Open Access Article. Published on 01 February 2025. Downloaded on 01/11/2025 1:24:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Catalysis
Science &
Technology

COMMUNICATION

i '.) Check for updates ‘

Cite this: Catal Sci. Technol., 2025,
15, 1439

Received 6th September 2024,
Accepted 15th December 2024

¥*® ROYAL SOCIETY
PN OF CHEMISTRY

View Article Online
View Journal | View Issue

Heteropolyacids and ruthenium on covalent
triazine frameworks - a bifunctional, recyclable
catalyst for bio-based tandem systems7

Lea Hombach,? Fabian Muiller,® Fulvio Varamo,© Charles Otieno Ogolla,®

Renée Hoffmann,® Jonas Frohne, Holger Schoénherr, @ Regina Palkovits, ©°

DOI: 10.1039/d4cy01071j

rsc.li/catalysis

A recyclable catalytic system for the one-pot hydrolytic
hydrogenation of xylan to xylitol has been developed.
Phosphotungstic acid (PTA) and ruthenium were immobilized on
covalent triazine frameworks (CTFs) to obtain a bifunctional
catalyst which is capable of catalysing both hydrolysis and
hydrogenation. PTA_Ru/CTF3 exhibits high activity with 88%
xylan conversion and up to 80% selectivity to xylitol while its
stability could be demonstrated over 6 recycling runs.

Utilizing lignocellulose as a feedstock for high value-chemicals
is crucial for transitioning to a bio-based economy and reducing
reliance on fossil resources. Within lignocellulosic biomass, the
polysaccharides cellulose and hemicellulose, along with the
aromatic macromolecule lignin, are key constituents. Among
these, the acid-catalyzed hydrolysis of hemicellulose and
cellulose yielding xylose and glucose, respectively, stands out as
one of the key reactions for the production of bio-based
platform chemicals, fuels, and materials. Moreover, there is
increasing interest in the one-pot hydrolytic hydrogenation to
sugar alcohols such as sorbitol and xylitol (Scheme 1)."™* This
approach is particularly desirable to mitigate side-reactions
resulting from the high reactivity of sugars compared to sugar
alcohols, thereby enhancing selectivity in product formation. It
is commonly presumed that the acid-catalyzed hydrolytic
depolymerization of polysaccharides is followed by a metal-
catalyzed reductive hydrogenation producing the respective
polyols. However, kinetic investigations by Negahdar et al
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suggested a simultaneous occurrence of hydrolysis and
hydrogenation.” They found that hydrogenation is kinetically
favored over hydrolysis, and depolymerization (i.e. hydrolysis) is
accelerated when the terminal oligosaccharide group is pre-
hydrogenated. Consequently, a sequential hydrogenation-
hydrolysis pathway is proposed, wherein the terminal sugar unit
is hydrogenated prior to its hydrolytic cleavage from the
polysaccharide chain.

Among metals such as Ru, Rh, Ir, Pt, Pd and Ni, it is Ru that
exhibits the highest activity for the hydrogenation to polyols.®™
In catalyzing the hydrolysis, previous literature predominantly
relies on homogeneous acids. This includes technical acids like
HCl, H;PO, and H,SO,, organic acids, enzymes, as well as
strongly Brensted acidic heteropolyacids (HPAs).'">'® HPAs
possess a number of advantageous properties: they are more
acidic yet less corrosive than mineral acids, and they exhibit
superior thermal and oxidative stability, along with being non-
toxic and easy to handle. Additionally, their high water tolerance
renders them ideal for use as homogenous catalysts in biomass
transformations. In the hydrolytic hydrogenation of cellulose
commercially available heteropolyacids such as
phosphotungsticacid H3PW;,04 (PTA) and silicotungsticacid
H,SiW;,040 (STA) have been used in combination with Ru/C,
yielding up to to 81% yield of sugar alcohols at carbon
efficiencies above 90%."7'® The use of insoluble salts of HPAs
in combination with Ru/C or Ru supported on HPA salts for the
same reaction facilitates catalyst recovery, yet catalyst activity is
decreased by the heterogenisation."”>* In other approaches
PTA and ruthenium were immobilized on heterogenous support
materials like ZrO, and Nb,Os or activated carbon (AC).>*?*

While significant progress has been made in the valorisation
of cellulose, studies on hemicellulose remain limited. Of
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Scheme 1 Hydrolytic hydrogenation of xylan to xylitol.
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particular interest in this context is the hemicellulose xylan, a
polymer comprised of xylose units linked by fB(1-4)-glycosidic
bonds. In the hydrolytic hydrogenation of xylan homogenous
PTA could be used in combination with Ru/C to yield xylitol
with 82% under moderate reaction conditions.”® Although
homogenous HPAs have demonstrated great potential in this
context, it is essential to recycle the HPA catalysts in order to
establish sustainable processes. Various approaches for HPA
recycling have been explored in recent years, including
assemblies, thermo-responsive systems, complexation into
insoluble heteropolysalts as well as the immobilization on
heterogenous supports.””*® In previous investigations, we
extensively examined the immobilisation of PTA onto AC and
demonstrated its activity and stability in the hydrolysis of
xylan.?® In this work we want to demonstrate the heterogeneous
application of heteropolyacids in the tandem system of xylan to
xylitol and investigate their stability under both hydrothermal
and reductive conditions.

Results and discussion

Initially, the AC supported PTA was tested in the hydrolytic
hydrogenation of xylan to xylitol in combination with
commercially available Ru/C as a hydrogenation catalyst.
Reactions were typically performed in 10 mL autoclaves at
130 °C under 50 bar H, in water. In the first reaction run a
yield of 55% xylitol at high xylan conversion of 87% was
achieved. Apart from xylitol, no additional products were
identified by HPLC analysis of the reaction solution,
suggesting complete hydrogenation of xylose. However, the
discrepancy in carbon balance (32%) indicates either side-
reactions like e.g. polymerization or substrate adsorption
onto the AC-support, the latter of which has already been
observed previously.”® The catalyst was re-cycled over 4 runs
and therefore separated by centrifugation and washed three
times after each run. After the first run the activity decreased
significantly to 26%, followed by further catalyst deactivation
to only 8% conversion in the 4th run 8 (Fig. 1a). While Ru-
leaching was found to be <0.1 ppm, 53% leaching of PTA
was observed by XRF in the first run. Consequently, the
catalyst deactivation can be attributed to the loss of the active
acid centres. When the catalyst was recycled only in the
presence of either hydrogen or Ru/C (see Fig. S17), the found
leaching was significantly lower (11 and 8%, respectively).
This suggests that the combination of both, thus reductive
conditions, favours PTA leaching and thus lowers the catalyst
stability. In our previous study we found that the attachment
of the HPA to the support is facilitated by the presence of
oxygen functional groups on the carbon surface.>> When the
AC support is treated under reductive conditions, a decrease
in the oxygen content from 7% to 3% can be observed by
elemental analysis, suggesting that the oxygen groups are
reduced under reductive conditions and therefore cannot
efficiently bind the HPA on the surface anymore.

In this regard nitrogen containing covalent triazine
frameworks (CTFs) have been considered as a more reduction-
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Fig. 1 Xylan conversion X, xylitol yield Y and PTA-leaching in the
recycling of PTA/AC, PTA/CTF1, PTA/CTF2 and PTA/CTF3 in the
hydrolytic hydrogenation of xylan (conditions: 130 °C, 2 h, 50 bar H,,
750 rpm, m(xylan) = 0.115 g, c(HPA) = 4.35 mmol LY, m(Ru/C 5 wt%) =
0.0115 g, V(H,0) = 5 mL).

stable alternative. CTFs represent a class of highly cross-linked
porous polymers which are formed by the cyclotrimerization of
dicyano-(hetero)aryl building blocks.**" In this work, three
different CTF-materials have been prepared based on the
monomers 4,5-dicyanoimidazole (CTF1),
1,4-benzenedicarbonitrile (CTF2) and 4,4-biphenyl-dicarbonitrile
(CTF3) under ionothermal conditions in molten ZnCl, at 400 °C
for 10 h and 600 °C for 10 h. After ball milling CTF1-3 have been
isolated as amorphous and partially carbonized frameworks,
featuring high specific surface areas between 883 and 1675
m? g™ which are consistent with previous reports (Table 1 and
Fig. $21).*>*® The N,-physisorption-isotherms for CTF1 and CTF2
can be assigned to microporous materials according to TUPAC
type I (Fig. S21). This is also reflected in the high micropore
volumes of 0.18 and 0.20 cm® g respectively (Table 1). In
contrast, a type IV isotherm is obtained for CTF3, indicative of a
mesoporous material (Fig. S21). The N-content was determined
by elemental analysis and varied from 17.5 to 46.8 wt%
depending on the monomer used (Table 1).

PTA was immobilized on CTF1-3 by equilibrium wet
impregnation for 16 h at 60 °C after which the catalyst was
filtered off and washed until the washing solution reached pH
7. For all materials ICP-OES revealed a high PTA loading of
433-473 pmol g' resulting in a significant decrease in the
specific surface area (Table 1). In dependence of the specific
surface area an increased PTA-loading was found with
increased N-content of the CTF. The same trend was already
observed for oxygen rich activated carbon materials, indicating
that the PTA is bound by the functional groups on the
surface.”® In the FT-IR-spectrum of CTF1-3 the characteristic
Keggin stretching bands of H,0 (1633 cm™), P-0, (1078 cm™),
W=0q4 (976 cm™), W-0,-W (899 cm™), and W-O-~W (817
em™) can be found, confirming the integrity of PTA after
immobilization (see Fig. S37).

This journal is © The Royal Society of Chemistry 2025
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Table 1 Specific surface area (Sget), total pore volume (Viora), micropore volume (Viicro), N-content and PTA-loading for CTF1, CTF2, CTF3

SBET Viotal Vinicro N-content PTA-loading PTA-loading per Sger (PTA/CTF)
#  CTF-monomer Name [m’g¢™"] [em®g™] [em®g™] [wt%)] [umol g™ surface [umol m™>]  [m* g™"]
1  4,5-Dicyanoimidazole CTF1 883 0.39 0.18 46.8 433 0.49 309
2 1,4-Benzenedicarbonitrile CTF2 1075 0.47 0.20 26.3 473 0.44 346
3 4,4-Biphenyldicarbonitrile =~ CTF3 1575 0.66 0.00 17.5 448 0.28 611
The CTF supported catalysts were then tested in the Given the potential for enhanced mass transfer of
hydrolytic — hydrogenation of xylan wusing Ru/C as intermediates between catalytic centres in a bifunctional

hydrogenation catalyst. In the first run high conversions of 88
to 97% and xylitol yields of 68 to 70% were observed for all
catalysts (Fig. 1b-d). The found PTA-leaching in XRF ranges
between 21-25% for CTF1-3 while Ru-leaching was below 0.2
ppm in all experiments. Although comparable leaching values
were found for CTF1-3, a significant deactivation to <34%
conversion was observed for PTA/CTF1 and PTA/CTF2 in the
second reaction, followed by full deactivation in the following
recycling runs (Fig. 1b-c). On the other hand, PTA/CTF3
showed less deactivation to 61% xylan conversion and only
minor decrease in the xylitol yield to 54% in run 2 (Fig. 1d). In
subsequent recycling runs the catalyst exhibits high stability
achieving constant yields and conversions with low PTA
leaching of 1-3%. To clarify possible deactivation mechanisms
of PTA/CTF1 and PTA/CTF2, FT-IR-spectroscopy of the recycled
catalysts was performed (see Fig. S3t). However, the intactness
of PTA could be confirmed for all recycled catalysts. Since the
CTF supported catalysts cannot be separated from Ru/C after
the reaction, comparable experiments were carried out under
the same reaction conditions without the addition of Ru/C.
This enabled to independently investigate the influence of the
reaction conditions on the surface properties of CTF1-3. N,-
physisorption of once recycled PTA/CTF1 and PTA/CTF2
revealed a drastic decrease of the specific surface area to 121
m?> g and 12 m* g™, respectively, whereas CTF3 still exhibit a
high specific surface area of 585 m* g™* (see Fig. S4t). This
suggests that the deactivation in the catalytic activity results
from pore blocking and minimisation of the catalytically
active surface. This suggests that the deactivation in the
catalytic activity results from pore blocking and minimisation
of the catalytically active surface. In contrast to CTF3, CTF 1
and CTF2 exhibit a lower intrinsic specific surface area on the
one hand and a high degree of microporosity on the other
hand, whereby the latter could promote irreversible
adsorption of the substrate. To gain further insight into the
substrate adsorption, the catalysts were subjected to thermal
gravimetric analysis (TGA) before and after the reaction (see
Fig. S5t1). Notwithstanding the observed leaching of HPW,
HPW/CTF1 and HPW/CTF2 exhibited an increased relative
weight loss in comparison to that observed prior to the
reaction. In the case of HPW/CTF3, the weight loss is
decreased after the adsorption study, which can be attributed
to the leaching of the immobilised HPW. These results
confirm an increased adsorption of xylan, xylose or possible
by-products on CTF1 and CTF2, which leads to the
deactivation of the catalyst.

This journal is © The Royal Society of Chemistry 2025

catalyst, the additional loading of CTF3 with ruthenium was
investigated in the following. Therefore, PTA/CTF3 was
impregnated with Ru by coordination with RuCl;-xH,O in
ethanol. In order to keep up the molar ratio between the two
catalysts Ru and PTA, a Ru-loading of 0.82 wt% was desired.
ICP-OES of the prepared catalyst confirmed a reached Ru-
loading of 0.83 wt%. The catalyst was reduced under
hydrogen at a moderate temperature of 250 °C to prevent
PTA decomposition. The preservation of the Keggin structure
was confirmed by FT-IR spectroscopy of Ru_PTA/CTF3 after
the reduction procedure (see Fig. S61). XPS analysis of the
bifunctional catalyst confirms the presence of C, N, W, O and
Ru on the catalyst surface (see Fig. S71). The Ru 3ds,, signal
at a binding energy of 281.1 eV corresponds to a partially
oxidised Ru as the sample was not stored in inert gas
atmosphere. The N element spectrum confirms the co-
existence of two N-species; pyridinic nitrogen (398.4 eV) and
nitrile functionality (400.6 eV). W is present as one single
species corresponding to the WO, octahedra (binding energy
of W 4f,, = 35.7 eV).**

In the hydrolytic hydrogenation of xylan under 50 bar H,,
Ru_PTA/CTF3 showed high activity with 88% xylan conversion
(Fig. 2 run 1). After 2 h a product mixture of xylose (31% yield)
and xylitol (40% yield) is obtained, which indicates that
hydrogenation is not yet complete at this point. The mechanism
seems therefore to proceed via a first hydrolysis of the
polysaccharide to the sugar and a subsequent hydrogenation to
the sugar alcohol. However, 70% of xylitol is yielded with
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Fig. 2 Xylan conversion X, xylitol yield Y and PTA-leaching in the
recycling of Ru_PTA/CTF3 hydrolytic hydrogenation of xylan. *4 h
reaction time in 6th run (conditions: 130 °C, 2 h, 50 bar H,, 750 rpm,
m(xylan) = 0.115 g, m(Ru_PTA/CTF-2) = 140 mg, V(H,0) = 5 mL).
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prolonged reaction time of 4 h (Fig. 2 run 6). XRF revealed
moderate PTA leaching of 13% in the first run which decreased
to 5% in the subsequent runs. In addition, the Ru-leaching
found in XRF was <0.2 ppm in all runs. The catalyst stability
could be demonstrated over 6 recycling runs reaching constant
conversions of 83-87%. In addition, the selectivity was
maintained, confirming the stability of both acidic and
reduction catalytic sites. With prolonged reaction time of 4 h in
the 6th run 70% of xylitol, which is comparable to studies with
5 wt% Ru/C and indicates that the hydrogenation with is
Ru_PTA/CTF3 is merely slower.

Additionally, cellobiose as model for cellulose was tested
as substrate for the tandem reaction to broaden the substrate
scope (see Fig. S81). The Ru_PTA/CTF3 catalyst is capable of
converting cellobiose to glucose (Y = 75%) and the sugar
alcohol sorbitol (Y = 23%). A further acid -catalysed
dehydration reaction to sorbitan or isosorbide was not
observed.

Since the molar ratio between Ru and PTA is comparable in
both systems the influence of the Ru-particle-size on the catalyst
activity was investigated by means of transmission electron
microscopy (TEM) of 5 wt% Ru/C catalyst (Fig. 3a and b) and
Ru_PTA/CTF3 (Fig. 3c and d). The atomic number-dependent
contrast in the representative high-angle annular dark-field
scanning TEM (HAADF-STEM) micrographs in Fig. 3a and c
shows bright Ru particles on the darker (porous) substrate
particles. This interpretation is corroborated by energy-
dispersive X-ray spectroscopic analyses, which confirm the
bright particles to be Ru (Fig. 4). The atomic tungsten species of
PTA only contribute a homogeneous intensity background. For
both Ru/C and Ru_PTA/CTF3 a homogeneous distribution of
the Ru particles on the CTF substrate (Fig. 3a and c) with a
narrow particle size distribution (PSD) and a comparable
diameter of approximately 1 nm (Fig. 3d) was found. These
results indicate that the comparatively diminished
hydrogenation activity of Ru_PTA/CTF3 is not attributable to an
increase in particle size and correspondingly reduced catalytic
surface area. Prior research has suggested that the electronic
structure of the Ru surface is influenced by the donating
properties of nitrogen present in the CTF support.®
Consequently, the activity may also be subject to influence from
the electronic effects associated with different supports of Ru/C
and Ru_PTA/CTF3.

Further it has to be investigated whether the decreased
reduction temperature in the Ru_PTA/CTF3 preparation has
resulted in incomplete reduction of Ru, which could
diminish the catalyst's hydrogenation activity.

TEM images of the spent catalyst after 6 recycling runs
show a progressive coarsening of part of the ruthenium
particles in Ru_PTA/CTF3 (Fig. 3e and S10t). The localized
Ru coalescence is indicated by the bimodal size distribution
of the ruthenium particles with the majority still as small as
1.3 nm (similar to the original state) and sparse but
significantly larger particles with sizes even up to more than
10 nm (Fig. 4e-h and S9,f details about particle-size
evaluation in Fig. S97). Both, the primary Ru particles as well
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Fig. 3 HAADF-STEM images with bright Ru nanoparticles and
corresponding PSDs of a) commercial 5 wt% Ru/AC catalyst (PSD in b), c)
Ru_PTA/CTF3 (PSD in d), and e) Ru_PTA/CTF3 after 6th recycling run, f)
bimodal PSD of individual (background plot) and coalesced (inset) Ru
particles from e), g) and h) HRTEM of coarsened Ru particles with dark
crystallographic contrast, i) STEM tomography reconstruction: iso-
surfaces of coarsened Ru particles (red) embedded within the open-
porous CTF support (transparent grey), j) orthoslice (cross-section) of
reconstruction with dark Ru agglomerates.

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 HAADF-STEM images and corresponding energy-dispersive
X-ray spectroscopy (EDXS) analyses (net intensity distributions of Ru,
W, P and Ru + W color map) of a), b) Ru_PTA/CTF3 and c, d) after
recycling.

as the coarsened ones are crystalline as confirmed by high-
resolution TEM (HRTEM) (Fig. 3g and h). STEM tomography
revealed that the observed coarsening counterintuitively
occurs in the whole volume of the open-porous CTF support.
Consequently, a large fraction of the primary Ru particles
remains accessible and active, which explains the sustained
performance even after six recycling runs. The observed
coarsening may be attributed to coalescence of migrating Ru
nanoparticles within larger voids of the mesoporous support
(Fig. 3i and j).

Energy dispersive X-ray spectroscopy (EDXS) complements
STEM imaging and proves the localized nanoparticles to be
Ru, whereas the PTA appears to be more homogeneously
distributed within the pore channels of the CTF support
(Fig. 4). Even after recycling (Fig. 4c and d), both, tungsten
and phosphorous from the HPA are still homogenously
distributed on the CTF support indicating successful
inclusion, immobility, and long-term stability of the acid.

Although local Ru coalescence occurs, the detailed TEM
analyses confirmed that a major fraction of the primary Ru
nanoparticles as well as the PTA are long-term stable under
operational conditions and facilitate multiple recycling of
Ru_PTA/CTF3.

XPS analysis of the spent catalyst shows again the presence
of C, N, O, W and Ru on the catalyst surface (see Fig. S131). The
Ru 3ds, signal at a binding energy of 280.4 eV corresponds to a
reduced Ru-species. The N element spectrum remains
unchanged displaying again the two N-species pyridinic N and
nitrile functionality. W is still present as one single species
corresponding to the WO, octahedra of the Keggin structure.
XPS therefore confirms the stability of the catalyst.

This journal is © The Royal Society of Chemistry 2025
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Conclusions

In conclusion, PTA/CTF3 presents a highly active and
selective acidic catalyst for the hydrolytic hydrogenation of
xylan and yielded up to 85% of xylitol in combination with
commercial Ru/C as hydrogenation catalyst. Whereas for AC
support a high PTA leaching of >50% and consequently
deactivation in activity was found under the reductive
reaction conditions, PTA/CTF3 demonstrated a very good
stability and reusability over 5 cycles. Furthermore, the
additional loading of CTF3 with Ru nanoparticles was
demonstrated. The resulting bifunctional catalyst Ru_PTA/
CTF3 exhibited excellent stability in both its acidic and
hydrogenation activity over 6 runs with up to 80% xylitol
selectivity. TEM analysis revealed local Ru coalescence but
confirmed that the major fraction remains its small particle
size and accessibility. Further EDXS shows that the
homogeneous distribution of P, W and Ru remained after
recycling, emphasising the stability of the catalyst.
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