<dlé
synthesis difficulties and uniformity problems and high production costs despite
positive lab-scale results. The development of continuous hydrothermal synthesis and
roll-to-roll graphene film production techniques represents current research
directions for scalability[286]. The evaluation of economic viability requires a balance
between material costs and energy consumption and catalyst durability.

8.3 Standardization of Testing Protocols

The current differences in testing methods produce results that are both inconsistent
and non-comparable between different research groups. International consortia and
standard-setting organizations are promoting uniform approaches which include
catalyst pre-treatment and analytical instrument calibration and error reporting.

8.4 Toxicity and Environmental Impact of Nanomaterials

Graphene-based nanomaterials (GBN) have been developed with the purpose of
photo catalytically reducing CO, emissions, meaning GBNs could have a large
positive impact on the environment, however, their potential health and
environmental risks must be considered. Several studies have reported that GO and
rGO cause mammalian cells oxidative stress, membrane damage and inflammation
depending on their surface chemistry, size, and dose. In aquatic ecosystems, GBNs
have been shown to interact with microorganisms, algae, and fish in ways that impact
growth, reproduction, and metabolism, which raises ecotoxicological concern.
Chronic exposure to GO has been linked to diminished algal primary productivity
and with accumulated discharge of GO in higher trophic levels. And with GBN
persistence in soil and water running the risk of unknown cumulative effects,
pathways for degradation such as photodegradation, microbial breakdown, and
oxidative transformation are only understood in part. [287].

In response to these concerns, regulatory groups have started to take action. The
European Chemicals Agency (ECHA) and the U.S. Environmental Protection Agency
(EPA) have stressed that nanomaterial safety evaluations and life-cycle assessments
of graphene-based materials should be nano specific. However, the regulatory
environment is still evolving, and very few regulations established have standardized

protocols for toxicity testing, disposal, and risk assessment. Hence, when considering
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the safety of graphene nanomaterials in photocatalytic technologies, futyze, studi€s; o so;
must prioritize systematic research on environmental fate and bioaccumulation

potential, as well as implementation of safe-by-design practices as shown in (Fig.26).

Stability and Scale-up and Cost-
Recyclability Effectiveness
Issue with oxidation and Difficulties in large-scale
degradation during synthesis and high
extended use production costs

\
B =

Standardization of Toxicity and
Testing Protocols Environmental
Impact
Inconsistencies in testing Unknown environmental
methods across research effects and disposal
groups challenges

Fig. 26 Overcoming challenges in graphene-based catalysts for CO, reduction.

9. Recent Advances and Emerging Trends

9.1 Machine Learning and Al in Photocatalyst Design

Machine learning (ML) algorithms, such as random forests and neural networks, are
being trained on databases of photocatalytic performance to predict new material
combinations with high efficiency. These tools accelerate discovery cycles and reduce
experimental workload by identifying key descriptors for performance.

9.2 Single-Atom Catalysts and Defect Engineering (SACs)

SACs doped into the lattice of graphene or anchored on it provide customized
electronic environments and optimized atomic efficiency[288]. Especially for multi-
electron reduction pathways, these active sites exhibit high turnover frequencies
(TOFs) and selectivity. By improving reactivity and establishing anchoring sites,
defect engineering enhances SACs.

9.3 Hybrid Systems: Graphene with MOFs, COFs, and Perovskites
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The combination of graphene with MOFs, COFs and perovskites produges hybtict:sos0;

systems that unite graphene stability and conductivity with MOFs and COFs and their
functionality and porosity and perovskites superior optoelectronic properties. The
CO; photoreduction process benefits from these combinations because they create
multiphase catalytic pathways and synergistic charge separation mechanisms.

9.4 Photocatalysis under Visible and Near-Infrared Light

The spectrum needs to be made more usable for solar applications. Graphene-based
composites are being designed to absorb in the visible and near-infrared spectrums by
using doping techniques, plasmonic coupling, or up conversion. This increases the
solar-to-fuel conversion rates and enables the effective harvesting of low-energy
photons.

9.5 Integration with Solar Fuels and Artificial Photosynthesis Systems

The development of artificial photosynthesis approaches nears completion through
the integration of graphene-based photocatalysts into the complete system that
include photoanodes, cathodes and membrane separators. The integrated platforms
enable sustainable carbon-neutral energy cycles through direct fuel production of

methane or methanol from CO, and water by using sunlight as shown in (Fig.27)[289].

IBEDIDED IO D DI YR

l

Machine Learning
Application
Using ML to predict Combining 1el
new material § £
mate . graphene with Integratin,
combinations Single-Atom MOFs, COFs and photogtalyfts
Catalysts perovskites into artificial
Doping graphene for Designing graphene photosynthesis
optimized atomic composites for light systems
efficiency absorption

Fig. 27 Advances in photocatalysis in CO, reduction
10. Future Perspectives and Roadmap

10.1 Research Gaps and New Directions

The field of nanotechnology faces ongoing challenges regarding charge dynamics at

the nanoscale and material stability and multifunctionality. The main research
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1194  directions for the future should focus on high-throughput screening and sophisticatéd oreo;

1195  in situ characterization tools and machine learning for guided material discovery.

1196  10.2 Toward Commercial-Scale CO, Photoreduction

1197  The advancement of technologies beyond the laboratory settings requires pilot-scale
1198  studies to demonstrate economic viability, dependability and integration with CO,
1199  capture units. The validation of real-world performance and technology scaling
1200  requires essential collaboration between academic institutions and industrial partners

1201  and government officials[290].
1202 10.3 Policy, Funding, and Interdisciplinary Collaborations

1203  The advancement of graphene research depends on the public and private funding
1204  initiatives which enable laboratory discoveries to become deployable technologies.
1205  Systemic innovation will emerge from interdisciplinary partnerships between
1206  materials science and chemical engineering and environmental policy and economics

1207  researchers.
1208  10.4 Vision for Graphene-Based Nanomaterials in Climate Solutions

1209  Graphene-based photocatalysts present a viable route for the sustainable use of CO..

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

1210  These materials can make a substantial contribution to climate mitigation by utilizing

1211  solar energy to transform greenhouse gases into useful fuels and chemicals. To achieve

Open Access Article. Published on 13 November 2025. Downloaded on 18/11/2025 9:21:00 PM.

1212 a carbon-neutral future, next-generation graphene hybrids and their integration into

&l 1213 integrated energy systems will be essential as shown in (Fig.28)[291].

Research Gaps and New
Directions

( \ l‘\ Commercial-scale CO2

Photoreduction

< Charge Dynamics
+ Material Stability
< High-Throughput Screening

«“* Pilot-Scale Studies
*» Economic Viability
% Integration with CO2 Capture Units

+ Graphene-Based Photocatalysts % Public funding
% Solar Energy Utilization % Private funding
1214 < Carbon-Neutral Future % Interdisciplinary Partnership
1215 Fig. 28 Future perspective and roadmap of nanotechnology for CO, reduction
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11. Conclusion

Photocatalytic carbon dioxide (CO,) reduction provides a viable pathway toward
sustainable energy conversion and carbon management; however, challenges with
low efficiency, poor selectivity and limited stability will continue to hinder the
commercialization of photocatalytic CO, systems. Recent advances in the field of
graphene-based nanomaterials demonstrate that their remarkable capabilities (high
surface area, increasing conductivity, tunable chemistry and electron mediators) can
resolve many of these impediments. The incorporation of graphene into
semiconductor, metal oxide, metal and carbon nitride systems has provided
significant enhancements in light absorption, charge separation and inference
stabilization of key intermediates during additional reactions and resultantly
increased yields of CO, in the form of CO, CH,, CH;0H and HCOOH. Further
advances including bandgap, Z-scheme, plasmonic enhancements and surface
functionalization have illustrated the flexibility of graphene as a co-catalyst to tune
the selectivity of CO, photoreduction, as well as to serve as a structural platform.
However, there are still major challenges to overcome. Stability through long-term
operation, scalability of synthesis pathways and the footprint of produced graphene
at large scales are important factors that need to be addressed. Furthermore, although
several reviews focus on model systems and laboratory conditions, our
implementation of systems into commercial solar driven reactors remains limited. As
such, the research needed to solve these technical issues will require the integration of
several techniques, rational engineering of interfaces, precise control over heteroatom
doping and the appropriate hybridization with metals and semiconductors, such that
efficiency and selectivity can be achieved at scale.

Looking forward, the combination of emerging technologies such as single-atom
catalysis, machine learning-assisted catalyst design and green synthesis routes offers
new opportunities for tailoring graphene-based systems toward high-performance
CO; reduction. The synergistic integration of experimental and theoretical insights
will be critical to unraveling complex reaction mechanisms and guiding the rational

design of next-generation photocatalysts. With continued innovation, graphene-based
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nanomaterials hold immense potential to accelerate the realization of, efficiéiit corso;
scalable and sustainable CO,-to-fuel conversion technologies, bridging the gap
between laboratory success and practical application.
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