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Copper() as a reducing agent for the synthesis of bimetallic
PtCu catalytic nanoparticles

We have investigated the utilization of Cu(l) as a reducing
agent for the transformation of the platinum salt K,PtCly,
resulting in the production of bimetallic nanoparticles. This
approach offers a convenient and accessible methodology
to produce stable bimetallic nanostructures. The catalytic
properties of these novel nanomaterials have been explored
in various applications, including their use as artificial
metalloenzymes and in the degradation of dyes.
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This work investigates the potential utilization of Cu() as a reducing agent for the transformation of the
platinum salt K;PtCly, resulting in the production of stable nanoparticles. The synthesized nanoparticles
exhibit a bimetallic composition, incorporating copper within their final structure. This approach offers
a convenient and accessible methodology for the production of bimetallic nanostructures. The catalytic
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Introduction

Noble metals such as platinum (Pt) exhibit excellent catalytic
properties, for instance, in oxidation catalysis, which is
a significant component in the automotive sector," or hydro-
genation catalysis at the industrial level.> The role of catalysis in
modern chemical-based technologies is enormous due to their
implication in sustainable chemistry to design chemical prod-
ucts and processes that reduce or eliminate the use and
generation of hazardous substances.? The use of noble metals,
especially in heterogeneous catalysis, electrocatalysis and pho-
tocatalysis applications, is of tremendous importance.*®
However, the main drawbacks are their scarcity in nature and
elevated price, although their substitution by other non-noble
metals is limited.® To this extent, nanomaterials offer an
opportunity to reduce the cost and the size of the materials.”
The specific surface area is larger when reducing the size of the
material, and therefore it has a more efficient atom-utilization
rate.® The interest increased with novel methods in the nano-
technology fields, with the selection of the reducing and stabi-
lizing agents being a key component in the nanomaterial
synthesis.®

The reducing agents used to obtain the nanomaterials will
impact the final result, affecting nucleation and growth of the
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manufactured nanoparticles, with hydrogen (H,), sodium
borohydride (NaBH,), ethylene glycol, glucose and hydrazine
being among the most used.' Among them, the polyol process
is one of the most used techniques. Some of the main draw-
backs of the polyol process are the use of organic phases or
elevated temperatures that can modify the surface capping
agents. Some polyols can decompose to give carbon dots at
temperatures well below their boiling points.*™* It is also known
that the use of different ligands during the synthesis as well as
the capping agents can also impact the nanomaterials structure
and alter their catalytic activity and selectivity.">** The possi-
bility of using a non-noble metal as a reducing agent to produce
different platinum, gold, silver and palladium nanoparticles in
water media under mild conditions was recently demonstrated.
Using Fe(u) as a reducing agent and polyvinylpyrrolidone (PVP)
or polystyrene sulphonate (PSS) as stabilizers, it was possible to
produce different noble-metal nanoparticles under seedless'***
or seed-mediated’® strategies in which the presence of different
ions, like citrate or chloride, plays an important role once they
can alter the redox potential of the species, making the reaction
more favourable.

This methodology can lead to the combination of different
metals in the final material, which can impact their activity due
to the strong/optimized electronic and structure effects,’”*® as
well as with strong resistance to poisonous substances
compared with pure Pt nanoparticles.” Different synthetic
methodologies are used to produce bimetallic nanoparticles
such as seed-mediated,'® galvanic replacement® or co-reduc-
tion** technology with promising applications in the catalysis
area. The interest in copper (Cu) being used in combination
with different metals, such as gold, palladium, platinum or
silver, has increased in recent years.>*** The presence of copper
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can decrease the cost of the catalyst and improve the catalytic
activity in many reactions, ie. selective hydrogenolysis of
biomass-derived glycerol or reduction of 4-nitrophenol by
NaBH4.2°'25'26

Considering previous work, we have developed a new one-
pot and seedless aqueous-based synthetic route to produce
well-dispersed PtCu NPs with two different shapes, mulberry-
like clusters and dendritic NPs, using copper(i) as a reducing
agent in the presence of ethylenediaminetetraacetic acid
(EDTA). This simple Cu(1)/EDTA synthesis can be implemented
in the absence or presence of PVP as a stabilizer to manufacture
well-dispersed PtCu NPs.

We have carefully investigated the catalytic properties of the
PtCu NPs by analyzing aromatic compounds reduction and,
particularly, as a new artificial metalloenzyme or in a chemo-
enzymatic cascade in the oxidation of 3,4-dihydroxy-L-phenyl-
alanine (1-DOPA), a catalase-like activity artificial enzyme or as
efficient catalysts for rhodamine B degradation.

Experimental
Materials

Potassium tetrachloroplatinate (K,PtCl,), copper(i) bromide
(CuBr), polyvinylpyrrolidone (PVP 40K) and acetonitrile
(CH;CN) were purchased from Sigma-Aldrich. Hydrated ethyl-
enediaminetetraacetic acid tetrasodium salt (EDTA-Na,) was
purchased from Alfa-Aesar. All reagents were used without
further purification. Water was ultra-pure grade (type I) ob-
tained with a Milli-Q Simplicity system.

Catalase from Aspergillus niger (CAT) solution (Catazyme®)
and glucose oxidase (Gluzyme® Mono 10.000 BG) (GOx) were
purchased from Novozymes (Copenhagen, Denmark).
Hydrogen peroxide (33%) and ethyl acetate were from Panreac
(Barcelona, Spain). 3,4-Dihydroxy-L-phenylalanine (1-DOPA) was
from Alfa Aesar (Massachusetts, EEUU). Sodium phosphate,
sodium bicarbonate, sodium acetate, sodium borohydride,
dioxane, and rhodamine B (RhB) were from Sigma-Aldrich (St.
Louis, MO, USA). n-Hexane (98%) and acetonitrile (ACN) were
from Scharlau (Madrid, Spain).

Methods

Nanoparticle synthesis. Pt NPs were produced through the
reduction of K,PtCl, applying CuBr assisted by ethyl-
enediaminetetraacetic acid sodium salt (EDTA) with/without
the addition of PVP in a mixture of aqueous : acetonitrile solu-
tion (5% (v/v) CH;CN in H,0).

Briefly, for PtCul, a round-bottom flask with 15 mL of
ultrapure water was immersed in a thermostatic oil bath at 60 ©
C. With the temperature stabilized and under vigorous
magnetic stirring, 2 mL of an aqueous solution containing
10 mmol of K,PtCl, were added. Then, 1 mL of CH;CN solution
containing 0.12 M CuBr freshly prepared was injected, followed
by a fast addition of 2 mL of an aqueous solution of 0.1 M EDTA.
The reaction was allowed to elapse for 120 min, and then the
solution was cooled to room temperature (RT). After this time,
the reaction mixture was centrifuged at 13000 rpm for 30
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minutes (3 times) and resuspended in an aqueous solution of
1.5 mM EDTA to a final volume of 12 mL.

For the synthesis in the presence of PVP (PtCu2), a round-
bottom flask with 13 mL of ultrapure water was immersed in
a thermostatic oil bath at 60 °C. With the temperature stabilized
and under vigorous magnetic stirring, 2 mL of an aqueous
solution containing 10 mmol of K,PtCl, and 2 mL of 0.1 M PVP
were added. Then, 1 mL of CH;CN solution containing 0.12 M
CuBr freshly prepared was injected, followed by the addition of
2 mL of an aqueous solution of 0.1 M EDTA. The reaction was
allowed to elapse for 120 min, and then the solution was cooled
to room temperature (RT). After this time, the reaction was
centrifuged at 13 000 rpm for 45 minutes 2 times, resuspending
in an aqueous solution of 1.5 mM EDTA, and one additional
cycle resuspending in ultrapure water to a final volume of 12
mL.

Catechol oxidase-like activity assay. 3,4-Dihydroxy-L-phenyl-
alanine (1-DOPA) (4 mg, 1 mM) was added to 20 mL of 100 mM
buffer sodium phosphate pH 7, 40: 60 ACN:H,O and 30:70
dioxane : H,O. To initiate the reaction, 10 pL of Pt catalyst was
added to 3 mL of DOPA solution, and the mixture was slightly
stirred (roller) at room temperature or 50 °C. In the case of Pt
catalysts, at different times the mixture was measured at 475 nm
in a JASCO V-730 UV-spectrophotometer. Then, the Abs per min
was calculated with these values in each case. In the case of
tyrosinase, the absorbance increase was directly measured at
475 nm on the UV spectrophotometer using the kinetic
program. The enzyme activity unit (U) was defined as the
amount of enzyme causing an increase of absorbance by
0.001 min™ " at 25 °C.”’

Catalase-like activity assay. Hydrogen peroxide (H,0,) (33%
(w/w)) solution was prepared to obtain a final concentration of
50 mM, in 25 mM buffer sodium bicarbonate pH 10, 25 mM
buffer sodium phosphate pH 8.5 and 7, distilled water and
25 mM buffer sodium acetate pH 4. To start the reaction, 10 pL
of the Pt catalyst or 100 pL of Catazyme® 25 L (31 mg mL ") was
added to 2 mL or 10 mL respectively of the 50 mM solution at
room temperature. The reaction was followed by measuring the
degradation of H,0,, recording the decrease of absorbance
spectrophotometrically at 240 nm in quartz cuvettes of 1 cm
path length at different times. To determine the catalase activity
for each catalyst, the AAbs per min value was calculated using
the linear portion of the curve (AAbsS).?®

Oxidation of L-DOPA in the presence of H,0,. 3,4-Dihydroxy-
t-phenylalanine (.-DOPA) (4 mg, 1 mM) was added to 20 mL of
40% acetonitrile. To initiate the reaction, 10 puL of Pt catalysts
were added to 3 mL of DOPA solution and 100 mM H,0, (33%
(w/w)). The mixture was slightly stirred (roller) at room
temperature. The mixture was measured at 475 nm at different
times in a JASCO V-730 UV-spectrophotometer. Then, the Abs
per min was calculated with these values in each case. The
enzyme activity unit (U) was defined as the amount of enzyme
causing an increase of absorbance by 0.001 min~" at 25 °C.%

Chemo-enzymatic cascades

GOx cascade. 3,4-Dihydroxy-L-phenylalanine (1-DOPA) (4 mg,
1 mM) was added to 20 mL of 40% ACN. To initiate the reaction,
0.5 mL of Gluzyme Mono (10.8 mg mL ", 100 mg of solid per

© 2023 The Author(s). Published by the Royal Society of Chemistry
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mL) was added to 2 mL of .-DOPA solution and 0.5 mL of
glucose (1 M). The mixture was slightly stirred (roller) at room
temperature. After 5 min, 10 pL of Pt catalysts were added to the
mixture. At different times, a sample of the reaction was
measured at 475 nm in a JASCO V-730 UV-spectrophotometer.
Then, the Abs per min was calculated with these values in
each case. The enzyme activity unit (U) was defined as the
amount of enzyme causing an increase of absorbance by
0.001 min " at 25 °C.*

Catalase cascade. 3,4-Dihydroxy-i-phenylalanine (1.-DOPA)
(4 mg, 1 mM) was added to 20 mL of 40% acetonitrile. To
initiate the reaction, 100 uL of a 1 mg mL ™" solution of Cata-
zyme® 25 L (31 mg mL~ ') was added to 2 mL of 1-DOPA solution
and 100 mM H,O0, (33% (w/w)). The mixture was slightly stirred
(roller) at room temperature. After 15 min, 10 puL of the Pt
catalyst was added to the mixture. At different times the mixture
with the Pt catalyst was measured at 475 nm in a JASCO V-730
UV-spectrophotometer. Then, the Abs per min was calculated
with these values in each case. The enzyme activity unit (U) was
defined as the amount of enzyme causing an increase of
absorbance by 0.001 min~* at 25 °C.*”

Degradation of rhodamine B. Rhodamine B (1.2 mg, 48 ppm)
was added to 25 mL of distilled water or 40 : 60 ACN : H,O. To
initiate the reaction, 200 pL of Pt catalysts were added to 1 mL or
2.5 mL of rhodamine B solution in the presence of 250 mM
H,0, (33% (w/w)) or 3 mg NaBH, (1.2 M), respectively. The
mixture in all cases was slightly stirred (roller) at room
temperature. At different times samples were measured at 400-
700 nm in a JASCO V-730 UV-spectrophotometer to determine
the rhodamine degradation.

Characterization. All NPs have been characterized by all
spectroscopy and standard chemical techniques. Dynamic light
scattering (DLS) was done in a MALVERN model ZS instrument
(PROTEOMASS  Scientific  Society, BIOSCOPE facility).
Ultraviolet-visible (UV-vis) spectroscopy was performed using
a Jasco-650 spectrophotometer with controlled temperature
(PROTEOMASS Scientific Society, BIOSCOPE facility). The high-
resolution transmission electron microscopy (HRTEM) was
performed on a JEOL JEM 2100F 80-200 kV microscope and
HAADF in a double-corrected FEI Titan G3 Cubed Themis 60—
300 kv microscope through the International Iberian Nano-
technology Laboratory (INL) facility. All TEM samples were
prepared by placing a drop of the sample onto a TEM copper or
gold grid and air-dried (TED-PELLA Co.). The size of particles
and dispersion histograms have been calculated from TEM
micrographs using the Image] (Fiji) package.”® Interplanar
spacings in the nanostructures were calculated by Fourier
transform (FT) using the Image] (Fiji) digital micrograph suite.

Inductively Coupled Plasma-Optical Emission Spectrometry
(ICP-OES) studies were carried out in an ICPE-9000 Multitype
ICP emission spectrometer from Shimadzu equipped with
a nebulizing system and using optical emission spectroscopy
for detection through the INL facility.

X-ray photoelectron spectroscopy (XPS) was carried out in an
ESCALAB250Xi (Thermo Fisher Scientific) through the INL
facility. Analyzer: hemispherical analyser; analysis area (field of
view on the sample): defined by the X-ray spot size. X-ray source:
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monochromated Al Ka (kv = 1486.68 eV) radiation, operated at
220 W, 14.6 kV, spot size 650 um. The XPS spectra were collected
at pass energies of 100 eV and 40 eV for survey spectra and
individual elements respectively. The energy step for individual
elements was 0.1 eV. The XPS spectra were peak fitted using
Avantage data processing software. For peak fitting, the Shirley-
type background subtraction was used. All the XPS peaks are to
be referenced to the adventitious carbon C 1s C-C peak at
284.8 eV. Quantification has been done using sensitivity factors
provided by the Avantage library. Charge neutralization was
achieved with both low-energy electron and argon ion flood
guns (0.5 eV, 100 pA and 70 pA current respectively) during XPS
measurements. Samples were deposited by multiple cycles of
drop casting of the corresponding solutions over 2.5 days on
clean Si wafers followed by drying in air. The solutions were
sonicated every time before drop casting.

Results and discussion

Based on the standard redox potentials known for [PtCl,]*~/Pt°
(+0.75 V vs. NHE) and Cu(u)/Cu(1) (+0.159 V vs. NHE), the
reduction of Pt(n) mediated by Cu(r) should be a spontaneous
process under normal conditions. However, the potential value
for the redox couple Cu(u)/Cu(i) strongly depends on the nature
of the ligand and the halogen counterion.** Also, the redox
potential and disproportionation of Cu(un)-Cu(i) is very sensitive
to the solvent.*"** Disproportionation is not rapid or extensive
under most conditions but rather requires a combination of an
appropriate solvent. Cu(i) is less stable to disproportionation in
water, and more stable in ACN. It has been stated than an ACN :
H,O mixture of 6% (v/v) can stabilize the Cu’ with respect to
cu*'®

The disproportionation of Cu(1) is generally described by eqn

(1):
2Cu(X = Cu(0) + Cu()X, (1)

Lowering the ACN : H,O ratio below the stability point, and
with the addition of EDTA in a water environment, we have
explored the reduction of Pt(u) to produce stable bimetallic
nanoparticles using Cu(i) as a reducing metal and using EDTA
as a chelating and stabilizing agent as described by eqn (2):

Pt(11) + 2Cu(1) = Pt(0) + Cu(EDTA) )

At room temperature (22 °C) and without the addition of any
chelating reagent, the reduction of platinum(iu) to platinum(0)
mediated by copper(1) does not proceed (molar ratio of Pt/Cu =
1/6) (Fig. Slat). Interestingly, upon the addition of EDTA,
a color change from pale yellow to black takes place in less than
1 minute, confirming the formation of metallic structures in
solution (molar ratio of Pt/Cu/EDTA = 1/6/10) (Fig. S1b and ct).

After nanoparticle formation, the UV-vis spectra showed
a band centered at 732 nm. This can be attributed to the cop-
per(n)-EDTA complex,* giving the supernatant a blue color
(Fig. S1d7). The stability constant of Cu-EDTA*" is five orders of
magnitude higher than that of Cu(OH),, making the reaction

Nanoscale Adv., 2023, 5, 4415-4423 | 4417
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more favourable.?® Furthermore, the excess EDTA used should
act as a stabilizing agent, since the product obtained was stable
in water without naked-eye aggregation signals. It should be
noted that EDTA has been recently shown to be a reducing agent
in gold nanoparticle synthesis.*® In the present case, EDTA is
unable to reduce Pt(u) to Pt(0) at either 40 or 60 °C in the time
scale of the reactions (typically less than 1 min, data not shown).
Therefore, in this case its role will be as a stabilizer and as
a chelating agent of the Cu(u) formed during the reaction.

Considering that the formation of Pt NPs can be strongly
affected by the reaction temperature,’ control experiments
were performed at different temperatures (40 and 60 °C) using
DLS to analyze the hydrodynamic size of the nanoparticles
formed. The DLS showed that the size is affected by an increase
of 20 °C due to a faster reduction, consequently giving smaller
nanoparticles at the expense of a slightly higher polydispersity
index (PDI) (0.12 to 0.16) (Fig. S2a and b¥). Furthermore, two
different amounts of copper have been analyzed (molar ratio of
Pt(u)/Cu(1) = 1/3 and 1/6, at 60 °C), keeping constant the final
amount of EDTA (molar ratio of Pt(u)/EDTA = 1/10). It was
noticed that an increase in Cu evolved into the smallest nano-
particles (Fig. S2c and df).

We have selected the molar ratio of Pt/Cu/EDTA = 1/6/10
with the total concentration of K,PtCl, of 1 mM at 60 °C to
explore the morphology and structure of the metallic materials
obtained (denoted as PtCul). After adding EDTA solution over
the Pt(u)/Cu(1) at 60 °C, a color change from yellow to intense
black was observed during the first 10 seconds of the reaction.
HRTEM analysis showed the presence of mulberry-like nano-
particles with an average size of 18.4 + 3.3 nm (Fig. 1) and a ¢-
potential of —20.6 mV (Fig. S37).

The nanoparticles were analyzed through HAADF-STEM to
investigate the metallic composition. Fig. 2 shows that the NPs
were formed by the combination of Pt and Cu (Fig. 2). The line

scan and EDS analysis confirmed the homogeneous
60 35— 5
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Fig.1 (a)and (b) HRTEM images of the nanoparticles under molar ratio

of Pt/Cu/EDTA = 1/6/10 at 60 °C, (c) histogram and (d) DLS of the
nanoparticles.
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(a) HAADF-STEM image and (b—d) EDX mapping images of the
PtCul nanoparticles.
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Fig. 2

distribution of both metals through all the nanoparticles
(Fig. S4t). ICP analysis confirmed the bimetallic composition
(Table S11) and with a proportion of Pt: Cu of 2.88: 1.

Aberration-corrected HRTEM images at higher magnifica-
tion were recorded to investigate the crystal structure of the
NPs. We detected regular lattice fringes in the HRTEM images
with regular inter-planar spacings of 0.211 nm (Fig. 3) and
0.205 nm (Fig. S51), which are close to the inter-planar distance
of the PtCu (111) planes and Cu (111) planes reported in the
literature.*”*® The Fast Fourier Transform (FFT) of the HRTEM
confirmed the polycrystalline nature of the PtCu alloy nano-
particles. We have obtained spots at 0.22, 0.20, and 0.13 nm that
can correspond to the presence of the Pt (111), Cu (111) and
PtCu alloy (200) crystalline planes, confirming the metallic
character of our catalyst®”*° (Fig. S61).

To investigate the oxidation states of the metals, the samples
were subjected to XPS analysis (Fig. S7t). The expected presence
of both metals in different oxidation states was confirmed. The
XPS of Pt 4f indicated the presence of Pt(0) and Pt(u) (71.2 eV to
76.8 €V)* in the final structure. It is worth noticing that in that
region also lies the Cu 3p signals which could indicate the
presence of Cu(u) instead of Pt(iv) (76-78.6 eV).** The spectra of
Cu 2p showed the peaks that can be attributed to Cu(0) or Cu()
(932.3 eV) and Cu(u) (933.9 eV).**** The disproportionation of
Cu may be the reason for the presence of Cu(0) in the final
structure, and the presence of oxidation states of Cu can be
attributed to the oxidation of surface Cu atoms in air. The ratio
of the Pt:Cu through XPS analysis was 1:2.25, indicating
a surface rich in copper.

To further investigate the effect of additional stabilizer
molecules during the nanoparticle growth, the water-soluble

. 08 12 16
' Distance (nm)
25 d-spacing:%a,ggezo.Zﬂ nm

Fig. 3 (a) HRTEM image at higher magnification of PtCul, (b) repre-
sentative lattice fringe under higher magnification and (c) determina-
tion of the inter-planar distance using a plot profile.
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Fig. 4 (a) and (b) HRTEM images of the nanoparticles under molar

ratio of Pt/Cu/EDTA/PVP = 1/6/10/10 at 60 °C, (c) histogram and (D)
DLS of the nanoparticles.

surfactant PVP has been selected to control metal particle
formation and deposition rates of metal particles,*>* having
been widely used in synthesizing Pt NPs with catalytic or
biomedical properties.***” When the reaction was completed
(denoted as PtCu2) in the presence of PVP40K (molar ratio of
Pt(u)/Cu(1)/EDTA/PVP = 1/6/10/10 at 60 °C) (note that PVP
concentrations have been expressed based on the monomeric
unit of PVP), the size of the NPs increased. Interestingly, in the
presence of PVP, the morphology of the nanoparticles changes,
from round-like nanoparticles to a more dendritic structure
(Fig. 4a and b), with an average size of 23.4 &+ 6.4 nm (Fig. 4c and
d) and with a ¢-potential of —35.5 mV (Fig. S37).

The crystal structure of PtCu2 shows a regular inter-planar
spacing of 0.231 nm, corresponding to lattice orientation for
Pt (111) (Fig. 5). The FFT of the HRTEM images showed the
presence of an interplanar distance of 0.20 nm, which can
correspond to the presence of Cu (111) (Fig. S8t1). The EDS
analysis confirmed the presence of platinum and copper in the

G}ay Scale

0 04 08 T.
Distance (nm)

i ing _ Distance _
d-spacing = Cycles =0.231 nm

Fig. 5 (a) HRTEM image of PtCu2, (b) representative lattice fringe
under higher magnification and (c) determination of the inter-planar
distance using a plot profile.
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final nanoparticle (Fig. S91), with the proportion of Pt: Cu =
2.3 :1 based on ICP analysis (Table S1+).

The XPS of PtCu2 (Fig. S107) for Pt 4f showed the presence of
Pt(0) (71.5-74.7 eV) and Pt(n) (72.7-76.0 €V) in the final struc-
ture, as well as Cu(0) (74.5-77.6 eV, which was caused by Cu 3p
peaks).** In the XPS of the Cu 2p region, fitting the peaks in the
range of ~930-935 eV reveals metallic Cu(0) or Cu() (932.3 eV)
and Cu(u) (933.4-934.4 eV). The satellite structure in the range
of 940-945 eV confirms the presence of Cu(u).*>** As with PtCul,
the presence of oxidation states of Cu can be attributed to the
oxidation of surface Cu atoms in air. The ratio of the XPS Pt: Cu
is 1:0.97, indicating a surface composition where platinum and
copper are present in similar quantities.

Catalysis studies

Determination of the catechol oxidase-like activity of the
different Pt nanocatalysts. An exciting application of metal
conjugates is mimicking biological catalytic activities, such as
oxidase mimicry, for example, polyphenol oxidases, tyrosinases
or catechol oxidases. However, the great difficulty to obtain
highly stable proteins with a high level of expression makes
them an excellent example of type enzyme where artificial
metalloenzyme can be a challenge. These enzymes can catalyse:
(i) the o-hydroxylation of monophenols to o-diphenols as well as
(ii) the oxidation of o-diphenols to produce o-quinones. In
contrast, and by definition, catechol oxidase can only catalyze
the oxidation of o-diphenols to their corresponding o-quinones.
Here, the catechol oxidase-like activity of the different Pt
nanostructures was  evaluated using  1-3,4-dihydrox-
yphenylalanine (.-DOPA) as substrate. This compound does not
absorb in the visible region; however, the oxidation produces
a chromogenic product (dopachrome) which is brown in color
and absorbs at 475 nm.

The catechol oxidase activity was determined in three
different media (buffer solution pH 7, 40:60 ACN: H,O (v/v)
and 30:70 dioxane:H,O (v/v)) (Fig. 6). At pH 7 and room
temperature, PtCu2 showed the highest catechol oxidase
activity, with around 330 U per mg with a great difference
compared to the PtCul (Fig. 6A(I)). Interestingly, the activity
seemed extremely affected due to the reaction medium. On this
subject, in 40% (v/v) ACN and in 30% (v/v) dioxane all the
catalysts showed lower activities compared to pH 7 (Fig. 6B(I)
and 6C(I)). We highlight this fact in PtCu2, which showed
almost no activity in the presence of 30% dioxane and PtCu1l
showed ca. 5 times more activity than PtCu2 under 40% ACN
conditions.

Another effect studied was the temperature in the case of pH
7 and 40% (v/v) ACN. At 50 °C and pH 7, the PtCul catalyst
improved the activity approximately two times and PtCu2
showed an activity of 225 U per mg instead of 325 U per mg at rt
(Fig. 6A(II)). However, in the presence of 40% ACN, PtCu2
doubled its activity compared to that achieved at room
temperature (Fig. 6B(II)).

These differences may be due to the fact that the Pt nano-
particles are coordinated with different ligands. In the case of
PtCu2 it is a polymeric ligand (PVP) that is more resistant to
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Fig. 6 Catechol oxidase-like activity of different Pt catalysts by
oxidation of L-DOPA under different conditions at room temperature
expressed in values of specific activity (U per mg Pt). (I) room
temperature, (I1) 50 °C. (A) Buffer sodium phosphate pH 7; (B) 40 : 60
ACN : H,O; (C) 30: 70 dioxane : H,O.

temperature, so it could be the reason that the catalytic capacity
of the particles has not been affected.

In the case of PtCul, a buffer solution may destabilize the
nanoparticles due to the protonation of the EDTA. Since
dioxane can act as a Lewis base, water/dioxane mixtures should
allow better dispersion and stabilization of the nanoparticles
improving interaction with the system.

Catalase-like activity

The enzyme catalase is essential for the removal of excess
cytoplasmic hydrogen peroxides by converting them to water

View Article Online
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and molecular oxygen. This enzyme is known to catalyze
oxidative and decomposition reactions under very mild and
favorable biological conditions. However, the widespread
application of this enzyme is restricted by its intrinsic proper-
ties, such as denaturation under extreme conditions of pH and
high temperatures as well as its protease digestibility. Further-
more, high cost and rigorous storage requirements also limit its
applications. Therefore, the development of artificial enzyme
mimics has been attracting a lot of attention.

Initially, we tested the peroxidase-like activity of these Pt-
catalysts using the glucose assay and no activity was found.
However, the degradation of hydrogen peroxide was highly
successful (Fig. 7).

In general, the bimetallic catalysts showed higher activity
when pH increased (Fig. 7). However, whereas the catalase
activity of PtCul was barely affected by the pH, this enzymatic
activity of PtCu2 was seriously improved (3 times at pH 10) with
respect to that in distilled water (Fig. 7).

The PtCu2 hybrid showed similar activity to the natural
enzyme (catalase from A. niger)?® being an excellent candidate as
an artificial metalloenzyme. The role of copper in terms of
catalytic efficiency depended on the type of reaction where it
was used. While in the catechol reaction the high efficiency of Pt
in this process* (ref. 15 in the main text) has been previously
demonstrated, in the catalase-like activity the efficiency of
copper has been demonstrated, which are also much higher
than those of other precious metals like Pd or Ag.*® Therefore,
we could consider that in this process, the catalytic efficiency
could be due to the copper.

Oxidation of .-DOPA in the presence of H,0,

Recent studies have shown that the presence of hydrogen
peroxide in the medium improves the catalytic efficiency of
catecholase in the .-DOPA reaction.”®

Thus, the catecholase activity of Pt catalysts was evaluated in
the presence of hydrogen peroxide. Remarkably, in the presence
of H,0,, we noted a catalytic improvement between 10 and 20
times in both nanoparticles (Fig. 8(1A)).

These reactions were carried out under conditions where the
Pt catalysts did not present catalase activity, that was at 40 : 60
ACN : H,0.
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Fig.7 Catalase-like activity of different Pt catalysts under different conditions. All catalysts were evaluated under different conditions (pH 4-10).

The best result obtained was for at pH 10 with slightly more than 8 U
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Fig. 8 Panel (1) Catechol oxidase-like activity of different Pt catalysts.
(1A) Specific activity in the presence of H,O, (orange) or the absence of
hydrogen peroxide (blue). (1B) Reaction catalysed by PtCu2 with or
without TEMPO. Panel (2) Glucose oxidase cascade with a combina-
tion of Pt catalysts. Panel (3) Catalase cascade with a combination of Pt
catalysts.

In order to demonstrate that the reaction mechanism goes
through a Fenton process, via the formation of OH" radicals, the
reaction using PtCu2 was also carried out in the presence of
TEMPO, as a radical scavenger (Fig. 8(1B)). Under these condi-
tions, only 15% activity was observed after 5 min (100% without
adding TEMPO) with a clear decrease in the reaction process.

Chemo-enzymatic cascades

Cascade reactions have been described as efficient and
universal tools and are of substantial interest in synthetic
organic chemistry. These processes present advantages when
compared to the typical single reaction, such as atom economy,
step-saving, and therefore high yield and efficiency of the
chemical process.

Here, the combination of Pt catalysts with enzymes was
investigated in order to perform the 1-DOPA oxidation by

49-51

a cascade process. Two different systems were evaluated (Fig. 8,
panels 2 and 3). One was based on the iz situ production of H,0,
through the oxidation of glucose in gluconic acid due to glucose
oxidase (GOx), and another was the in situ oxygen production in
the media by the degradation of H,0O, catalyzed by catalase
(CAT).

First, a biocatalytic-metal cascade (GOx-Pt nanoparticles)
was performed (Fig. 8, panel 2). Both catalysts were added to the
water solution containing glucose and -DOPA as substrates.
GOx oxidizes glucose to gluconic acid producing hydrogen
peroxide. In this step, the Pt catalyst quickly transforms H,O,
into OH" as we previously demonstrated, which accelerates r-
DOPA oxidation to dopachrome.

In this case, PtCu2 was the most active catalyst, with
a specific activity of 8.4 U per mg, where PtCul showed a specific
activity of 6 U per mg (Fig. 8 panel 2). In this cascade, the
hydrogen peroxide generated by the bioenzymatic step of GOx
corresponded to 50 mM.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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A second cascade system is based on the typical acceleration
of DOPA oxidation by natural enzymes in the presence of
oxygen. To obtain oxygen in situ in the reaction, catalase was
used to reduce hydrogen peroxide to water and oxygen. Then,
this enzyme combined with Pt nanoparticles made the cascade
where oxygen biocatalytically produced was used for Pt in the
selective oxidation of L.-DOPA.

In this case, the reaction was less effective than the previous
cascade (Fig. 8 panel 3). This may be due to the fact that Pt has
bettr coordination with OH" radicals than with O,, its oxidative
capacity being greater. Although both -catalysts showed
moderate activities, the PtCul catalyst showed 4-times higher
activity than PtCu2.

Degradation of rhodamine B (RhB)

Among the many organic compounds found in wastewater,
pollution caused by dyes has been a serious environmental
problem for years. Within the general category of colorants,
rhodamine B (RhB) is one of the most important xanthene
colorants due to its good stability. Therefore, the treatment of
these compounds is important for protecting water and the
environment in general. Platinum-based nanomaterials have
recently been investigated to show high catalytic efficiency for
the degradation of RhB.**

The combination of hydrogen peroxide and platinum has
powerful oxidizing properties, as has been proven in the
previous experiments described in this work. Hydrogen
peroxide reacts with platinum ions to generate active hydroxyl
radicals, which responds to RhB degradation. The decrease in
RhB was measured by UV-vis absorbance at a wavelength of
550 nm. The reaction was measured at 18 h for 4.8 and 48 ppm,
with the best result being PtCul degrading around 4 ppm.
PtCu2 practically did not degrade the substrate (Fig. 9A).

Another potential use of the Pt-catalysts nanocomposite was
explored by catalytic degradation of RhB in the presence of
NaBH,. The catalytic activity of the nanocomposites was eval-
uated by varying the concentration of rhodamine B (Fig. 9B).
The RhB concentration decreased rapidly immediately after the
addition of NaBH, to a concentration of 4.8 ppm catalyzed by
PtCul. PtCu2 only degraded 40% (2 ppm). On the other hand,
for 48 ppm at 5 min of reaction, the degradation of RhB was ca.
32 ppm for PtCu1l, the one that degraded the most rhodamine B.

2
N}
S}

B) 100

Hydrogen Peroxide, 4.8 ppm RhB Sodium Borohydride, 4.8 ppm RhB

80

% Degradation
S >
% Degradation

(6]

60
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20

PtCu1 PtCu2 PtCu1 PtCu2

Fig.9 Degradation of rhodamine B (A) in the presence of H,O, and (B)
in the presence of NaBH,. 4.8 ppm of RhB (blue column), 48 ppm of
RhB (orange column).
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Conclusions

We have developed a new synthetic process for bimetallic
platinum-copper nanoparticles based on the application of
Cu(1) as a reducing agent in the presence of EDTA. This one-pot
synthesis allows the obtention of well-dispersed mulberry-like
(EDTA stabilized) or dendrite-like (PVP stabilized) nano-
particles with sizes between 15 and 25 nm. The nanomaterials
showed the presence of copper in the final structure, making it
a fast and straightforward process to obtain bimetallic PtCu
nanoparticles. The different nanoparticles were evaluated in
a high variety of catalytic reactions. PtCul showed the best
catalytic performance as an artificial metalloenzyme, with
catechol or catalase like-activity, whereas PtCu2 was the most
efficient catalyst in the degradation of organic contaminants.
Our novel synthesis route introduces a simple and easy-to-
modify process for obtaining bimetallic PtCu nanoparticles
that present a differentiated catalytic activity according to the
presence of bulky (PVP) or discrete (EDTA) stabilizing entities.
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