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Chemical accuracy for ligand-receptor binding Gibbs energies 
through multi-level SQM/QM calculations
Froze Jameela  and Matthias Stein*a

Calculating the Gibbs energies of binding of ligand-receptor systems with a thermochemical accuracy of ± 1 kcal/mol is 
challenge to computational approaches.   After exploration of the conformational space of host, ligand and complexes by 
semi-empirical GFN2 MD and meta-MD simulations, the systematic refinement through a multi-level improvement of 
binding modes in terms of electronic energies and solvation is able to give Gibbs energies of binding of drug molecules to 
CB[8] and β-CD macrocyclic receptor with such an accuracy. The accurate treatment of a small number of structures 
outperforms system-specific force-matching and alchemical transfer model approaches without an extensive sampling and 
intergration.

Introduction
The calculation of ligand-receptor Gibbs energies of binding 
with thermochemical accuracy is still a major challenge for 
state-of-the art computational approaches1, 2 for example in 
drug discovery3. An accuracy of, at most, 1-2 kcal/mol can be 
achieved from quantitative modelling using force fields and 
extensive sampling techniques to compute relative Gibbs 
energies of binding.3 In particular, charged guests were a 
challenge to the accuracy in SAMPL7.4 Here, we show that this 
chemical accuracy can also be obtained using a combination of 
a fast tight-binding quantum chemical exploitation of the 
conformational space, plus a systematic and sequential 
refinement of solvation and interaction energies.5, 6 The semi-
empirical quantum chemical (SQM) GFN2 Hamiltonian allows an 
efficient exploration of the conformational space of complex 
molecular systems without the need for a re-parametrization of 
interaction terms even for non-standard binding situation, such 
as open-shell transition metal complexes.7, 8 SAMPL (Statistical 
Assessment of the Modeling of Proteins and Ligands) are blind 
challenges to validate and improve computational methods as 
predictive tools in drug design. Summaries of recent SAMPL 
challenges can be found in ref.4, 9, 10

For blind prediction of ligand-receptor Gibbs energies of 
binding, macrocyclic containers such as cucurbit[n]urils 
(CB[n])11, 12 and cyclodextrins (CDs)13, 14 with unreleased 
experimental data are chosen.   
Here, we systematically refine the Gibbs energies of binding 
from conformers generated through SQM sampling for the 

‘drugs of abuse’ molecules to the CB[8] receptor of the SAMPL8 
host-guest challenge. This challenge focused on binding of this 
host to nine drug (see Figure 1).9 It also included previously 
considered cycloheptanamine and cyclooctanamine (G8 and 
G9). Experimental data were obtained from Isothermal Titration 
(ITC) and NMR spectroscopy.15 This set of conformer-rotamers 
was used in order to investigate whether the mean absolute 
deviation of 3.16 kcal/mol from GFN2-xTB16 could be reduced 
using the suggested systematic refinement of description both 
electronic energies and solvent description.5

In addition, we here calculate Gibbs energies of binding of 
phenothiazine drug molecules to the β-cyclodextrin receptor, 
which was part of SAMPL9.10 Cyclodextrins are versatile and 
flexible receptors that can incorporate various types of 
molecules and modify their molecular properties. They also 
have applications in drug delivery. The Gilson group provided 
experimental thermodynamic data for different cyclodextrins 
and ligand molecules which were only later released and 
published.17 The hydrophobic receptor centre with a 
hydrophobic cavity plus hydrophilic surface-exposed hydroxyl 
groups in complex with large and flexible ligands poses a further 
level of complexity to calculate Gibbs energies of binding.
The conformer-rotamer ensembles (CRE) for SAMPL8 and SAMPL9 ligand complexes 
with cucurbit[8]uril (CB[8]) and β-cyclodextrin (β-CD) hosts respectively, were generated 
upon manually positioning the ligand inside the receptor. Ensembles of non-covalent 
binding poses were generated using GFN2-xTB 

Figure 1. 
CB[8] host and guest structures G1 – G9. 

a.Molecular Simulations and Design Group, Max Planck Institute for Dynamics of 
Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
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with CREST.5, 18 The CENSO workflow6 including different levels 
of quantum chemical refinement plus thermostatistical 
corrections and solvent modelling was as used to systematically 
refine the calculated Gibbs energies of binding.

Results and discussion

Cucurbit[8]uril binding to ‘drugs of abuse’ 

Cucurbit[n]urils (CB[n]s) are a family of macrocyclic receptors 
with a number of n glycoluril units11, 19 with tuneable radii and 
properties. Their molecular recognition of a broad range of 
guest molecules with high affinities20 has led to numerous 
applications, such as a building block in a supramolecular 
polymer networks with high stretchability21 or as a carrier for 
anti-cancer drugs.22 CB[8] is the largest member of this family 
with a cavity diameter of 8.8 Å and a cavity volume of 479 Å3.23 
The SAMPL8 challenge focused on CB[8] receptor binding to 
ligands which are ‘drugs of abuse’, including morphine, 
hydromorphone, methamphetamine, cocaine, and others (see 
Figure 1).9 Also cycloheptanamine and cyclooctanamine (G8 
and G9) were included from previous rounds. The 
thermodynamics of binding of CB[8] towards the drugs of abuse 
was determined by a combination of 1H NMR spectroscopy and 
isothermal titration calorimetry in phosphate buffered water.  
CB[8] and guest molecules form 1:1 complexes with 
experimental Gibbs energies of binding in a range between -
7.05 (for G1) and -14.07 kcal/mol (for G6).15 High affinity 
measurements have attributed this to an interaction between 
the guest’s ammonium group interacting and the carbonyl 
oxygen of CB[8]. 

Curcurubituril[8] is a rather rigid host with only a few 
conformers accessible.16 However, with certain force fields, 
cucurbituril hosts have been observed to collapse during 
simulations. The sampling of conformers of  CB[8] receptor and 
receptor-ligand complexes showed that this is not the case for 
GFN2-xTB.16 A conformational search using an implicit 
solvation model in absence of any constraints gave only one 
single CB[8] host structure. The ligand molecules of SAMPL8 are 
rather small in size with only few rotatable bonds (Figure 1). This 

leads to only 4-8 unique structures in the conformer-rotamer 
ensemble (CRE) of CB[8] in complex with large and rigid 
morphine (G3) and hydromorphone (G4) but up to 137 complex 
structures for the rather flexible fentanyl (G2). The subsequent energetic 
ranking must thus be able to accurately calculate small energy differences between a 
large number of binding modes in order to give reliable Gibbs energies of binding. The 
CREs from our SAMPL8 GFN2-xTB/MetaMD/GBSA work16 were refined using a 
systematic improvement of description of electronic energies and solvation. We have 
used a three level approach with increasing refinement thresholds to reduce the number 
of structures to be considered at the next level (see Computational Details).

The incremental increase in accuracy of electronic structure 
method, description of effect of solvation (see Computational 
Details) and refined energy thresholds to omit higher lying 
structures significantly reduces the number of structures 
retained at leach level (see Figure S2). For example, for CB[8]·G3 
(morphine) and CB[8]·G4 (hydromorphone) only one structure 
after Level 2 is sufficient to give reliable Gibbs energies of 
binding (see below). Also for the flexible fentanyl (G2), when in 
complex with CB[8], a mere two remaining structures after 
Level 2 give excellent calculated Gibbs energies of binding (see 
below). The largest decrease of tentative complexation 
structures is always seen when the level of DFT treatment is 
from fast and approximate B97-D3 with a small basis set to the 
meta-GGA r2SCAN-3c (see Figure S1).

Figure 2 shows the deviation of calculated Gibbs energies of 
binding of the CB[8] receptor to ligands G1-G9 from 
experiment. The numbers reported are the Boltzmann-
weighted averages of conformers at each level.  The original 
GFN2 CRE had a mean absolute deviation (MAD) of 3.16 
kcal/mol from experiment which is already close to the top-
ranked force matching approach with a MAD of 2.03 kcal/mol 
in SAMPL8.9 Since calculations at ‘Level 0’ are mere 
approximate single-point energies and not Gibbs energies of 
binding to remove high-lying complexes, they cannot be directly 
compared with experiment and are not discussed further (see 
Table S2 for numerical results). A negative ΔΔGbind indicates an 
overbinding (too negative Gibbs energies) in Figure 2. GFN2 
systematically overestimates the Gibbs energies of binding 
(only for cyclic amines G8 and G9 an underestimation by 1-2 

 Figure 2. Deviation of calculated Gibbs energies of binding from experiment (ΔΔGbind, in kcal/mol) for G1 to G9 ligands to the CB[8] receptor.
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kcal/mol is seen). The composite mGGA method r2SCAN-3c at 
Level 1 gives significantly better Gibbs energies of binding even 
for single-point calculations. This method was originally found 
to outperform hybrid functionals in terms of conformational 
energies at a significantly lower computational cost whereas 
non-covalent interactions are about as well described as with 
hybrid functionals.24 However, from Figure 2 it becomes 
apparent that a structural re-optimization of GFN2 structures in 
combination with an improved description of solvation free 
energies (from ALPB to COSMO-RS) significantly reduces the 
deviation from experiment (MAD decreases from 4.6 kcal/mol 
at Level 1 to 2.45 kcal/mol at Level 2). This reduced MAD results 
in part from improved electronic energies (by 1.52 kcal/mol) 
and solvation (by 0.64 kcal/mol; see Table S2). The hybrid meta-
GGA PW6B95 at Level 3 gives an additional reduction of MAD 
by ~ 1 kcal/mol (see Table 1) and a final MSE of -0.6 kcal/mol. 

Table 1. Analysis of error of calculated Gibbs energies of binding in kcal/mol for 
SAMPL8 entries.

MSEa SEMb MADc

GFN2 -1.79 1.13 3.16
Level 0 -16.84 1.71 16.84
Level 1 +0.11 1.78 4.61
Level 2 +1.75 0.76 2.45
Level 3 -0.60 0.79 1.82

amean signed error, bstandard error of mean, c mean absolute 
deviation.

In the global statistical analysis of SAMPL89, there were 5 ligand-
receptor CB[8] complexes which had a root mean square error 
of 4 kcal/mol or greater among all submissions. These were 
CB[8]·G1, CB[8]·G3, CB[8]·G4, CB[8]·G6, and CB[8]·G7 (see 
Figure 1). The majority of methods tended to underestimate 
Gibbs energies of binding for these systems, except for one with  
Gibbs energy of binding ~8 kcal/mol too large. Our Level 2/Level 
3 results have a deviation from experiment of +0.5/-0.5 
kcal/mol (G1); +3.2/-2.3 kcal/mol (G3); -3.2/-4.7 kcal/mol (G4); 
+4.1/-0.4 kcal/mol (G6); +2.8/-0.16 kcal/mol (for G7). This 
shows, on the one hand, that the CENSO refinement of a large 
number of GFN2 binding modes is competitive with previous 
submissions to SAMPL8. Ligands G3 (morphine) and G4 
(hydromorphone) appear to be intrinsically difficult to describe 
for any computational method. These are among the most 
complex ligand entities in SAMPL8 with multi-ring heterocycles, 
decorated by several functional groups and a protonated 
tertiary amines as part of a heterocycle. Due to their chemical 
environment these are notoriously difficult to describe for 
solvation models (see below). For ligand systems G1, G6, and 
G7 the extra computational cost to go from the meta-GGA type 
r2SCAN-3c (Level 2) to the double hybrid PW6B95 (Level 3) 
seems is worth it since the final MSE for these compounds is the 
best for those entries in SAMPL8.

For the CB[8] host, the overall top-performer in SAMPL8 used 
classical bonding and non-bonding parameters obtained via QM 
force-matching (FM) methods, QM-derived atomic charges and 
fitted bonded parameters with a final MAD of 2.03 kcal/mol.9, 25 
Derivation of QM charges and the molecular force matching 

was computationally expensive and required 10,000s of DFT 
force calculations for each complex. As an alternative approach, 
with much less extensive sampling and a systematic refinement 
of QM interaction energies, our results with a MSE of -0.60 
kcal/mol and a MAD of 1.82 kcal/mol outperforms the FM and 
MD ansatz. Such an accuracy is achievable even when 
considering two to three orders fewer structures, depending on 
the level of refinement (see Figure S2). 

Gibbs energies of binding of β-cyclodextrin to phenothiazine drugs

The recent SAMPL9 competition included the prediction of 
Gibbs energies of binding between β-cyclodextrin and five 
phenothiazine-based antipsychotic drugs (see Figure 3).26 In β-
cyclodextrin, seven glucose subunits are α-1,4 linked to give a 
cone-shaped host with ~6 Å diameter, a hydrophobic interior 
and a slightly hydrophilic exterior surface. Cyclodextrin 
containers bind a range of guest molecules in aqueous solution 
by both hydrophobic and polar interactions and confer 
solubility, stability, and bioavailability to drug molecules and are 
thus used as drug carriers.13, 14 Phenothiazines are a class of 
first-generation drugs for anti-psychotic medications, such as 
schizophrenia, bipolar disorders, and other psychotic disorders 
with delusional manifestation.27  They are a class of nitrogen 
and sulfur-containing heterocyclic drug molecules. Some of the 
phenothiazines (CPZ, TDZ, TFP) are substituted at the 
phenothiazine entity to give an asymmetric guest molecule. 
Increasing hydrophobicity at position 4 (-Cl and -CF3 groups), 
varying alkyl chain lengths, branching and different terminal 
tertiary amines were found to be critical determinants for their 
biological activity.28  

Figure 3. Structures of the β-cyclodextrin host and phenothiazine-derived guest 

molecules 

The Gilson group found that β-CD binds to phenothiazine drug 
entities with good affinity and extended the investigation to 
phenothiazine derivatives. They possess favourable solubilities, 
and constitute a new class of molecule family that was never 
before explored in any SAMPL challenge before. Experimental 
Gibbs energies of binding were obtained from ITC and NMR  to 
characterize the non-covalent interactions and revealed the 
formation of 1:1 complexes.17 Gibbs energies of binding are in a 
very narrow range between -4.5 and -5.7 kcal/mol. Chemical 
modifications at the heterocyclic core and/or aliphatic chain 
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lengths increase the degree of conformational flexibility of the 
ligand, in combination with flexible receptor represent a further 
level of challenge to computational approaches. 

Whereas the CB[8] receptor was a rigid macrocyclic entity, the 
GFN2 conformational search of β-CD gave 56 unique 
conformers in the CRE, albeit some were high in energy and 
removed in subsequent QM refinement iteration steps.  This 
shows that the iterative refinement procedure with increasing 
thresholds is an efficient way to filter out many high-lying 
conformers and to retain also few unique structures in a narrow 
energy window (after Level 3 only two conformers were below 
the Boltzmann threshold of 99 %). The SAMPL8 ‘drugs of abuse’ 
binders were small with only a small number of unique 
conformers apart from G2 (see above). The free phenothiazines 
give rise to a larger number of unique conformers in CREST. 
However, the sequential QM refinement reduces the number of 
entries in a certain energy window above the minimum 
significantly by a factor of 5-10 (see Figure S3). For the 
phenothiazine-β-CD complexes, the conformational search also 
yielded more unique structures compared to SAMPL8 but most 
of them were removed during sequential refinement of 
electronic energies and solvation modelling. 

Figure 4. Top-ranked binding pose of CPZ binding to β-CD. Left: side view, right: top view.

Figure 4 shows one example of the top-ranked pose of CPZ in 
complex with β-CD. In general, the binding modes of highly 
ranked phenothiazine poses are in agreement with the 
structural interpretation of NMR studies. The β-CD receptor has 
two binding faces: the ‘primary’ is made up by seven primary 
alcohols (bottom of receptor in Figure 4 (left)), and the 
‘secondary’ is consisting of fourteen alcohol groups on the other 
side of the receptor (top of Figure 4 (left)). Part of the 
phenothiazine moiety is located at the secondary face of the 
host and part of the drug penetrates deep into the host's cavity.  
Only the relatively bulky side-chains of TDZ and TFP were 
sufficiently locked to generate definite nuclear Overhauser 
effect (NOE) signals and to allow the definite assignment of an 
interaction with the secondary hydroxyl groups. For all 
phenothioazine ligands, binding poses in agreement with 
structural interpretation from NMR were obtained. They all 
reveal a bifurcated ammonium–hydroxyl interaction and an 
incorporation of the largely hydrophobic phenothiazine ring 
into the hydrophobic β-CD binding cavity (similar to Figure 4). 
The calculated Gibbs energy of binding of CPZ to β-CD (-6.7 
kcal/mol) is in good agreement with the experimental value of -

5.4 kcal/mol (see Table S3). In medicinal chemistry, 
introduction of a chlorine atom is frequently used to increase 
the lipophilicity of drug compounds.17  Promazine (PMZ) and 
chlorpromazine (CPZ) differ only in the replacement of a 
hydrogen by a chlorine, but chlorpromazine binds only slightly 
tighter than promazine (0.5 kcal/mol in experiment vs. 1.3 
kcal/mol in calculations). This suggests that introducing the 
chlorine substituent is not significantly stabilizing ligand-
receptor binding but may be beneficial for the drug’s 
bioavailability. The calculated Gibbs energies of binding of all 
phenothiazine molecules at every level are given in Table S3.
Table 2 gives the analysis of errors of phenothiazine binding to 
β-CD. GFN2 is not able to give a binding of phenothiazine ligands 
to β-CD at all and the Gibbs energy is always positive (see Table 
S3). 

Table 2. Analysis of deviation of calculated (S)QM Gibbs energies of binding in kcal/mol 
for phenothiazine drug molecules to β-CD.

MSEa SEMb MADc

GFN2 -18.4 2.3 18.4
Level 0 +4.8 1.5 4.8
Level 1 +2.1 1.9 2.4
Level 2 +2.4 0.4 2.4
Level 3 +0.4 0.7 0.7

amean signed error, bstandard error of mean, cmean absolute 
deviation.

Semi-empirical methods, such as GFN2-xTB, have a poor 
performance in the description of ionic hydrogen bonds which 
are largely contributing to polarization.29 Such an 
underestimation of these strong hydrogen bonds can be 
assigned to the absence of polarization effects when using 
minimal valence basis sets in SQM.
As for the CB[8] receptor binding challenge, GFN2 generated 
structures are structurally very plausible but the deviation in 
energies from experiment is even larger. Calculations at Level 0 
and Level 1 reduce the MSE and MAD significantly (see Table 2). 
Structural optimizations at Level 2, however, do not lead to 
systematically lower errors for the SAMPL9 entries. High-level 
hybrid meta-GGA XC functional DFT calculations generate very 
accurate Gibbs energies of binding with the targeted 
thermochemical accuracy (MSE +0.4 kcal/mol, MAD 0.7 
kcal/mol).

Figure 5. MAD from experiment in kcal/mol of calculated Gibbs 
energies of binding of phenoziatine drug molecules to β-CD.
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Figure 5 shows that the MAD from experimental data can 
systematically be reduced when going from Level 1 to 3.

For β-CD phenothiazine binding, the best SAMPL9 submission 
was using an alchemical transfer model (ATM)10 with a 
proprietary ligand force field to give a MSE of -0.9 kcal/mol and 
a MAD of 1.6 kcal/mol. In total, 64 individual alchemical Gibbs 
energy calculations and hundreds of nanoseconds of MD 
simulation needed to be performed to get to these numbers. 
The combination of SQM exploration of the conformational 
space of ligand, receptor and complexes followed by CENSO 
refinement of electronic energies and solvation model is able to 
give results that are comparable to or sometimes 
outperforming the most accurate SAMPL9 submissions.

Computational Details
Ligands were manually positioned inside the receptor upon 
positioning. The initial complexes were first optimized  using the 
GFN2-xTB 6.3.2 tight-binding method.30 Ensembles of 
structures were generated using CREST 2.12 and an ALPB31 
continuum solvent representation for water. For 
thermostatistical corrections GFN2-xTB single-point Hessian 
calculations (SPH32) and the modified rigid-rotor harmonic 
oscillator (mRRHO) was used.33 Solvent contributions were 
incorporated at various levels using ALPB, DCOSMO-RS34 and 
COSMO-RS35, 36 solvation models. Throughout, Ahlrichs’ def2 
TURBOMOLE v7.5.126 was used for all density functional theory 
(DFT) calculations. 
To refine the Gibbs energies of the resulting CREs, commandline 
energetic sorting (CENSO v.1.2.0)6 was used. At Level 0, 
electronic  energies of all the conformers were recalculated 
using the low-cost semi-empirical GGA-type density functional  
with long range dispersion corrections B97-D3(0)37, 38 with a 
small  def2-SV(P)39 basis set and the analytical linearized 
Poisson-Boltzmann (ALPB) solvation model.31 All conformers 
within 4 kcal/mol from the minimum were further considered 
for the next level.  Level 0 only serves to eliminate unrealistic 
high-energy conformers.
At Level 1, the Gibbs energy with of all remaining conformers 
was calculated from single point energy calculations using the 
composite electronic structure method of meta-GGA type 
r2SCAN-3c24, 40, a large purpose-built def2-mTZVPP basis set41 
and D4 dispersion corrections.42-44 The Gibbs energy threshold 
for this level was set to be 3.5 kcal/mol.
Structures from Level 1 were then re-optimized at Level 2 using 
the same r2SCAN-3c functional with def2-mTZVPP basis sets and 
D4 dispersion corrections. The effect of solvent were included 
using DCOSMO-RS34 during the geometry optimizations. This 
step gave optimized structures of the conformers and enabled 
the removal of the non-unique conformers. The thermal 
corrections were, again, re-calculated using SPH calculations 
with GFN2-xTB method. The Gibbs solvation energies were 
estimated using COSMO-RS v19.0.4(R 5514)35, 45 with 
TZVPD_FINE parameters for SAMPL8 and TZVPD parameters for 

SAMPL9 calculations. Finally, conformers within 2.5 kcal/mol 
energy threshold were retained.
A final electronic energy refinement (Level 3) was carried out 
using the computationally demanding PW6B95 (6-parameter 
functional based on Perdew-Wang-91 exchange and Becke-95 
correlation) hybrid density functional with dispersion 
corrections.38, 46, 47 and a large def2-TZVPD basis set.41 The 
solvent effects were obtained from COSMO-RS.  

• Level 0: SP B97-D3(0)/def2-SV(P) + Esolv(GFN2-ALPB)
• Level 1: SP r2SCAN-3c(D4)/def2-mTZVPP + Esolv(GFN-

ALPB) + GmRRHO(GNF2-ALPB-SPH) 
• Level 2: OPT r2SCAN-3c(D4)/def2-mTZVPP/DCOSMO-

RS + Gsolv(COSMO-RS) + GmRRHO(GFN2-ALPB-SPH)
• Level 3: SP PW6B95-D3(BJ)47/def2-TZVPD + 

Gsolv(COSMO-RS) + GmRRHO(GFN2-ALPB-SPH)

Since calculations at ‘level 0’ are mere energies of binding, they 
cannot be directly compared with experiments and are not 
discussed in the main text. 

Conclusions
The Gibbs energy of binding of ligand-receptor complexes with 
thermochemical accuracy is a challenge to any computational 
approach. SAMPL challenges are an ideal opportunity to 
benchmark a large variety of different methods. The quantum 
chemical refinement of a moderate number of SQM poses in 
combination with an increasing level of description of electronic 
energies and (implicit) solvation is able to provide accurate 
Gibbs energies of binding of drug molecules to CB[8] and β-CD 
receptors. Accuracy of electronic energies, thermodynamic 
corrections and choice of solvent modelling are the critical 
ingredients here but allow a systematic control and monitoring 
of their performance at various levels of refinement. The 
outlined SQM/QM approach is able to provide computational 
Gibbs energies of binding with comparable accuracy as 
experiment. It does not require a system-specific force 
matching or force field parametrization. At every step in this 
systematic workflow, it also allows the control of accuracy of 
results and possible ranges of errors. 
As an alternative to explicit molecular simulations, Machine 
learning (ML) approaches are able to give Gibbs energies of 
binding. However, they require network training on large 
datasets.  For example, for the pillar[n]arene WP648, ML results 
trained on extensive experimental datasets were superior.49  
For realistic host-guest complexes50, however, training data 
may sometimes be scarce. For example, the binding of 
phenothiazines to β-cyclodextrin was only recently 
investigated. Here, a ML framework to control the error of DFT 
calculations may be more appropriate.51 

Author Contributions
FJ: Investigation, Formal analysis, Writing – original draft, Data 
curation, Methodology; MS: Conceptualization, Data curation, 

Page 5 of 8 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

8/
07

/2
02

4 
8:

11
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D4CP01529K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp01529k


ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Investigation, Validation, Writing - original draft, Writing - review & 
editing. 

Conflicts of interest
There are no conflicts to declare.

Data availability
All coordinates and calculated Gibbs energies are freely 
available from zenodo.org doi:10.5281/zenodo.10657701.

Acknowledgements
We thank the Max Planck Society for Advancement of Science 
(MPG) for financial support.  This work is part of the Research 
Initiative "SmartProSys: Intelligent Process Systems for the 
Sustainable Production of Chemicals" funded by the Ministry for 
Science, Energy, Climate Protection and the Environment of the 
State of Saxony-Anhalt. This work is also part of the EU COST 
Action CA21160 ‘ML4NGP – Non-globular proteins in the era of 
Machine Learning’. We appreciate the National Institutes of 
Health for its support of the SAMPL project via R01GM124270 
to David L. Mobley (UC Irvine).

References

1. C. E. M. Schindler, H. Baumann, A. Blum, D. Böse, H.-P. 
Buchstaller, L. Burgdorf, D. Cappel, E. Chekler, P. 
Czodrowski, D. Dorsch, M. K. I. Eguida, B. Follows, T. Fuchß, 
U. Grädler, J. Gunera, T. Johnson, C. Jorand Lebrun, S. 
Karra, M. Klein, T. Knehans, L. Koetzner, M. Krier, M. 
Leiendecker, B. Leuthner, L. Li, I. Mochalkin, D. Musil, C. 
Neagu, F. Rippmann, K. Schiemann, R. Schulz, T. 
Steinbrecher, E.-M. Tanzer, A. Unzue Lopez, A. Viacava 
Follis, A. Wegener and D. Kuhn, Journal of Chemical 
Information and Modeling, 2020, 60, 5457-5474.

2. D. L. Mobley and M. K. Gilson, Annual Review of Biophysics, 
2017, 46, 531-558.

3. Z. Cournia, B. Allen and W. Sherman, Journal of Chemical 
Information and Modeling, 2017, 57, 2911-2937.

4. M. Amezcua, L. El Khoury and D. L. Mobley, Journal of 
Computer-Aided Molecular Design, 2021, 35, 1-35.

5. S. Grimme, Journal of Chemical Theory and Computation, 
2019, 15, 2847-2862.

6. S. Grimme, F. Bohle, A. Hansen, P. Pracht, S. Spicher and M. 
Stahn, The Journal of Physical Chemistry A, 2021, 125, 
4039-4054.

7. J. Barrera, H. H. Haeri, J. Heinrich, M. Stein, D. Hinderberger 
and N. Kulak, Dalton Transactions, 2023, 52, 3279-3286.

8. J. Heinrich, K. Bossak-Ahmad, M. Riisom, H. H. Haeri, T. R. 
Steel, V. Hergl, A. Langhans, C. Schattschneider, J. Barrera, 
S. M. F. Jamieson, M. Stein, D. Hinderberger, C. G. 
Hartinger, W. Bal and N. Kulak, Chemistry – A European 
Journal, 2021, 27, 18093-18102.

9. M. Amezcua, J. Setiadi, Y. Ge and D. L. Mobley, Journal of 
Computer-Aided Molecular Design, 2022, 36, 707-734.

10. M. Amezcua, J. Setiadi and D. L. Mobley, Physical Chemistry 
Chemical Physics, 2024, 26, 9207-9225.

11. J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs, 
Angewandte Chemie International Edition, 2005, 44, 4844-
4870.

12. S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. 
Zavalij and L. Isaacs, Journal of the American Chemical 
Society, 2005, 127, 15959-15967.

13. M. V. Rekharsky and Y. Inoue, Chemical Reviews, 1998, 98, 
1875-1918.

14. K. Uekama, F. Hirayama and T. Irie, Chemical Reviews, 
1998, 98, 2045-2076.

15. S. Murkli, J. Klemm, A. T. Brockett, M. Shuster, V. Briken, 
M. R. Roesch and L. Isaacs, Chemistry – A European Journal, 
2021, 27, 3098-3105.

16. E. Boz and M. Stein, International Journal of Molecular 
Sciences, 2021, 22, 3078.

17. B. Andrade, A. Chen and M. K. Gilson, Physical Chemistry 
Chemical Physics, 2024, 26, 2035-2043.

18. P. Pracht, F. Bohle and S. Grimme, Physical Chemistry 
Chemical Physics, 2020, 22, 7169-7192.

19. W. L. Mock, in Supramolecular Chemistry II — Host Design 
and Molecular Recognition, ed. E. Weber, Springer Berlin 
Heidelberg, Berlin, Heidelberg, 1995, pp. 1-24.

20. S. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio and O. 
A. Scherman, Chemical Reviews, 2015, 115, 12320-12406.

21. J. Liu, C. S. Y. Tan, Z. Yu, N. Li, C. Abell and O. A. Scherman, 
Advanced Materials, 2017, 29, 1605325.

22. J. A. Plumb, B. Venugopal, R. Oun, N. Gomez-Roman, Y. 
Kawazoe, N. S. Venkataramanan and N. J. Wheate, 
Metallomics, 2012, 4, 561-567.

23. J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, 
K. Yamaguchi and K. Kim, Journal of the American Chemical 
Society, 2000, 122, 540-541.

24. S. Grimme, A. Hansen, S. Ehlert and J.-M. Mewes, The 
Journal of Chemical Physics, 2021, 154.

25. P. S. Hudson, F. Aviat, R. Meana-Pañeda, L. Warrensford, B. 
C. Pollard, S. Prasad, M. R. Jones, H. L. Woodcock and B. R. 
Brooks, Journal of Computer-Aided Molecular Design, 
2022, 36, 263-277.

26. M. J. Ohlow and B. Moosmann, Drug Discovery Today, 
2011, 16, 119-131.

27. Kidron A and N. H., Journal, 2024.
28. J. M. Ford, W. C. Prozialeck and W. N. Hait, Molecular 

Pharmacology, 1989, 35, 105.
29. J. Řezáč, Journal of Chemical Theory and Computation, 

2020, 16, 2355-2368.
30. C. Bannwarth, S. Ehlert and S. Grimme, Journal of Chemical 

Theory and Computation, 2019, 15, 1652-1671.
31. S. Ehlert, M. Stahn, S. Spicher and S. Grimme, Journal of 

Chemical Theory and Computation, 2021, 17, 4250-4261.
32. S. Spicher and S. Grimme, Journal of Chemical Theory and 

Computation, 2021, 17, 1701-1714.
33. S. Grimme, Chemistry – A European Journal, 2012, 18, 

9955-9964.
34. A. Klamt and M. Diedenhofen, The Journal of Physical 

Chemistry A, 2015, 119, 5439-5445.
35. A. Klamt, The Journal of Physical Chemistry, 1995, 99, 2224-

2235.
36. A. Klamt, WIREs Computational Molecular Science, 2011, 1, 

699-709.

Page 6 of 8Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

8/
07

/2
02

4 
8:

11
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D4CP01529K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp01529k


Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7

Please do not adjust margins

Please do not adjust margins

37. S. Grimme, Journal of Computational Chemistry, 2006, 27, 
1787-1799.

38. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, The Journal of 
Chemical Physics, 2010, 132.

39. A. Schäfer, H. Horn and R. Ahlrichs, The Journal of Chemical 
Physics, 1992, 97, 2571-2577.

40. J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew and J. Sun, 
The Journal of Physical Chemistry Letters, 2020, 11, 8208-
8215.

41. F. Weigend and R. Ahlrichs, Physical Chemistry Chemical 
Physics, 2005, 7, 3297-3305.

42. E. Caldeweyher, C. Bannwarth and S. Grimme, The Journal 
of Chemical Physics, 2017, 147.

43. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. 
Spicher, C. Bannwarth and S. Grimme, The Journal of 
Chemical Physics, 2019, 150.

44. E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, 
Physical Chemistry Chemical Physics, 2020, 22, 8499-8512.

45. A. Klamt, V. Jonas, T. Bürger and J. C. W. Lohrenz, The 
Journal of Physical Chemistry A, 1998, 102, 5074-5085.

46. S. Grimme, S. Ehrlich and L. Goerigk, Journal of 
Computational Chemistry, 2011, 32, 1456-1465.

47. Y. Zhao and D. G. Truhlar, The Journal of Physical Chemistry 
A, 2005, 109, 5656-5667.

48. T. Ogoshi, T.-a. Yamagishi and Y. Nakamoto, Chemical 
Reviews, 2016, 116, 7937-8002.

49. O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. 
Poltavsky, K. T. Schütt, A. Tkatchenko and K.-R. Müller, 
Chemical Reviews, 2021, 121, 10142-10186.

50. R. Sure and S. Grimme, Journal of Chemical Theory and 
Computation, 2015, 11, 3785-3801.

51. M. Bogojeski, L. Vogt-Maranto, M. E. Tuckerman, K.-R. 
Müller and K. Burke, Nature Communications, 2020, 11, 
5223.

Page 7 of 8 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

8/
07

/2
02

4 
8:

11
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D4CP01529K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp01529k


Data availability statement 

The data supporting this article have been included as part of the Supplementary Information.  

Data for this article, including all structures, energies and ensembles at every level are available at 

zenodo at https://doi.org/10.5281/zenodo.10657702. 

 

Page 8 of 8Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

8/
07

/2
02

4 
8:

11
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D4CP01529K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp01529k

