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Bio-oil derived polyesteramides as water-
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The seed oil from Brassica carinata is a promising source for biobased aviation fuel. Interestingly, the

seeds contain considerable sinapic acid and erucic acid, both of which can be utilized for bioplastic syn-

thesis. From the latter, we report herein the synthesis of biobased and water-degradable polyesteramides

(PEAs) via N,N’-bis(2-hydroxyethyl)brassylamide (BHEBA). This diol was prepared from ethanolamine and

brassylic acid, a C13 oxidation product of the C22 erucic acid, which makes up 42% of the fatty acids

present in this non-GMO (non-genetically modified) Ethiopian mustard seed oil. After optimization of

conditions, BHEBA was polymerized with aliphatic diacids to obtain the designed PEAs with high purified

yields (77–88%) and good molecular weights (Mn = 7000–10 700 Da). The melting temperatures of these

PEAs ranged from 130–139 °C, values comparable to those of several grades of polyethylene. Compared

to shorter diacids, the brassylic acid incorporated into PEA structures improves hydrophobicity, and

mechanical performance was not compromised after a daylong exposure to water. Furthermore, a

12-month PEA degradation study revealed significant hydrolytic degradation (at least 37% loss in Mn)

under all the conditions studied: pH 2, pH 5, seawater, and deionized water. Their degradability was

further evaluated under high-temperature conditions compared to several commercial plastics, establish-

ing their superior degradability in seawater and deionized water. Chemical recyclability of PEA was

demonstrated through facile aminolysis with ethanolamine to regenerate the BHEBA monomer in 84%

yield. While further mechanical property improvement would be ideal, the results substantiate the high

potential of brassylic acid-based polyesteramides to be eco-friendly replacements for some petroleum-

derived commodity plastics, especially polyethylene.

Green foundation
1. We have introduced Brassica carinata seed oil as a scalable source of brassylic acid and used this building block for the
synthesis of novel polyesteramides with properties indicating their potential as new, eco-friendly replacements for some
commodity plastics, including polyethylene.
2. The polyesteramides described possess high melting temperatures (Tm = 130–139 °C) comparable to that of polyethylene.
Additionally, the brassylic acid component conferred hydrophobicity to the polyesteramides, resulting in maintained
mechanical property performance after short-term exposure to water. Nonetheless, these hydrophobic polyesteramides
exhibited water-degradability with more than 37% molecular weight loss after one year.
3. Further increasing polyesteramide molecular weight is desirable because that can improve mechanical properties and
expand the potential applications. Moreover, a detailed study of polymer biodegradability—and toxicity of the released
molecules—could further enhance the significance of this project.

Introduction

The development of polymer science has provided human con-
veniences which will never be willingly abandoned. However,
this development has been accompanied by unforeseen pro-
blems, notably stemming from the boundless production of
commodity plastics. These issues include fossil fuel
depletion,1,2 carbon dioxide production,3 and environmental
persistence.4 While polymer stability can be a great advantage
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tational methods. See DOI: https://doi.org/10.1039/d4gc05490c
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for certain applications, it is an unnecessary property in many
cases given that 40% of plastics are produced for single use.5

Because of such poor degradability, 79% of post-consumer
plastic waste is accumulated in landfills.6 Furthermore, plastic
waste is often discarded inappropriately and remains in the
open environment semi-permanently. It is estimated that
2–5% of all plastic waste enters the ocean and negatively
affects the marine environment.7,8 Additionally, this waste
eventually turns into microplastics that can easily disperse and
pollute our environment directly or indirectly.9–11 While plas-
tics provide us vast conveniences, they also cause many serious
problems that should be addressed without delay.

Of course, science can address such problems and con-
siderable research effort has been directed toward next gene-
ration eco-friendly plastics,12–16 which can be biobased,
degradable, recyclable, or some combination thereof. Biobased
plastics are derived from biobased feedstocks such as lignin,
carbohydrates, terpenes, and fatty acids. Degradable plastics
decompose into benign, low molecular weight molecules
under specific conditions. While several bioplastics are still
under commercial development, they are expected to address
the aforementioned problems, as their global production
capacity increases from 2.2 billion kg per year (in 2023) to an
estimated 7.4 billion kg per year in five years. However, current
bioplastic production is less than 1% of total plastic pro-
duction, meaning conventional commodity plastics still domi-
nate the market.17 In order for eco-friendly plastics to pene-
trate the current market, their drawbacks must be remedied—
including relatively poor polymer properties and high pro-
duction costs compared to conventional commodity plastics.18

One potential solution stems from Brassica carinata (cari-
nata), a seed crop grown commercially on four continents.19–22

While the main application of this seed crop is for bio-jet fuel,
it also provides building blocks that can be utilized for bioplas-
tic synthesis (Fig. 1).19,23 The limited land for growing bio-
based feedstocks is one common problem with bioplastic pro-
duction;24 but carinata is a hardy species that can be grown
off-cycle on otherwise unused land. Accordingly, it can be

grown as a winter/cover crop in warm climates, such as the
southeast United States. Furthermore, since carinata seed oil
is inedible (too high molecular weight fatty acid profile), there
is diminished concern about its effect on the food supply
chain, which is problematic for edible biobased resources,
including starch and common vegetable oils.25,26

As an example of carinata-based plastics, our group pre-
viously studied the extraction of its seed meal to yield sinapic
acid and its derivative was polymerized to give biobased poly-
esters with commercially applicable glass transition tempera-
tures (Tg) ranging from 41 to 118 °C.27 Beyond sinapic acid,
carinata provides several fatty acids like other seed crops. But
interestingly, the primary component is erucic acid (42%), a
fatty acid not common in other mustard species.28 This C22
cis-Δ13 mono-unsaturated fatty acid is readily oxidized to
afford brassylic acid, an aliphatic carboxylic diacid possessing
thirteen carbons.29 Targeted production quantities for sustain-
able aviation fuel (132.5 billion liters per year by 2050)30 has
the potential to markedly increase the availability of brassylic
acid, while lowering its cost. Although the brassylic acid
market has exceeded 60 million USD per year, its production is
much less than other diacids and its primary application is in
the fragrance industry.31 The polymers derived from brassylic
acid (C13) are much less studied compared to those from
common aliphatic carboxylic diacids with shorter hydrocarbon
chains, such as succinic acid (C4), adipic acid (C6), and
sebacic acid (C10).

Still, several researchers reported polymers derived from
brassylic acid with promising properties,32–34 establishing it as
a viable biobased resource and providing additional value to
carinata crop production. In order for brassylic acid-derived
polymers to compete with extant commodity plastics, further
improvement of polymer properties is desirable. One possible
approach is to incorporate amide functional groups to create
biobased aliphatic polyamides (nylons). The introduction of
an amide group can induce chain–chain hydrogen bonding,
significantly improving polymer properties such as melting
temperature (Tm), glass transition temperature (Tg), and tough-
ness, as originally reported by Carothers.35 Although a few
nylons derived from brassylic acid have already been reported
and exhibited good polymer properties,36,37 their high crystalli-
nity made them very chemically stable and less degradable,
which is not ideal for many single-use plastic applications.

To improve environmental degradation aptitude, we envi-
sioned incorporating an ester functional group into the nylon
structure and thus, creating aliphatic polyesteramides (PEAs)
from brassylic acid. The ester group is a pervasive main-chain
polymer linkage and, in several instances, its degradation can
occur in the presence of water via hydrolysis.38–40 Although the
polymer properties may be diminished by introducing ester
functional groups, the remaining amide functional groups of
the PEAs should counterbalance this effect. Thus, PEAs should
possess better polymer properties than conventional polyesters
and better degradation behavior than conventional polya-
mides. There are already several examples of aliphatic PEAs
with good thermal properties, sufficient mechanical perform-

Fig. 1 Chemicals available from carinata seed. Percentages shown
describe the composition of each fatty acid in the seed oil, as reported
by Warwick, et al.28
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ance, biodegradability, hydrolytic degradability, and low gas
permeability.41–50 In particular, Guégan and colleagues
reported a series of PEAs derived from carboxylic diacids and
diols containing amide groups prepared by amidation of car-
boxylic diacids with ethanolamine.41 This approach provides
good guidance in that the starting materials are carboxylic
diacids and ethanolamine generally (or potentially) available
from biobased resources.51,52 Additionally, their obtained ali-
phatic PEAs showed admirable melting temperatures (Tm =
122–158 °C), comparable to those of some commodity plastics
such as high density polyethylene.

To our knowledge, however, PEAs derived from brassylic
acid have not been reported. It should be emphasized that the
long aliphatic hydrocarbon segment of brassylic acid ([CH2]11)
should render a less hydrophilic PEA, which has advantages
for short-term dimensional stability in the event of water
exposure. This conjecture is partially supported by the research
of Smith and colleagues, who reported that polyamides with
longer aliphatic chains absorbed less water over time.53 This is
advantageous in some applications because the polymer per-
formance is often compromised when absorbed water func-
tions as a plasticizer. This plasticizing effect is especially con-
cerning for polyamides because of the hydrophilicity accompa-
nying the secondary amide functional group.54–56 While
brassylic acid incorporation may improve hydrophobicity and
expand potential applications, it may also slow down or arrest
hydrolytic degradation. The net result cannot yet be predicted
because the impact of hydrophilicity on the hydrolytic degrad-
ability of aliphatic PEAs is not well studied.

In this report, we demonstrate the synthesis of a series of
PEAs from various aliphatic carboxylic diacids and N,N′-bis(2-
hydroxyethyl)brassylamide (BHEBA) that was prepared from
brassylic acid in two steps (Scheme 1). The properties of these
polymers were studied, including their thermal properties and
mechanical performance under wet conditions. The long-term
water degradation behavior of PEA 13,6 is thoroughly investi-
gated at room temperature in four different aqueous media:
pH 2, pH 5, deionized (DI) water, and seawater. The water
degradability of PEAs is directly compared to that of commod-

ity plastics under high-temperature conditions. Additionally,
the chemical recyclability of PEA 13,13 was investigated via
aminolysis with ethanolamine.

Results and discussion

The synthesized polyesteramides (PEAs) are described here as
“PEA x,y” where x is the carbon number of the carboxylic
diacid used to prepare the bis-amidediol monomer and y is
the carbon number of the carboxylic diacid used for the
polymerization (Scheme 2). In all cases, the bis-amidediol
monomer is prepared from ethanolamine. The experimental
details are summarized in the ESI.†

Polymerization optimization

The polymerization conditions were optimized by synthesizing
PEA 13,6 from N,N′-bis(2-hydroxyethyl)brassylamide (BHEBA)
and adipic acid, employing antimony oxide (Sb2O3) as the cata-
lyst. The conditions and polymer characterization data are
summarized in Table S3.† With a maximum polymerization
temperature of 240 °C,38–40 intractable polymers were
obtained, presumably because of cross-linking via N-
carbonylation with adipic acid and/or polymer ester bonds.
With a maximum polymerization temperature of 200 °C, the

Scheme 1 Synthesis of a series of polyesteramides (PEAs) from brassylic acid, ethanolamine, and carboxylic diacids of varying length. While carinata
is a potential source of brassylic acid, the current industrial production of this diacid employs erucic acid from other species,57,58 such as crambe
(Crambe abyssinica) and high erucic acid rapeseed (Brassica napus).

Scheme 2 General representation of PEAs (polyesteramides) synthesized
in this study. The number of carbons between amide N atoms is given by x.
The number of carbons between ester O atoms is given by y.
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synthesized polymers were tractable as demonstrated by their
dissolution in hexafluoroisopropanol (HFIP) or trifluoroacetic
acid (TFA). Although good molecular weight values were
obtained (Mn = 13 900 Da, Mw = 69 400 Da), the dispersity was
broad (Đ = 4.98) and the melting temperature (Tm = 116 °C) was
lower than in other trials. Optimal polymer properties were
obtained when the polymerization temperature ramped from 160
to 180 °C over 8 hours, with vacuum applied during the latter
half (Table 1, entry 1). The structure of PEA 13,6 was confirmed
by 1H NMR analysis (Fig. S24†). Because of observed adipic acid
sublimation, a slight excess of adipic acid (1.05 equivalents) was
tested. This resulted in slightly higher Mn and Mw values, but a

greater dispersity (Table 1, entry 2). Hence, 1.0 equivalent of
adipic acid was deemed optimal. Subsequent entries of Table 1
show catalyst screening results and indicate that Sb2O3 is the pre-
ferred catalyst (Table 1, entry 1).

Synthesis of a polyesteramide series

With the optimized conditions, a PEA series was synthesized,
wherein the carboxylic diacid varied from C4 to C13 (PEA 13,y
with y = 4–13); the polymers were obtained with 77–88% post-
precipitation yield (Table 2). For comparison, PEA 6,6 was syn-
thesized under the same conditions. While most PEAs had
good molecular weights, lower molecular weight products were
initially obtained with succinic acid (C4), glutaric acid (C5)
and brassylic acid (C13): PEA 13,4 (Mn = 1000 Da); PEA 13,5
(Mn = 6000 Da); and PEA 13,13 (Mn = 6300 Da), respectively.
Further optimization provided improved results for PEA 13,13
(Mn = 8600 Da) by using 4 mol% of Sb2O3 and 1.05 equivalents
of brassylic acid, although the dispersity broadened somewhat
(3.3 to 3.8). While this approach also improved the Mn of PEA
13,5 (Mn = 7400 Da), it did not work for PEA 13,4. The very
limited Mn values for PEA 13,4 can be explained by competitive
chain back-biting, wherein a secondary amide nitrogen
initially attacks the carboxylic acid terminus or an ester group
already within the main-chain, forming an 8-membered ring
(Fig. S2A†), which can then isomerize, exergonically (ΔG453 =
−12.5 kcal mol−1), to N-hydroxyethylsuccinimide (Fig. S2F†),
which we have confirmed by 1H NMR (Fig. S33†). Höcker and
colleagues have reported that the same thermodynamically
favorable by-product competes with chain extension
(Fig. S2E†).59,60 Our computational results suggest that cycliza-
tion to N-hydroxyethylsuccinimide is rather exergonic
(Fig. S2D, A and F,† ΔG453 = −8.7 kcal mol−1) compared to

Table 1 Catalyst screening for PEA 13,6 synthesisa

Entry
Catalyst
(2 mol%)

Equivalents of
adipic acidb

Mn
c

(Da)
Mw

c

(Da) Đc

1 Sb2O3 1.00 10 500 31 200 3.0
2 Sb2O3 1.05 11 100 36 400 3.3
3 p-TSA 1.00 5800 23 000 4.0
4 Zn(OAc)2 1.00 6100 17 600 2.9
5 K2CO3 1.00 3700 9000 2.4
6 H2SO4 1.00 5000 16 600 3.3
7 Sn(Oct)2 1.00 8200 24 600 3.0
8 Ti(OBu)4 1.00 9600 27 800 2.9
9 No catalyst 1.00 4500 12 500 2.8

a The polymerization system was initially heated to 160 °C under a
nitrogen atmosphere for 4 hours, followed by dynamic vacuum at the
same temperature for 2 hours. Then, the temperature was raised to
180 °C for 2 hours. bMolar equivalents of adipic acid versus BHEBA.
cMeasured by gel permeation chromatography (GPC) using sodium tri-
fluoroacetic acid (NaTFA, 20 mM) dissolved in hexafluoroisopropanol
(HFIP) as the mobile phase. The columns were kept at 40 °C and poly-
methylmethacrylate (PMMA) standards were employed.

Table 2 Molecular weight data and thermal properties of PEAs derived from N,N’-bis(2-hydroxyethyl)brassylamide (BHEBA)a

Entry Polymer Yieldb (%) Mn
c (Da) Mw

c (Da) Đc Td5
d (°C) Tg

e (°C) Tm
e (°C)

1 PEA 13,4 82 1000 1700 1.8 275 N.D. f 91
2g PEA 13,5 77 7400 22 200 3.0 284 0 139
3 PEA 13,6 78 10 500 31 200 3.0 285 0 137
4 PEA 13,7 78 9600 30 800 3.2 303 −1 136
5 PEA 13,8 83 7900 23 800 3.0 306 2 137
6 PEA 13,9 83 10 700 34 300 3.2 306 3 136
7 PEA 13,10 88 9700 31 600 3.3 309 N.D. f 130
8 PEA 13,11 81 8100 24 700 3.0 303 N.D. f 135
9 PEA 13,12 83 7000 21 800 3.1 307 N.D. f 132
10g PEA 13,13 84 8600 32 700 3.8 309 N.D. f 135
11 PEA 6,6 81 12 200 36 000 2.9 290 9 130

aWith 1.0 equivalent carboxylic diacid and 2 mol% Sb2O3 as catalyst, the polymerization system was initially heated to 160 °C under a nitrogen
atmosphere for 4 hours, followed by dynamic vacuum at the same temperature for 2 hours. Then, the temperature was raised to 180 °C for
2 hours. b Reported as a mass yield following polymer precipitation, except for entry 1 which preceded polymer precipitation. cMeasured by GPC
using NaTFA (20 mM) dissolved in HFIP as the mobile phase. The columns were kept at 40 °C and PMMA standards were employed. d 5% mass
loss degradation temperature as measured by thermogravimetric analysis (TGA) with a 10 °C min−1 heating rate under nitrogen flow. eMeasured
by differential scanning calorimetry (DSC) with a 10 °C min−1 heating rate under nitrogen flow. The 3rd cycle thermogram was used for the ana-
lysis. f Tg values were not determined from the obtained thermograms. g 1.05 equivalents of carboxylic diacid and 4 mol% Sb2O3 were used.
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chain extension (Fischer esterification, Fig. S2D,† ΔG453 =
+7.1 kcal mol−1) at our typical polymerization temperature of
180 °C, where possible 5-membered ring volatilization further
signals low molecular weight. Because of this apparent side
reaction and our inability to obtain decent molecular weights
for PEA 13,4, this polymer is excluded from discussion in the
following section.

Thermal properties of polyesteramides

The thermal properties of the PEAs in Table 2 were studied by
thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC). Their 5% degradation temperatures (Td5,
284–309 °C) were high enough for practical applications and
substantially above their melting temperatures (Tm,
130–139 °C), which is preferred for melt processing. The glass
transition temperatures (Tg) of these polymers were either not
clearly observed or around 0 °C—substantially lower than that
of nylon 6,6 (44 °C) or nylon 12 (50 °C),61,62 but decidedly
higher than that of polycaprolactone (−60 °C).63

Interestingly, their Tm values fell within a small range of
130–139 °C. Still, a slight decreasing trend was observed
among the even y carbon series (137, 137, 130, 132 °C) and the
odd y carbon series (139, 136, 136, 135, 135 °C) (Fig. S4†)—in
line with the presumption that additional methylene groups
diminish crystallinity by diluting the interchain amide hydro-
gen bonding. In this regard, PEAs behave more like polya-
mides than polyesters since the latter generally exhibit increas-
ing melting temperatures with an increasing number methyl-
ene groups per repeat unit.54,64–67 Nevertheless, these counter-
balancing effects for polyesters and for polyamides may
explain the narrow Tm range observed for the polyesteramides
of Table 2. It should be noted that similar trends were
observed with related, aliphatic PEAs as their methylene com-
position was varied.49,50 Additionally, the small Tm range of
these PEAs is probably a consequence of employing the long
BHEBA monomer, which diminishes the length effect of the
diacid employed. For comparison, the Tm range of the nylon
x,6 series (x = 2–12) is 315–204 °C,54 but that of the nylon x,13
series (x = 3–11, from various diamines and brassylic acid) is
much narrower at 191–176 °C.36

With little surprise, the Tm values of PEAs in this study are
much lower than those of related nylons such as nylon 6,6 (Tm
= 265 °C).61 However, the Tm values are still comparable to
those of some commodity plastics, including low-density poly-
ethylene (LDPE, Tm ∼ 108 °C)68 and high-density polyethylene
(HDPE, Tm ∼ 134 °C).66 The thermal properties of PEAs were
further analyzed by comparing them with consumer grade
LDPE and HDPE via DSC. Table 3 summarizes the melting and
crystallization temperatures as well as the enthalpies of melt
(ΔHm) and crystallization (ΔHc) of PEA 13,6, PEA 13,13, LDPE,
and HDPE (additional PEA data are summarized in Table S7†).
A laboratory solvent bottle (LDPE) and a milk jug (HDPE) were
analyzed as representative commercial articles. A polymer’s
crystallization rate is often evaluated by the gap between its
melting temperature and crystallization temperature (ΔT = Tm
− Tc) and this was around 30 °C for PEA 13,6 and PEA 13,13.

In comparison, both LDPE and HDPE exhibited ΔT around
15 °C. This implies that our PEAs cannot crystallize as fast as
polyethylene, but ΔT = 30 °C is still considered small.41,69 Also,
the ΔT values for the PEA 13,y series ranged from 23 to 34 °C
(Table S7†), meaning some were more comparable to polyethyl-
ene. Within the PEA 13,y series, the ΔHm and ΔHc values gen-
erally increased with increasing length of the aliphatic diacid
employed. The ΔHm ranged from 37 J g−1 (PEA 13,6) to 64 J g−1

(PEA 13,12), achieving 55% of the value for LDPE and 30% of
the value for HDPE.

Mechanical properties of polyesteramides

Polymer mechanical testing was performed with samples pre-
pared by cutting a film manually along the mold (Fig. S5†). In
order to minimize the inconsistency of this method, multiple
specimens (9–12) were tested and Table 4 summarizes the
average of the top five samples for each polymer. Still, the
mechanical data presented here should be considered relative
since inadvertent defects in the narrow section of the speci-
mens can result in premature deformation and breakage
events (see Fig. S6†). The primary purpose of this study is to

Table 4 Mechanical propertiesa of BHEBA-derived PEAs (PEA 13,5
through 13,13), PEA 6,6, and commercial polyethylene (reported values)

Entry Polymer Mn
b (Da) σmax

c (MPa) εd (%) Ee (MPa)

1 PEA 13,5 5500 N.D. f N.D. f N.D. f

2 PEA 13,6 9600 23.1 ± 0.9 65 ± 4 192 ± 19
3 PEA 13,7 8100 23.2 ± 0.9 82 ± 14 215 ± 17
4 PEA 13,8 7800 29.6 ± 2.3 52 ± 8 280 ± 31
5 PEA 13,9 9000 26.6 ± 2.1 40 ± 5 218 ± 12
6 PEA 13,10 11 300 29.2 ± 0.9 33 ± 3 260 ± 13
7 PEA 13,11 8100 28.4 ± 2.4 117 ± 18 277 ± 35
8 PEA 13,12 8000 31.3 ± 1.8 76 ± 27 302 ± 34
9 PEA 13,13 7500 28.2 ± 2.6 57 ± 15 298 ± 45
10 PEA 6,6 14 000 26.2 ± 1.8 131 ± 31 221 ± 24
11 LDPEg 70k–120k 12–20 281–950 138–200
12 HDPEg 20k–3000k 20–30 180–870 745–1683

aDetermined by a tensile test with rate = 1.5 mm min−1. b The number
average molecular weight of the crude products, measured by GPC
using NaTFA (20 mM) dissolved in HFIP as the mobile phase. The
columns were kept at 40 °C and PMMA standards were employed.
cMaximum stress. d Strain at complete break. e Young’s modulus, cal-
culated from the slope from 0% to 1% of strain. f Sample brittleness
precluded data acquisition. g Values summarized from the
literature.70–76

Table 3 Thermal property comparison of BHEBA-derived PEAs and
polyethylenea

Entry Polymer
Tm
(°C)

Tc
(°C)

Tm − Tc
(°C)

ΔHm
(J g−1)

ΔHc
(J g−1)

1 PEA 13,6 137 105 32 37 46
2 PEA 13,13 135 106 29 52 57
3 LDPEb 112 99 13 117 121
4 HDPEc 135 120 15 213 215

aMeasured by DSC with a 10 °C min−1 heating rate under nitrogen
flow. The 3rd cycle thermogram was used for the analysis. b LDPE from
a laboratory solvent bottle. cHDPE from a milk jug.
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understand the effect of water exposure on the mechanical per-
formance, which is described in the next section.

Unfortunately, specimens could not be prepared for PEA
13,5 because of poor mechanical properties (brittleness). In
contrast, good maximum stress (σmax) values were observed for
the other PEAs, ranging from 23.1–31.3 MPa. These σmax

values were comparable to or better than values reported for
HDPE and LDPE (reported as stress at break).70 Although the
trend is imperfect, the σmax values tend to be larger as hydro-
carbon chain length increases. This may seem counterintui-
tive, considering a dilution of amide bond density, but com-
ports with the increased heats of melt (Table S8†) and thus,
increased crystallinity, postulated for this PEA series. While a
similar increasing trend for Young’s modulus was observed (E
= 192–302 MPa), the strain values (ε) varied broadly and no dis-
cernable trend was identified.

For comparison, the mechanical properties of PEA 6,6 were
also studied with our protocol. PEA 6,6 showed maximum
stress (σmax) and Young’s modulus (E) comparable to the PEA
13,y series, but it showed a much higher strain (ε). We can
ascribe this, partially, to a higher molecular weight (Mn =
14 000 Da) of PEA 6,6, an effect reported in another class of
polyesteramides.42 Additionally, the lower crystallinity of PEA
6,6 (ΔHm = 27 J g−1) implies a greater amorphous region,
which generally improves structural flexibility. While our PEAs
showed σmax and Young’s modulus comparable to the reported
values of commercial LDPE, the strain (ε) was markedly higher
for the polyethylenes.70–74 While some of this advantage is
attributable to additives in the commercial materials and
imprecise sample preparation of our PEAs, further improve-
ments in the PEA 13,y series are clearly necessary before these
polyesteramides can mimic polyethylenes across all important
parameters.

An important lever for improving the strain of PEAs is
polymer molecular weight. While our Mn values near 10 000
Da are useful for ascertaining thermal properties (Tm and Tg),
they may be insufficient to reveal the full potential of PEA
mechanical properties. For example, the ideal mechanical pro-
perties of commercial nylon 6,6 are not reached until Mn

exceeds 20 000 Da. Given that high viscosity halted the stirring
for most of our polymerizations, PEA molecular weight would
assuredly increase by more efficient stirring in sophisticated
reactors.

Water absorption of the polyesteramides

While polyamides tend to absorb water because of their hydro-
philic amide functionality, the brassylic acid-derived PEAs of
this study may behave differently because of the less hydro-
philic ester functionality and long, hydrophobic methylene
sequences ([CH2]11) in the main-chain. To investigate this
possibility, we initially studied water absorption of PEA 13,6,
PEA 13,13, PEA 6,6, and nylon 6,6 by storing samples in de-
ionized (DI) water for 24 hours. The amount of absorbed water
was determined by measuring the mass loss upon heating the
samples at 100 °C for 2 hours via TGA. As predicted, minimal
water loss was found for PEA 13,6 (2.4%) and PEA 13,13

(1.0%). In contrast, more than double the water loss was
observed for PEA 6,6 (5.4%) and nylon 6,6 (5.8%) (Fig. 2A).

In order to further support the superior water compatibility
of our polyesteramides, PEA 13,6, PEA 13,13, and PEA 6,6 were
stored in DI water for 24 hours and their mechanical pro-
perties were compared to their original values (Fig. 2B–D). As
expected, the mechanical performance of PEA 13,6 and PEA
13,13 were largely maintained. In contrast, significant mechan-
ical property changes were observed for PEA 6,6, suggesting
that the long methylene sequences of the incorporated
brassylic acid are responsible for repelling water and maintain-
ing mechanical performance. Based on these results, PEA 6,6
is better suited for dry applications, while PEA 13,6 and PEA
13,13 can tolerate water exposure, at least for short intervals,
which is sufficient for a greater variety of single-use
applications.

Hydrolytic degradation of polyesteramide

The water-degradability of PEA 13,6 was studied by agitating
polymer samples in four different aqueous media—pH 2, pH
5, DI water, and seawater—on an orbital shaker and monitor-
ing their molecular weight for 12 months. As shown in Fig. 3,
80% molecular weight (Mn) loss was observed in the pH 2 solu-
tion, while approximately 40% Mn loss was observed in the
other three media. The fastest degradation in the pH
2 medium is accounted for by acid-catalyzed ester hydrolysis,
as commonly reported for aliphatic polyesters.77

The results for each medium were extrapolated (linearly, via
the last four data points) to estimate the time required for
complete hydrolysis of PEA 13,6: 14 months at pH 2;
27 months at pH 5; 33 months in DI water; and 34 months in
seawater (Fig. S14†). Despite the simplicity of this estimate,
the trends suggest that PEA 13,6 will degrade under environ-
mentally relevant conditions markedly faster than the vast
majority of commercial polymers, such as polyethylene, poly-
propylene, polyethylene terephthalate (thousands of years),4

and nylon 6,6 (one hundred years).78 We speculate that the
amide and ester functionalities work symbiotically to effect
polymer degradation. The amides improve polymer hydrophili-
city while the esters function as weak links in the main-chain
as they are kinetically more prone to hydrolysis than the
amides.38 Ester hydrolysis was confirmed by 1H NMR analysis
of the filtered residue collected after PEA 13,6 was stirred in DI
water for over three years. Signature peaks for BHEBA were
identified (Fig. S15†). Additionally, given the effect of crystalli-
nity on polymer degradation rates,79 the lower hydrogen bond
density and lower crystallinity of PEA 13,6 compared to nylon
6,6 further explain the hydrolytic aptitude of PEA 13,6. It
should be noted that without added water, PEA 13,6 stored in
a vial under ambient conditions showed essentially no mole-
cular weight loss after one year (Fig. S102†).

High-temperature hydrolytic degradation of polyesteramides

To better understand the degradability of polyesteramides,
PEA 13,6 and PEA 13,13 were subjected to high-temperature
degradation conditions by agitation (shaker) in DI water or sea-
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water at 60 °C for up to 6 months. High temperatures can
simulate the passage of time and can, thus, replace longer
experiments. For comparison, several other polymers were
included in this study: PEA 6,6 was chosen to assess the effect

of methylene sequence length; polylactic acid (PLA) was tested
as a representative commercial bioplastic; polyethylene tere-
phthalate (PET) was considered as a persistent commodity
polyester; and nylon 6,6 was selected as a persistent commod-
ity polyamide.

Similar high-temperature hydrolysis results were obtained
for DI water and seawater, as shown in Fig. 4. Although PEA
13,6 and PEA 13,13 were mostly degraded in 3 months, the
molecular weight loss of PEA 6,6 stagnated, and its molecular
weight remained around 40% of its original value. Because of
its greater hydrophilicity, we expected the PEA 6,6 to degrade
faster than the PEA 13,y polymers. One explanation is that PEA
6,6 did hydrolyze faster, but our analysis method—which ana-
lyzed the Mn of the solid portion only (isolated from the water
soluble monomers and oligomers by filtration)—biased our
results. This effect probably contributed to the initial increase
in Mn observed for PEA 6,6—which seems to be mostly attribu-
table to truncation of the lower molecular weight fraction,
according to GPC comparison of the initial and 7 day samples
(Fig. S18†). Another explanation is that the sample’s initial
molecular weight is a factor more important than the concen-
tration of hydrophilic functional groups (amides).
Nonetheless, all PEA polymers were mostly or fully hydrolzyed
after 6 months at 60 °C. This implies that the hydrophobic
brassylate segment of the PEA 13,y polymers does not signifi-
cantly slow their hydrolysis, at least when Mn is around
8000–10 000 Da.

Fig. 3 Hydrolytic degradation study of PEA 13,6 in four different
aqueous media: pH 2, pH 5, DI water, and seawater. The samples were
agitated on an orbital shaker at room temperature for specific durations
(1 week, 2 weeks, 1 month, 3 months, 6 months, 9 months, and
12 months). The water-degradability was evaluated by the change in the
number average molecular weight compared to the initial value.

Fig. 2 (A) Amount of DI water absorbed in 24 hours by PEAs and nylon 6,6, as determined by mass loss at 100 °C over 2 hours (TGA). The maximum
stress (B), percent strain at break (C), and Young’s modulus (D) of PEAs before and after storing samples in DI water for 24 hours.
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Fig. 4 reveals that PLA exhibits the fastest degradation. This
makes sense because the PLA samples employed were amor-
phous, with a Tg near 55 °C,80 whereas the other polymers
tested all had Tm values considerably higher than the 60 °C
temperature of the experiment. As expected, minimal Mn loss
was measured for PET or nylon 6,6, in agreement with their
established environmental persistence.

Chemical recyclability of PEA 13,13

Among the PEAs of this study, we consider PEA 13,13 to be the
strongest candidate for the next generation of eco-friendly
plastics for several reasons. First, it is built only from ethanol-
amine and brassylic acid, meaning it can be fully biobased.
Second, it is hydrophobic and maintains polymer performance
under wet conditions, which expands its application range.

Third, it is ultimately water-degradable under longer-term,
environmentally-relevant conditions. This is an attractive prop-
erty considering the current fate of most plastics.11 However,
society has stated goals of increased polymer recyclability81

and PEA 13,13 meshes very well with those aspirations.
Because PEA 13,13 is only made from ethanolamine and
brassylic acid, we envisioned that the straightforward amino-
lysis of PEA 13,13 with ethanolamine should depolymerize
PEA 13,13 back into BHEBA. Accordingly, pure BHEBA was
obtained with 84% yield in just 2 hours via aminolysis with 5
equivalents of ethanolamine, followed by recrystallization
from ethanol (Fig. 5A). As concluded by 1H NMR analysis
(Fig. 5B), the recovered depolymerization product was BHEBA
identical to the original monomer synthesized from brassylic
acid. This reconstituted BHEBA was repolymerized with

Fig. 4 High-temperature hydrolytic degradation study of PEA 13,6, PEA 6,6, PEA 13,13, PLA, PET, and nylon 6,6 in DI water (A) or seawater (B). Vials
were agitated in a water bath shaker held at 60 °C for specific durations: 1 week, 2 weeks, 1 month, 2 months, 3 months, and 6 months. The water-
degradability was evaluated by the change in the number average molecular weight compared to the initial value.

Fig. 5 (A) Chemical recycling of PEA 13,13 via aminolytic depolymerization and esterification polymerization. (B) 1H NMR (in DMSO-d6) comparison
of BHEBA synthesized from brassylic acid (top) and BHEBA obtained via aminolytic depolymerization of PEA 13,13 (bottom).
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brassylic acid and the resulting PEA 13,13 showed properties
very similar to those of our original PEA 13,13 (Table S13†)—
thereby demonstrating the chemical recyclability of PEA 13,13.

Production of PEA 13,13 from Brassica carinata

According to George and colleagues,19 the seed yield of cari-
nata is typically 2800 kg ha−1 (in the southeastern United
States) and the seed oil content is 40%. This production of
about 1120 kg ha−1 of seed oil does not exceed that of palm
oil, but compares favorably to that of rapeseed and excels most
other vegetable oils.82,83 Since erucic acid constitutes 42% of
this seed oil,28 about 470 kg ha−1 of erucic acid can be
obtained, which converts to 339 kg ha−1 of brassylic acid
through oxidation, using the 72% yield reported by Carlson
and Sohns.29 This quantity can afford 361 kg ha−1 of crude
PEA 13,13, using the 96.5% yield found in the present study.
Wright and colleagues reported that around 4.9 million hec-
tares of cropland remains fallow during the winter season in
the southeast USA and has the potential to grow carinata as a
winter crop.84 Maximally, 1.77 billion kg of PEA 13,13 can be
produced from this idle land, which could replace about 1.5%
of the worldwide market for polyethylene (116 billion kg in
2024, combined for LDPE and HDPE).85 This fraction could
increase by an order of magnitude by expanding cropland on
the six continents where carinata has been successfully
grown.22 This fraction could further increase through chemical
recycling of post-consumer PEA 13,13—a strategy not currently
feasible for polyethylene.

Conclusions

We have synthesized novel polyesteramides (PEAs) from a
promising and expanding bio-oil crop, Brassica carinata (cari-
nata). The primary interest in this seed oil is its conversion to
sustainable aviation fuel, especially of the jet A type.86–88 But,
many other applications are envisioned, including biobased
plastic production via carinata-based brassylic acid, which can
add value to this new industry.

Herein, the bis-amidation of dimethyl brassylate with
ethanolamine yielded the diol, N,N′-bis(2-hydroxyethyl)brassy-
lamide (BHEBA), which was polymerized with linear aliphatic
carboxylic diacids of various carbon number (y = 4–13). The
PEA 13,y polymers were obtained in good yields and with
acceptable molecular weights in most cases. Polymer melting
temperatures (130–139 °C) were comparable to or greater than
those of some commodity plastics such as HDPE and LDPE,
and our preliminary mechanical testing revealed the potential
for many practical applications, although further improvement
is needed for a perfect polyethylene replacement. Importantly,
our PEAs were less hydrophilic than other PEAs or polyamides
and generally retained their mechanical properties after a
daylong exposure to water, indicating their short-term water
compatibility. Although slower hydrolytic degradation was
implied by the polymer hydrophobicity, a yearlong hydrolysis
study demonstrated that PEA 13,6 is quite water-degradable in

a reasonable timescale under environmentally-relevant con-
ditions. In seawater, for example, the molecular weight (Mn) of
PEA 13,6 diminished to 63% of its original value over 365 days
at room temperature. The degradation behaviors of PEA 13,13,
PEA 13,6, and PEA 6,6 were further examined under acceler-
ated conditions by agitation in a water bath heated to 60 °C for
6 months. While commercial PET and nylon 6,6 exhibited
minimal degradation, the PEAs experienced considerable ester
hydrolysis. Additionally, the chemical recyclability of PEA
13,13 was demonstrated by its aminolysis with ethanolamine,
affording the pure, original monomer (BHEBA) in good yield
(84%)—a process that converts all ester functional groups to
the amide functional group already present.

The thermomechanical properties of these novel PEAs,
along with their propensity for water-degradation, marks them
as interesting candidates for replacing incumbent commercial
polymers, especially LDPE. Note that the market price of
erucic acid is $4.74 USD per kg89 and that of brassylic acid is
$5.60 USD per kg90—both of which are expected to trend
downward substantially with the expansion of carinata-based
aviation fuel. Additional work is needed to fully evaluate the
commercial viability of brassylic acid-based PEAs, including
increasing polymer molecular weight, studying polymer/oligo-
mer biodegradability, testing degradation product toxicity, and
studying PEA film gas permeability.
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