Issue 22, 2024

In-depth characterization of phosphate intercalated Mg Al Layered double hydroxides and study of the PO4 release properties

Abstract

Slow-release fertilizers (SRFs) form the core of innovative strategies in sustainable agriculture. Layered Double Hydroxides (LDH), known for their high capacity to sequester plant nutrients, especially phosphate, are emerging as promising candidates for SRF synthesis. The phosphate release properties of MgAl LDH (with a targeted Mg/Al ratio of 2.0) intercalated with HPO42− anions were assessed in various aqueous environments. A comprehensive analysis, including in-depth chemical and structural characterizations (ICP-OES, XRD, PDF, 27Al NMR, 31P NMR, FTIR, SEM) of the as-prepared phase unveiled a more intricate composition than anticipated for a pure or ideal Mg2Al-HPO4 LDH, encompassing an excess of intercalated phosphate in conjunction with K+. Beyond the intercalated phosphate, solid state 31P NMR speciation identified multiple HxPO4(−3+x) environments, indicating a portion of the phosphate reacting with intralayer Mg2+ to form K-struvite. Additionally, some phosphates were adsorbed onto the surface of amorphous aluminum hydroxide, a side phase formed during MgAl coprecipitation. The phosphate release demonstrated rapid kinetics, occurring within 6 days. Moreover, the released phosphate increased significantly when reducing the Solid/Liquid (S/L) ratio (58%) and further increasing in the presence of carbonate ions (90%). The released phosphate varied from 12% to 90% under different release conditions, transitioning from water to a 3.33 mM NaHCO3 aqueous solution at a low S/L ratio (from 20 mg LDH per mL to 0.02 mg LDH per mL). The simultaneous release of K+, Mg2+, Al3+ indicated the complete dissolution of the K-struvite and partial dissolution of phosphate intercalated MgAl LDH. These results enhanced our understanding of the mechanism governing phosphate release from MgAl LDH, paving the way for potential phosphate recovery by LDH or for the development of LDH-based SRFs.

Graphical abstract: In-depth characterization of phosphate intercalated Mg Al Layered double hydroxides and study of the PO4 release properties

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2024
Accepted
30 Apr 2024
First published
10 May 2024

Dalton Trans., 2024,53, 9568-9577

In-depth characterization of phosphate intercalated Mg Al Layered double hydroxides and study of the PO4 release properties

A. Jourdain, C. Taviot-Gueho, U. G. Nielsen, V. Prévot and C. Forano, Dalton Trans., 2024, 53, 9568 DOI: 10.1039/D4DT00601A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements