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ctive and analytical methods to
elucidate pharmaceutical biotransformation in
activated sludge†

Leo Trostel,‡a Claudia Coll, ‡a Kathrin Fenner *ab and Jasmin Hafner ab

While man-made chemicals in the environment are ubiquitous and a potential threat to human health and

ecosystem integrity, the environmental fate of chemical contaminants such as pharmaceuticals is often

poorly understood. Biodegradation processes driven by microbial communities convert chemicals into

transformation products (TPs) that may themselves have adverse ecological effects. The detection of TPs

formed during biodegradation has been continuously improved thanks to the development of TP

prediction algorithms and analytical workflows. Here, we contribute to this advance by (i) reviewing past

applications of TP identification workflows, (ii) applying an updated workflow for TP prediction to 42

pharmaceuticals in biodegradation experiments with activated sludge, and (iii) benchmarking 5 different

pathway prediction models, comprising 4 prediction models trained on different datasets provided by

enviPath, and the state-of-the-art EAWAG pathway prediction system. Using the updated workflow, we

could tentatively identify 79 transformation products for 31 pharmaceutical compounds. Compared to

previous works, we have further automatized several steps that were previously performed by hand. By

benchmarking the enviPath prediction system on experimental data, we demonstrate the usefulness of

the pathway prediction tool to generate suspect lists for screening, and we propose new avenues to

improve their accuracy. Moreover, we provide a well-documented workflow that can be (i) readily

applied to detect transformation products in activated sludge and (ii) potentially extended to other

environmental studies.
Environmental signicance

Transformation products (TPs) of micropollutants in the environment are, like their parent compounds, a potential threat to human and ecosystem health, but
their environmental impact is generally not well understood. Identication and characterization of TPs are crucial to understand their fate in the environment,
in particular for pharmaceuticals for which no TP study is required for market approval. Here, we propose an updated workow for TP identication using
computational prediction of suspect TPs followed by HRMS screening in activated sludge experiments. By applying our workow to 31 pharmaceuticals, we
tentatively identied 79 TPs. We compare our results to previously published workows to highlight recent advances in analytical and computational method
development and to provide guidance for future TP identication efforts.
Introduction

The fate of an anthropogenic chemical in the environment is to
a large extent determined by its intrinsic capability to be bio-
transformed by microorganisms. Biodegradation leads to the
transient or permanent presence of transformation products
(TPs), which can, like their parent compounds, be characterized
by their behavior in the environment in terms of persistence,
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mobility, toxicity, and their ability to bioaccumulate. In certain
cases, TPs have been found to be more persistent, mobile and/
or toxic than their parent compound,1–3 which further high-
lights the importance of considering TPs in the environmental
risk assessment of chemicals. Biodegradation studies identi-
fying half-lives and biotransformation products are mandatory
for certain classes of chemicals, i.e., pesticides.4,5 For pharma-
ceuticals, in contrast, only the characterization of human
metabolites is required by regulation in the European Union,6

leading to a knowledge gap regarding the fate of active phar-
maceutical ingredients (APIs) in the environment. As most APIs
reach wastewater treatment plants (WWTP), understanding
their fate in activated sludge is primordial. However, the iden-
tication of TPs is challenging because (i) the TP structures are
This journal is © The Royal Society of Chemistry 2023
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not known in advance, and (ii) oen no analytical standards are
available to conrm the exact structure.

Helbling et al. (2010) rst addressed systematically the issue
of TP identication.7 To detect previously unknown degradation
products of micropollutants in activated sludge, the authors
presented a workow combining computational and analytical
approaches: (i) automatic generation of a suspect list of
potential TPs for each compound, (ii) spiking activated sludge
reactors with parent compounds, and (iii) screening the sludge
samples for suspected TPs using liquid chromatography
coupled to high-resolution tandem mass spectrometry (LC-HR-
MSMS). In the rst step (i), expert-curated biochemical trans-
formation rules were iteratively applied to a chemical structure
of interest to predict biodegradation pathways involving
potential TPs. Typical pathway prediction tools are PathPred,8

BNICE,9 RetroPathRL10 or the University of Minnesota Pathway
Prediction System (UM-PPS).11 The UM-PPS, which was used in
Helbling et al.,7 is specically designed for biodegradation
studies and can prioritize likely over less likely biotransforma-
tions using prioritization rules (also called relative reasoning
rules) to yield biochemically plausible biotransformation
pathways and corresponding TPs.12 In the third step (iii), the
generated suspect list was then used to extract single ion
chromatograms for matching masses, which were further
analyzed for peak formation over time, isotopic t and shared
fragments between parent compound and TPs.13 Still today, the
main challenges of this approach are the high number of false
positives in the suspect list leading to a low prediction preci-
sion, i.e., a low number of correctly predicted TPs per total
number of predicted TPs, and the need for individual inspec-
tion of the extracted ion chromatogram (XIC), and MS and MS/
MS spectra for each candidate. Without reference standards,
considerable efforts are still needed for the resolution of TPs'
isomeric structures and TP quantication, such as the devel-
opment of advanced identication workows and even the
development of novel approaches (e.g., machine learning
models) to predict ionization efficiencies that can improve the
detection of more candidate TPs and the estimation of their
concentration.14

In the past years, this workow was applied and modied by
different research groups to identify TPs in samples from
biotransformation experiments. In particular, the prediction
methods and underlying biodegradation databases have
evolved to yield more accurate TP predictions: in 2012, the
University of Minnesota Biodegradation/Biocatalysis Database
and Pathway Prediction System (UM-BBD/PPS)15 was moved to
Eawag and renamed to EAWAG-BBD/PPS, while keeping its
original pathway prediction tool (PPS) and biodegradation data
obtained from pure or enrichment cultures (BBD). In 2015,
Wicker et al. re-implemented the EAWAG-BBD/PPS platform as
enviPath, and the original BBD database was transferred to the
new platform as EAWAG-BBD data package.16 In 2017, Latino
et al. collected soil biodegradation data for 317 pesticides from
regulatory reports and compiled them into the EAWAG-SOIL
data package.17 The latest data addition to enviPath is
EAWAG-SLUDGE, which contains biodegradation data for 91
micropollutants in activated sludge collected from scientic
This journal is © The Royal Society of Chemistry 2023
literature (https://envipath.org/package/7932e576-03c7-4106-
819d-fe80dc605b8a). Compared to its predecessors, enviPath
not only holds more data, but also provides an improved
pathway prediction system where the expert-curated reaction
prioritization rules were replaced with a machine-learning
algorithm that learns the relative reasoning rules directly
from the data.18,19

On the analytical side, new solutions emerged that facilitate
the identication of TPs, in particular to decrease the workload
of manually investigating mass matches for long suspect lists:
different automated tools (Sieve, Compound Discoverer™ by
Thermo Fisher Scientic™, among others) now address this
issue by peak prioritization based on intensity, isotopic pattern,
mass defect, time course of peak formation and predicted
retention time (RT) by quantitative structure retention rela-
tionships (QSRR).20,21 Furthermore, the interpretation of MS
spectra is facilitated by spectral library search (e.g., MassBank,22

NIST,23 mzCloud24) and in silico fragmentation tools (e.g., Mass
Frontier, SIRIUS,25 CFM,26 MetFrag27).

These recent developments require a systematic analysis of
previous studies to form an accurate picture of the current state-
of-the-art in TP identication in biodegradation experiments,
and to benchmark the performance of newly available tools
against the original methods. To address this need, we (i)
provide an overview of previous publications on TP identica-
tion in activated sludge or wastewater, (ii) present an updated,
partially automated workow for TP identication (Fig. 1), (iii)
apply it to elucidate biotransformation processes of 42 phar-
maceuticals, for many of which no TPs have been reported
before, in a batch experiment with activated sludge, and (iv)
evaluate the accuracy of ve different TP prediction algorithms
to guide future applications.

Methods
Literature search

The objective of the literature search was to collect all publica-
tions on TP identication experiments in activated sludge or
samples from wastewater treatment plants (WWTP) that used
pathway prediction to generate suspect lists. The search terms
“biotransformation”, “sludge” or “waste water”, “pathway
prediction system” or “in silico metabolism prediction” or the
name of a prediction system (e.g., “Pathpred”) or “suspect
screening” were used in Reaxys (https://www.reaxys.com, last
accessed 29/08/2022) and Clarivate Web of Science (https://
www.webofscience.com, last accessed 01/09/2022). Further-
more, a Scopus (https://www.scopus.com, last accessed 02/09/
2022) search for citation of the articles by Helbling et al.
(2010)7 or Wicker et al. (2015)16 was performed. For each rele-
vant article presenting results on TP identication, we extracted
(i) the number of predicted and identied TPs, (ii) the substance
class, (iii) the initially spiked concentration of test chemicals (if
applicable), (iv) the pathway prediction method, (v) the experi-
mental setup, (vi) the analytical method, and (vii) whether the
TP identication was solely based on a suspect list (suspect
screening) or whether additional TPs were identied by
comparing full-scan MS data from different time points to
Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336 | 1323
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Fig. 1 Workflow for TP identification in a biotransformation experiment starting from a suspect list (icons from BioRender). Main steps of the
workflow are in bold text followed by the specific procedure applied in this study. Green circular arrows indicate updates from the workflow of
Helbling et al.
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View Article Online
detect emerging metabolites (non-target screening). Reviews
were analyzed separately to identify general trends in analytical
and computational methodologies.
TP identication workow

The overall workow for suspect TP identication included six
steps (Fig. 1): (i) predicting TPs using pathway prediction tools,
1324 | Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336
(ii) compiling a suspect list and annotating structures with MS-
relevant information, (iii) performing biotransformation
experiments, (iv) analyzing samples using liquid chromatog-
raphy coupled to high-resolution tandem mass spectrometry,
(v) identifying TPs from HR-MS data (including suspect
screening and assignment of condence levels), (vi) compiling
identied TPs into pathways. Each step is described in detail in
the next subsections. Compared to the original workow
This journal is © The Royal Society of Chemistry 2023
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proposed by Helbling et al.,7 the following steps were updated
(Fig. 1, see green circular arrows): (i) suspect and mass list
generation, (ii) second LC-MS measurement with stepped
collision energy, (iii) spectral library search within Compound
Discoverer, (iv) assignment of condence levels according to
Schymanski et al.,28 (v) prediction of conjugation reactions
using Compound Discoverer, (vi) feedback of curated TP path-
ways into enviPath.
TP prediction tools

Suspect lists were obtained from EAWAG-PPS and enviPath. For
enviPath, 4 pathway prediction models were trained on
different combinations of the publicly available enviPath data
packages EAWAG-BBD, EAWAG-SOIL, and EAWAG-SLUDGE to
study the effect of adding different training data sets on the
prediction performance. The following machine-learning
models were trained using the respective data packages from
EAWAG for provide different purposes: (i) ML-ECC-BBD was
trained on pathway data in EAWAG-BBD and considered the
standard, reference model. (ii) ML-ECC-BBD + SOIL was trained
on pathway data from both EAWAG-BBD and EAWAG-SOIL to
study the effect of biasing the model towards biodegradation in
soil. (iii) ML-ECC-BBD + SLUDGE was trained on EAWAG-BBD
and EAWAG-SLUDGE to study the effect of biasing the model
towards biodegradation in activated sludge. (iv) ML-ECC-BBD +
SOIL + SLUDGE was trained on all three data packages to see if
including a maximum number of training pathways increases
model performance. Table 1 shows the size and composition of
the training sets used for the different models. All models used
MACCS ngerprints as molecular descriptors and were trained
using multi-label Ensemble Classier Chains (ECC). Further
details on the training of relative reasoning models can be
found elsewhere.16

For the TP prediction, EAWAG-PPS was run in batch mode
using relative reasoning for three iterations with a neutral
aerobic likelihood cut-off. The enviPath TP prediction was also
run in batch mode (for details, see Methods section on “Data
availability”), with a cut-off at 50 TPs per parent compound. The
search algorithm employed a greedy pathway search in
a weighted network, where the nodes are compounds and the
edges are biotransformation reactions weighted with the pre-
dicted probability of the reaction to happen, given available
data and competing reactions. The reaction probability pedge is
obtained from the ML-based relative reasoning algorithm. For
a child node n generated during the pathway search, the prob-
ability pnode,n is calculated as the product of pedge,n−1/n of the
Table 1 Training sets used to build relative reasoning models for pathw

Model

Number of reactions (path

EAWAG-BBD

ML-ECC-BBD 1480 (220)
ML-ECC-BBD + SOIL 1480 (220)
ML-ECC-BBD + SLUDGE 1480 (220)
ML-ECC-BBD + SOIL + SLUDGE 1480 (220)

This journal is © The Royal Society of Chemistry 2023
reaction producing the TPs with the probability of its direct
parent node (pnode,n−1). During the search, the nodes are
expanded in order of decreasing combined probability until the
maximum of 50 TPs is reached, or nomore TPs with a combined
probability greater than zero are available for further expansion.
The node and reaction probabilities are reported for each pre-
dicted TP, indicating their probability to be observed experi-
mentally given the underlying relative reasoning model. The
pathway search algorithms used by EAWAG-PPS and enviPath
are illustrated in Fig. S1 (ESI-I).†
Compilation of suspect list

Python (version 3.6.13) scripting was used to combine the TPs
predicted by the ve different models into one suspect list, and
to determine their monoisotopic mass, chemical formula,
InChIKey, CAS number and structure as mol le using the
Python libraries RDKit (version 2020.09) and PubChemPy
(version 1.0.4). Some TPs were predicted for several parent
compounds, in which case they were merged in the suspect list
used for screening but counted separately in the method eval-
uation and comparison. From the suspect list, we extracted the
charged masses for HRMS measurements (inclusion list), and
the formulae and Molles for TP identication in Compound
Discoverer (mass list).
Experimental setup of sludge reactors

The experimental setup of the sludge reactors was adapted from
Gulde et al.29 In short, sludge-seeded and aerated bottle reactors
were spiked with the mixture of 46 selected compounds at an
initial concentration of 8 mg L−1 (details in ESI-I Table S3†). The
APIs were selected based on commercial availability, expected
measurability using HPLC-HRMS/MS, and predictability of the
corresponding TPs. The selected substances show a wide range
of structural moieties and diversity in their functional groups.
Only irbesartan,30 valsartan,7,31–34 metformin35 and hydrochlo-
rothiazide34 were previously investigated in biotransformation
experiments in activated sludge or wastewater samples. Further,
olanzapine, mirtazapine, rivastigmine, aliskiren, atazanavir,
efavirenz and rosuvastatin were screened for in waste water
samples.36–38 The environmental fate of the remaining 35 APIs
has not been investigated to the best of our knowledge. Control
experiments were used to reveal abiotic degradation, sorption
processes, and matrix background (ESI-I Table S4†). The airow
of half of the reactors was augmented with CO2 to assess
biotransformation at pH 6 in addition to the native pH of
ay prediction in enviPath

ways) in training data

EAWAG-SOIL EAWAG-SLUDGE Total

— — 1480 (220)
2447 (317) — 3927 (537)
— 355 (91) 1835 (311)
2447 (317) 355 (91) 4282 (628)

Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336 | 1325
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approximately 7.5. Additionally, reactors were run at two levels
of total suspended solids (TSS): dilute (DB, TSS = 0.6 g L−1) and
high biomass (HB, TSS = 7.1 g L−1). Samples were taken from
biotransformation reactors at time points 0 (triplicate), 2 h, 4 h,
9 h, 24 h, 30 h (triplicate), 48 h, 54 h and 72 h and were
centrifuged. The aqueous phase was transferred to an LC-MS
amber vial and stored at −20 °C until analysis. Two calibra-
tion curves were used, one in nanopure water and one in sludge
matrix, at concentrations of 0.05, 0.1, 0.2, 0.5, 1, 2, 5 and 8 mg
L−1. A more detailed description of the experimental setup of
the sludge reactors can be found in the ESI-I, Section S3.†
HPLC-HRMS/MS analysis

The samples of the biotransformation experiments were
measured using an HPLC-HRMS/MS (QExactivePlus, Thermo
Fisher Scientic, Waltham, MA, USA) approach. For the HPLC
separation, a standard method adopted from Achermann et al.
was used.34 More details can be found in the ESI-I (Section S4).†
In a rst measurement, mass spectra were acquired in full-scan
in positive and negative ionization modes and then a data-
dependent top 5 analysis (ddMS2-top5) was used. The [M +
H]+ and [M−H]− masses of parent APIs and predicted TPs were
included in the inclusion list. A single normalized collision
energy (NCE) for each compound in the inclusion list was
calculated by an empirical formula (eqn (1)).39 In a second
measurement, samples from four time points (0 h, 2 h, 24 h and
72 h) were re-measured with a stepped NCE approach where
fragments from 3 different collision energies (15, 35 and 60)
were simultaneously collected, thus improving the chances of
obtaining relevant MS2 spectra for structure elucidation of
suspect TPs. For the second measurement, TPs arising from
conjugation reactions predicted by Compound Discoverer™
during the analysis of the rst measurement were added to the
inclusion list. The HRMS settings are further detailed in the ESI-
I (Section S4.2).†

Normalized collision energy [NCE]

= mass[u] × (−0.41) + 160 (1)

TP identication

The Compound Discoverer™ soware (Thermo Scientic™,
Version 3.2) was used for TP suspect screening. The procedure
included compound detection, comparison to suspect mass list,
in silico prediction of fragments and (spectral) library search
(mzCloud, ChemSpider), described in more detail in the ESI-I
(Section S5†). The entries of plausible candidates were
reviewed manually based on peak shape, isotopic pattern and
chromatographic area evolution over time and comparison to
controls. Condence levels were reported according to Schy-
manski et al.:28 1 (conrmed structure by reference standard),
2a (probable structure by spectral library match), 2b (probable
structure by diagnostic evidence), 3 (tentative candidate with
reasonable MS2), 4 (unequivocal molecular formula found), 5
(exact mass found). Finally, molecular structures were drawn
based on structural evidence.
1326 | Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336
Compound Discoverer™ was further used to identify TPs
resulting from conjugation reactions. N-Acetylation and N-suc-
cinylation were shown to be highly relevant for primary and
secondary amines,40 but their prediction is beyond the scope of
biodegradation tools, which focus on the breakage (and not
formation) of molecular bonds. Conjugation reactions (acety-
lation, formylation, fumarylation, malonylation and succinyla-
tion) were therefore predicted using the Expected Compounds
nodes of Compound Discoverer. In addition, we also screened
literature to nd TPs reported in previous studies. While we did
not include TPs arising from conjugation reactions and TPs
reported in literature in the suspect list, we still searched for
their presence in the LC-HRMS measurements. These TPs were
analyzed separately to avoid interfering with our evaluation of
TP prediction methods and are therefore discussed separately
as manual suspects.
Comparison of prediction methods

To evaluate and compare the performance of the different TP
prediction methods, we calculated how many TPs we would
have found by applying each method separately. For each
method, we determined the precision according to eqn (2).
Next, we wanted to know if we could have obtained a better
performance in terms of precision if we had stopped the
prediction algorithm earlier. To answer this question, we
generated smaller suspect lists by only keeping TPs that would
have been obtained with a given cut-off threshold, and we
evaluated the number of correctly predicted TPs and the
precision of these reduced suspect list. By varying the cut-off
threshold for the number of generations for all methods, we
obtained the prediction performance for TPs generated in 1, 2
and 3 generations. We further varied the cut-off threshold for
the maximum number of TPs to predict from 1 to 50. As
EAWAG-PPS does not support setting a threshold for the
maximum number of TPs, the analysis of TP ranks was per-
formed for enviPath methods only. The analysis was imple-
mented in Python (see Data availability section for details).

Prediction precision ½%� ¼
number of predicted and found TPs

number of predicted TPs
� 100% (2)
Results and discussion
EAWAG-PPS is the most popular TP prediction tool

To assess the current state-of-the-art in suspect screening of TPs
in wastewater or activated sludge systems, we performed
a literature search for the timespan between 2010 and 2022, and
we found 27 publications that used predicted TPs to screen
samples (Table 2 and ESI-I Table S1†). The most widely used
tools for generating suspect lists were UM-PPS and EAWAG-PPS,
which were applied in 7 and 12 studies, respectively. PathPred8

(2 studies, both in combination with EAWAG-PPS) and Metab-
olitePredict41 (2 studies, one in combination with EAWAG-PPS)
were also applied, even though these tools are not specic to
This journal is © The Royal Society of Chemistry 2023
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Table 2 Articles on TP identification in activated sludge or wastewater using predicted suspect listsa

Year Authors
Substance
class

Number of
compounds tested

Experimental
setup Prediction tool

Number of
TPs found Reference

2010 Helbling et al. API, Pe 12 BR UM-PPS 26 7
2010 Helbling et al. MP, Pe, API 30 BR UM-PPS 53 31
2010 Kern et al. API, Pe 8 BR UM-PPS 12 13
2011 Prasse et al. API 2 BR UM-PPS 9 44
2013 Müller et al. API 1 BR UM-PPS 2 54
2014 Huntscha et al. MP 3 BR UM-PPS 13 55
2015 Letzel et al. API 5 BR and WW EAWAG-PPS 6 33
2015 Kosjek et al. API 1 BR UM-PPS 9 56
2015 Gago-Ferrero et al. API 173 WW MetabolitePredict 47 36
2016 Gulde et al. API, Pe, MP 19 BR EAWAG-PPS, metaprint2D 144 40
2016 Beretsou et al. API 1 BR EAWAG-PPS, MetabolitePredict 14 45
2016 Letzel et al. API 1 BR and WW EAWAG-PPS 4 30
2018 Kosjek et al. API 1 BR EAWAG-PPS 11 57
2018 Achermann et al. MP 93 BR EAWAG-PPS 75 34
2019 Zumstein and Helbling API 6 BR EAWAG-PPS 16 58
2020 Gornik et al. API 1 BR EAWAG-PPS 10 59
2020 Trenholm et al. MP 3 BR EAWAG-PPS 9 60
2020 Wang et al. Pe, API 60 WW EAWAG-PPS 57 61
2020 Wu et al. API 1 BR EAWAG-PPS, PathPred 4 62
2021 Kinyua et al. MP 2 BR EAWAG-PPS, MetabolitePredict 10 75
2021 Cai et al. Pe 2 BR EAWAG-PPS, PathPred 10 63
2021 Choi et al. MP 1 WW EAWAG-PPS 29 64
2021 Mart́ınez-Piernas et al. API 20 WW EAWAG-PPS 18 65
2021 Psoma et al. API 4 BR EAWAG-PPS 22 35
2021 Gulde et al. MP 87 BR and WW O3-PPS 83 38
2021 Zhang et al. Pe 30 WW Metabolitepilot™ 20 37
2022 Rich et al. MP 40 BR EAWAG-PPS 46 66

a API = active pharmaceutical ingredients, Pe = pesticides, MP = micropollutants, BR = batch reactor, WW = waste water sample.
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biodegradation and represent general biochemistry and human
metabolism. Each one of Metaprint2D,42 O3-PPS (specic to
ozonation reactions)43 and Metabolitepilot (commercial so-
ware) were used in one study only. From this review, we
conclude that the UM-PPS and its successor EAWAG-PPS are the
most popular tools for TP prediction in activated sludge, as both
tools combined were used in 89% of the studies considered.

The most common analytical method is LC-HRMS (Q-TOF
and Orbitrap technologies, 14 and 12 studies, respectively).
Bottle incubations are the most common experimental setup
(14 studies), followed by WWTP inuent and effluent sampling
(8 studies). Most authors combine suspect and non-target
screening using LC-MS techniques. In some cases, the analyt-
ical method was extended by an NMR spectroscopy approach44

or by the use of HILIC in addition to reverse-phase columns to
improve retention and separation of hydrophilic compounds
and – in some cases – isomers.45 Most common substance
classes are pharmaceuticals (18), pesticides (5) or just micro-
pollutants (4) in general. Even though enviPath is publicly
available since 2016, it has not been used so far to predict
biodegradation pathways in wastewater samples, but it has
been applied for TP prediction in soil and surface water
samples.46,47 To evaluate the overall success of suspect screening
across biodegradation studies, we compared their performance
in terms of detected TPs per parent compounds. As some
studies only looked at very few parent compounds and
This journal is © The Royal Society of Chemistry 2023
performed the TP screening in greater detail, we only looked at
studies with more than 10 parent compounds for a fair
comparison with the workow presented here. The eight
studies that fullled these criteria had an average ratio of found
TPs per parent compound of 1.5, ranging between 0.3 and 5.3.
Finally, it should be noted that our search may have missed
relevant articles that did not contain our search terms in the
title or abstract.

The search also revealed ve relevant articles that review
available tools for pathway prediction from three different
angles: (i) metabolite prediction methods for drug metabo-
lism,48,49 (ii) pathway prediction methods in the context of
pathway design for metabolic engineering,50 and (iii) TP
prediction for environmental contaminants.51–53 Comprehen-
sive overviews of existing tools for eld-specic applications are
hence available from the indicated reviews and are therefore not
further discussed here. Interestingly, some of the tools such as
PathPred and EAWAG-PPS/enviPath were mentioned across
scientic elds, while others were exclusively applied in their
eld of origin. Also, Sveshnikova et al. point out that only few
predictive biochemistry frameworks are being actively main-
tained and continuously applied in experimental work,50 which
is crucial to ensure reproducibility and continued evaluation of
the prediction method. Out of the prediction tools applied to TP
prediction in activated sludge, only UM-PPS/EAWAG-PPS/
enviPath, PathPred and MetabolitePredict are actively
Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336 | 1327
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maintained. Out of these, only UM-PPS/EAWAG-PPS/enviPath
are specic to microbial biodegradation prediction. As these
tools are also the most widely applied methods for TP predic-
tion in the context of environmental chemistry, they are the
focus of our study.

Thousands of potential TPs predicted by EAWAG-PPS and
enviPath

Based on the results from the literature search, we focused on
EAWAG-PPS and its successor platform enviPath to generate
suspect lists and to evaluate their respective performances in
correctly predicting TPs. We chose EAWAG-PPS as a benchmark
and compared it to the four enviPath models trained on
different data packages. The enviPath models were trained on
four different combinations of the following data packages:
EAWAG-BBD containing 220 pathways, EAWAG-SOIL contain-
ing 317 pathways, and EAWAG-SLUDGE containing 91 path-
ways. Models were trained on BBD only, BBD + SOIL, BBD +
SLUDGE, and BBD + SOIL + SLUDGE packages (Table 1).

To obtain a suspect list, we applied the ve pathway
prediction models to the 46 pharmaceuticals. All the prediction
systems combined generated a total of 5570 TPs, out of which
348 (6.25%) TPs were predicted by all methods. The EAWAG-PPS
predicted an average of 47 TPs per compound, ranging from
four to 441 TPs. For example, ngolimod only has two hydroxyl
moieties acting as reactive sites, resulting in four predicted TPs.
In contrast, naloxegol features a long polyethylene glycol chain
that can be cleaved at alternative reactive sites according to
reaction rules, leading to 441 predicted TPs. The four enviPath
models were limited to a maximum of 50 TP per compound,
which was reached for almost all compounds. One of the
exceptions is metformin, for which the enviPath pathway
expansion converged at three TPs, meaning that no more
reactions occurred according to the available biotransformation
and relative reasoning rules. However, metformin may be
a special case, as this small molecule only has a few reactive
sites and a particular structure that may not be well represented
in the training data.

Biodegradation behavior observed for 34 compounds

A total of 42 out of the 46 spiked compounds were detected in
the bottle reactors using the Compound Discoverer workow.
Acalabrutinib, ceritinib and orlistat were ltered out by the
Compound Discoverer workow due to low intensity of m/z ions
and could only be found by manual exploration of the chro-
matograms and mass spectra in the raw les of sludge samples
or in freshly spiked calibration samples. Ridaforolimus was
detected only in pure aqueous standards at 1 mg L−1. This
behaviour could be explained by low ionization efficiencies,
instability of the API or rapid losses such as volatilization or
sorption to glass and/or plastic materials. We therefore
excluded these four APIs from further analysis.

Six other APIs, atovaquone, clotrimazol, efavirenz, mometa-
sone, nilotinib and regorafenib were detected in the samples
from the sludge reactors; however, in the biotransformation
reactors no clear degradation trend was observed over the time
1328 | Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336
course of the experiment, and in the sorption control reactors
these APIs show a decrease in the area by at least one order of
magnitude from time-point 0 h to 24 h (ESI-II, Sections S4.2,
S4.3, S4.5, S4.7, S4.9 and S4.10†). All these six compounds have
a (predicted) soil adsorption coefficient log Koc between 3 and
5.5 (ESI-I Table S3†), which would be consistent with noticeable
losses by sorption to sludge. Substantial sorption to soil organic
material hinders microbial biotransformation, and hence the
formation of TPs, due to low bioavailability.67 Mometasone and
nilotinib were also dissipated abiotically in the high pH abiotic
controls (ESI-II, Sections S4.7 and S4.9). Finally, atomoxetine,
duloxetine, mirtazapine, rivastigmine and terbinane, all APIs
with amine moieties, show non-linear kinetics in the biotrans-
formation reactors at high pH (ESI-II, Sections S3.4, S3.11,
S3.19, S3.26 and S3.29†), which could indicate that some level of
ion-trapping occurred in parallel to biotransformation.68 For the
remaining 31 pharmaceuticals, we obtained clear trends of
decreasing concentration over time (for details, see ESI-II†).
However, we proceeded with TP identication for all APIs,
independently of their biotransformation behavior.
Suspect screening identies 67 TPs

A total of 79 TPs were tentatively identied, out of which 67 were
found with the help of the suspect list and twelve additional TPs
were tentatively identied using the list of manual suspects (see
Methods section for details). TPs were found for 31 parent
compounds. Condence levels were assigned to the TPs
according to Schymanski et al. during the screening process
(Fig. 2).28 The structures of only seven TPs (9%) were conrmed
with a reference standard (level 1) and one additional TPs
(1.3%) showed a good match with the spectral library mzCloud
(level 2a). Diagnostic evidence (level 2b) was found for the
structures of eleven TPs (14%). Most TPs (56, 71%) were re-
ported with tentative structures (level 3) and for four (5%) the
MS2 spectra were not conclusive (level 4). Levels 3 and 4 include
TPs for which several possible isomeric structures were
considered possible. For example, Clp_TP_3 is the oxidation
product of clopidogrel. Hydroxylation, N-oxidation, S-oxidation
or oxidative N-dealkylation are plausible reaction mechanisms
for the observed modication to the chemical formula, but not
enough structural evidence was found to determine a specic
structure and its corresponding reaction mechanism (Fig. 2).
Three TPs (Val_TP_5, level 4; Val_TP_7, level 1; and Val_TP_12,
level 3) were assigned to both valsartan and irbesartan, since
they could originate from both parents and the experimental
setup did not allow for distinguishing their origin. These three
TPs were counted double in the results, as they could originate
from both parent compounds. The condence levels depend on
the availability of reference standards and database spectra, as
well as on the quality of reported and measured MS2 data. For
34 TPs, the best fragmentation was achieved using a stepped
collision energy approach, where the analyte is exposed to three
different collision energies for each data-dependent scan.

In a next step, tentatively identied TPs were manually
assembled into pathways with the help of the suspect lists,
which contain information on the biotransformation that is
This journal is © The Royal Society of Chemistry 2023
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Fig. 2 Confidence levels in TPs and their translation to pathways. (A) Number and confidence levels of found TPs for each parent API. Full names
of the APIs can be found in Table 3. (B) Suggested biodegradation pathway for clopidogrel. Brackets around the compound structure indicate
that the exact modification site is unknown.
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responsible for the formation of each TP (ESI-II†). In the
manually drawn pathways given in ESI-II,† ambiguous isomeric
structures were reported as a general structure with possible
modications on specic moieties. All the resulting pathways
and associated experimental parameters have also been made
available on enviPath, where they were integrated into the
EAWAG-SLUDGE package (https://envipath.org/package/
7932e576-03c7-4106-819d-fe80dc605b8a). Because enviPath
requires unambiguous structural information for compounds,
ambiguous isomeric structures are represented by all possible
alternative structures, which were merged into a single
compound entry in the EAWAG-SLUDGE package. Finally, CAS
numbers were found for 27 TPs (34%), out of which 21 TPs
(27%) have been previously reported in the context of their
parent compound. Of these, 13 (16%) TPs have been found in
sludge or waste-water in previous studies (the 3 common TPs of
valsartan and irbesartan are counted double). Therefore, 54 TPs
associated with 24 APIs are reported here for the rst time.

Our suspect screening resulted in a ratio of 1.5 tentatively
identied TPs per parent compound, which is similar to the
average ratio found in other studies with more than 10 parent
compounds (1.5 found TPs per parent) (Table 3 and ESI-I Table
S1†). It should be recognized that this similar ratio was ob-
tained in this work despite performing no systematic non-target
screening, and despite operating at low API and, consequently,
TP concentrations. For example, the study with the highest ratio
of found TPs per parent (5.3) involved non-target screening at
a spike concentration of 120 mg L−1. Increasing the concentra-
tion could improve the chances of observing TPs, but it would
not represent the real WWTP inuent concentration of most
APIs,69,70 and degradation kinetics vary at different initial spiked
or unspiked concentrations of micropollutants.71 Thus, the
conditions used here are likely more conducive to identify
biotransformation pathways from activated sludge experiments
that are relevant to full-scale WWTPs.
enviPath model trained on BBD + SOIL performed best

To evaluate the performance of the different pathway prediction
models, we compared their total number of correctly predicted
This journal is © The Royal Society of Chemistry 2023
TPs and we found that enviPath models performed best, pre-
dicting around 50 identied TPs, while EAWAG-PPS only pre-
dicted 43 correctly (Fig. 3). Out of the four enviPath models,
those including additional biodegradation data from soil and/
or sludge performed slightly better, indicating that additional
data can improve model performance. We then traced back
which TPs were predicted by which method and found that 22
(32.8%) of all TPs were predicted by all prediction methods.
Another twelve (17.9%) of TPs found were correctly predicted by
all enviPath methods, which hints at their similarity in pre-
dicting TPs. In other words, suspect screening could identify
roughly half of the TPs by using any of the enviPath methods.
However, some of the TPs were exclusively predicted by one
method. Most notably, the EAWAG-PPS exclusively predicted
ve (7.5%) identiable TPs that were not covered by any envi-
Path method. Thus, combining multiple prediction methods
leads to the most comprehensive suspect list.

However, a long suspect lists increases the manual workload,
and it is therefore crucial to balance the number of detected TPs
with the number of suspects to search for. The prediction
precision indicates the number of found TPs per predicted TP
and can be used as a metric to describe the efficiency of the
prediction method. The overall precision of the TP prediction
was found to be 1.35%,meaning that more than one in hundred
predicted TPs was correctly predicted (Table 3). As the number
of predicted TPs is comparable for all substances (except for
metformin), the precision mainly reects the number of
correctly predicted TPs. The precision varied for different APIs:
for some compounds, such as quetiapine, the precision was as
high as 5%, indicating that this compound has many stable
transformation products and its structural features were well
represented in the training data of the pathway prediction
models, therefore leading to a high number of correctly pre-
dicted TPs. All models performed similarly with a prediction
precision between 2 and 2.6%, with enviPath models generally
performing better than EAWAG-PPS (Table 4). The model
trained on the BBD and SOIL packages had the best overall
performance regarding the number of TPs found (53) and,
consequently, also precision (2.58%).
Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336 | 1329
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Table 3 Predicted and found TPs for each of the 42 parent compounds

Parent compound Abbreviation
Total predicted
TPs

TPs found from
suspect list TPs found from manual suspectsa Overall Precision

Aliskiren fumarate Ali 231 1 0 0.43%
Amlodipine besylate Aml 78 1 3 1.28%
Atazanavir sulfate Ata 144 0 0 0.00%
Atomoxetine Atm 100 1 1 1.00%
Atovaquone Ato 84 0 0 0.00%
Budesonide Bud 85 0 1 0.00%
Canagliozin hydrate Can 124 1 0 0.81%
Clopidogrel bisulfate Clp 110 5 0 4.55%
Clotrimazol Clo 68 0 0 0.00%
Dapagliozin Dap 144 1 0 0.69%
Dasatinib Das 156 1 0 0.64%
Dienogest Die 94 0 0 0.00%
Dolutegravir sodium Dol 147 1 0 0.68%
Duloxetine Dul 89 0 1 0.00%
Efavirenz Efa 64 0 0 0.00%
Ezetimibe Eze 85 2 0 2.35%
Fexofenadine Fex 111 4 0 3.60%
Fingolimod hydrochloride Fin 84 0 0 0.00%
Hydrochlorothiazide Hyd 118 0 1 0.00%
Irbesartan Irb 129 4 0 3.10%
Keto-desogestrel Ket 108 1 0 0.93%
Lumiracoxib Lum 94 1 0 1.06%
Metformin hydrochloride Met 3 0 1 0.00%
Mirtazapine Mir 149 3 0 2.01%
Mometasone furoate Mom 148 0 0 0.00%
Naloxegol Nal 472 0 0 0.00%
Nilotinib Nil 174 0 0 0.00%
Olanzapine Ola 137 2 0 1.46%
Omeprazole Ome 117 1 0 0.85%
Panobinostat lactate Pan 80 3 0 3.75%
Pemetrexed Pem 160 3 0 1.88%
Pioglitazone hydrochloride Pio 109 4 1 3.67%
Quetiapine fumarate Que 141 7 0 4.96%
Regorafenib Reg 74 0 0 0.00%
Rivastigmine hydrochloride Riv 87 3 1 3.45%
Rosuvastatin calcium Ros 130 4 0 3.08%
Tadalal Tad 95 1 0 1.05%
Terbinane hydrochloride Ter 138 6 2 4.35%
Ticagrelor Tic 136 2 0 1.47%
Valsartan Val 120 3 0 2.50%
Vildagliptin Vil 88 1 0 1.14%
Vorinostat Vor 59 0 0 0.00%
Total 5064 67 (64b) 12 1.35%

a TPs that were not predicted by any of the evaluated prediction methods but found in literature or using Compound Discoverer's conjugation
reaction prediction are here called manual suspects. b TP count without duplicate TPs from irbesartan and valsartan.
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It should be noted that these low values for precision
represent a worst-case scenario, as the suspect list can be
further ltered to increase the precision. For example,
removing compounds with a mass below the quantication
limit of the analytical method (100 g mol−1) slightly increases
the prediction precision of the suspect list from 1.35 to
1.37%. If a small suspect list is required, the precision can be
further increased by adapting the parameters of the pathway
search: In EAWAG-BBD, the generation threshold can be set
to 1, 2 or 3, and in enviPath the maximum number of TPs to
predict can be dened. However, limiting the number of
generations or TPs to predict comes at the cost of losing
1330 | Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336
correctly predicted TPs. To characterize this trade-off, we
analyzed the effect of different thresholds for these two
parameters on the precision and the number of correctly
predicted TPs. For the number of generations, the threshold
analysis showed that the precision peaks at the rst genera-
tion for all methods (5.4–7.3%), where EAWAG-PPS correctly
predicts 19 TPs and the enviPath models between 26 and 29
TPs (Fig. 3). Regarding the threshold of the maximum
numbers of TPs to predict, the precision peaks between 10.9
and 13.0% if only the top 2 TPs are predicted. The number of
correctly predicted TPs reaches a plateau at a threshold of 30
predicted TPs, beyond which the workload increases but not
This journal is © The Royal Society of Chemistry 2023
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Fig. 3 Influence of the models' prediction parameters on the precision and the number of correctly predicted TPs. Top: correctly predicted TPs,
bottom: precision in percent. eP: enviPath.

Table 4 Performance comparison of prediction methods

Prediction method Found TPs
Predicted
TPs

Prediction
precision

EAWAG-PPS 42 2080 2.02%
enviPath-BBD 49 2052 2.39%
enviPath-BBD + SOIL 53 2051 2.58%
enviPath-BBD + SLUDGE 51 2052 2.49%
enviPath-BBD + SOIL + SLUDGE 50 2051 2.44%
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many more TPs are identied. This characterization of the
trade-off between precision and correctly predicted TPs can
be used as a guide to select the parameters that are best
suited to the objective and the resources of a suspect
screening project. To give a practical example, the workload
of manual TP conrmation can be cut in half by setting the
maximum TP threshold to 25, while still obtaining 86.3–92%
of correctly predicted TPs at the maximal threshold explored
here (50).
This journal is © The Royal Society of Chemistry 2023
Observed TPs can be explained by 24 biotransformation rules

A total of 114 different biotransformation rules were applied to
predict potential TPs. Interestingly, 24 of these rules were
sufficient to predict the biodegradation pathways leading to the
overall 45 well-dened and 34 ambiguous TP structures found
(Fig. 4, ESI-II Section S3.1†). The products of oxygenation
reactions (+O) turned out to be the most challenging to assign
a well-dened structure to due to the multitude of possible
isomers. For example, the use of the oxidative N-dealkylation
rule (bt0063) only lead to well-dened structures in 48% of the
cases, because the resulting TPs could not be distinguished
from other possible oxidation products. The prediction of
hydroxylation of methylene (bt0242) only lead to ambiguous
structures for the same reason. Elucidating structures from
these kinds of reactions would be especially important, because
70% of all found reactions belong to this category. Resolving the
structures of TPs that resulted from hydration (+H2O) or
hydrolysis (+H2O–X) was less challenging and lead to well-
dened structures in 85% of the cases due to few plausible
Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336 | 1331
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Fig. 4 Comparison of biotransformation rules leading either to well-
defined or ambiguous structures. The rules were categorized into
monooxygenation (+O, white), hydrolysis and hydration (+H2O, light
gray) and desaturation (−H2, dark gray).
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reaction sites or characteristic cleavage moieties. Desaturation-
type reactions (−H2) were only predicted and found for the
oxidation of primary (bt0001) and secondary alcohols (bt0002).
The type of reaction could be determined through the atomic
modications relative to the precursor molecule, but the site of
transformation was only identiable in 62% of the cases. The
beta-oxidation process (bt0337) was observed once and was not
considered in Fig. 4, because it does not t into any of the
proposed categories.
Complementary approaches reveal and ll knowledge gaps in
TP prediction models

Careful analysis of the time trends in chromatogram areas
revealed TP-like behavior for several unidentied compounds,
indicating that not all formed TPs were predicted by the
employed pathway prediction methods. To identify the struc-
tures of analytes with TP behavior, we searched literature for
known TPs, and we predicted conjugation reactions. APIs are
particularly prone to undergo conjugation, as they oen contain
primary and secondary amines. However, this type of trans-
formation is not covered by any of the TP prediction methods
analyzed here, because they all focus exclusively on catabolic
reactions. As a result, we tentatively identied four TPs were
that underwent either N-acetylation or N-succinylation. For
conjugation reactions, the MS2 spectra are closely related to
those of the parent because they share the same molecular
backbone, thus facilitating TP identication. Therefore,
screening for conjugates can help identify additional TPs by
considering reaction classes that are beyond the scope of the TP
prediction tools.

Another eight TPs were either previously reported in litera-
ture or derived by expert logic (e.g., suspected hydroxylation
1332 | Environ. Sci.: Processes Impacts, 2023, 25, 1322–1336
when observing corresponding mass signature and TP-like
behavior over time). Three of them were previously reported
in literature and reference standards were available to the
authors, but they were neither predicted nor part of any of the
used databases. For example, the TP guanylurea of metformin
was not predicted, even though it is known to literature.72 These
cases highlight the importance of expanding the databases
towards more diversity in terms of chemical structure, appli-
cation class, and biodegradation environment. In the particular
case of pharmaceuticals, it could be helpful to also consider
metabolites produced by human metabolism or human
microbiomes, because of the potential overlap of degradation
mechanisms present in human and wastewater systems. For
example, the only detected TP of aliskiren was not predicted by
any TP prediction model but reported to also occur in human
metabolism.52 Computational tools for drug metabolite
prediction could therefore be applied to complement environ-
mental TP prediction with prediction tools for human drug
metabolism (e.g., Metabolitepredict,41 NICEdrug.ch,73 Bio-
transformer 3.0 (ref. 74)).

Conclusion

We present an updated workow to identify TPs in activated
sludge biodegradation experiments using suspect screening.
We applied the workow to 46 pharmaceutical substances and
tentatively identied 79 TPs for 31 parent compounds. Of these,
66 (83%) are TPs reported for the rst time in activated sludge,
and only 13 TPs have previously been reported in similar or
wastewater studies. We further compared our workow with
a comprehensive list of similar studies, and we discussed
limitations of the analytical and computational methodology.

This workow was applied to a specic biotransformation
experiment and achieved a good ratio of found TPs per parent
despite having an initial spiked concentration of 8 mg L−1 only,
which is more than an order of magnitude lower than the
concentrations of the original experiment conducted by Hel-
bling et al.7 and the majority of studies reviewed here.
Regarding the analytical methods, 15 out of the 27 analyzed
studies complemented suspect screening with non-target
screening to detect more TPs. Since conjugation reactions are
not currently predicted by the EAWAG-PPS or enviPath, we
suggest to complement the suspect list with TPs formed by
acetylation, formylation, fumarylation, malonylation and/or
succinylation. Another approach to detect more TPs would be
to perform a systematic literature review on each parent
compound to expand the suspect list towards TPs found in
environmental biodegradation studies or mammalian
metabolism.

Although our prediction precision is comparable to the
precision reported by other studies and sufficient to perform
a successful suspect screening, a higher precision would
decrease the manual effort required to verify mass spectra. A
systematic approach to improve the precision of the TP
prediction methods would involve the collection of more high-
quality biodegradation data to better cover the chemical diver-
sity of organic micropollutants, and hence to increase the
This journal is © The Royal Society of Chemistry 2023
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prediction accuracy of the machine learning models. However,
if resources are limited, predicting 30 TPs per parent compound
with the currently available models will achieve reasonable
predictions without any signicant loss in sensitivity. Currently,
the training data sets for BBD, SOIL and SLUDGE together
contain 623 degradation pathways, which only represents
a small fraction of the chemical compound space. The combi-
nation of all these and the incorporation of the EAWAG-PPS led
to the most comprehensive suspect list.

To share our results with the scientic community in
a computer readable format, we enriched the EAWAG-SLUDGE
data package with the newly obtained biodegradation pathways
for 34 pharmaceuticals in activated sludge, thus feeding our
learnings back into the design-build-test-learn cycle to evolve
towards robust biotransformation prediction tools adapted to
different environmental situations. As data acquisition is
crucial to develop better models, future work will focus on
improving the integration of the prediction platform enviPath
with MS screening tools and on facilitating systematic and
standardized data upload to enviPath. We hope that our work
can guide TP identication efforts in the future and encourage
researchers to share biodegradation data openly to improve
prediction models.
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This manuscript only reects the authors' views and the JU is
not responsible for any use that may be made of the informa-
tion it contains.

Data availability

The biotransformation pathways were uploaded to the enviPath
database and integrated into the publicly accessible EAWAG-
SLUDGE package available at https://envipath.org/package/
7932e576-03c7-4106-819d-fe80dc605b8a. Results are further
detailed in the ESI-I and II (Supplementar-
y_Information_I.docx and Supplementary_Information_II-
TP_data.docx).† Raw MS output can be obtained from the
authors upon reasonable request. All scripts used to predict
TPs, create suspect lists, and analyze data are publicly available
at https://github.com/FennerLabs/TP_predict. The TP
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version 0.2.0, https://github.com/enviPath/enviPath-python).
Detailed instructions can be found in the README le of the
git repository. This resource also provides the code to convert
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PPS into suspect lists that are compatible with the Compound
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