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Zirconium-based metal organic frameworks (MOFs) are of great significance in supramolecular

coordination chemistry, mainly as catalysts, due to their chemical stability and structural diversity. We report

the synthesis of zirconium-clathrochelate based crystalline MOFs (Zr-GU-1 to -4) made from hexanuclear

zirconium inorganic nodes and iron(II) clathrochelate-based ditopic carboxylic acid ligands bearing various

lateral moieties, namely, butyl, cyclohexyl, phenyl and methyl groups. Among the various iron(II)

clathrochelate linkers, the one with butyl side chains, i.e., Zr-GU-1, forms stable crystalline MOFs as

confirmed by single-crystal X-ray crystallography and exhibits a promising porosity with a BET surface area

of ∼650 m2 g−1 after its activation with supercritical CO2 (ScCO2) from acetonitrile.

Introduction

Metal–organic frameworks (MOFs) are constructed from
inorganic metal ions/metal clusters and organic ligands
which are linked together by coordination bonds to form a
well-defined framework in terms of both composition and
structure.1,2 Over the past few decades, the construction of
metal–organic frameworks (MOFs) has been among the most
promising and rapidly expanding fields in materials science
due to the unique properties that they disclose, namely, their
bottom-up synthesis which allows for making on-demand
structures, excellent flexibility, and porous nature whose large
specific surface bearing active sites can be adjusted.3–5 With
these unique properties, MOFs have found a myriad of
applications across different fields, such as gas adsorption

and separation,6–8 chemical sensing,9,10 catalysis,11,12 lithium-
ion batteries,13,14 water treatment and biomedicine.15,16

Recently, the preparation of MOFs has undergone a
noticeable development by using multidentate aromatic
carboxylic acid ligands as building blocks, due to their
robustness and thermal stability.17,18 Furthermore, these
multidentate ligands can be easily deprotonated to balance
the metal ion charge, without the need to include in the
resulting framework lattice any additional uncoordinated
counter-ions, which would occupy the channel voids and,
consequently, block the MOFs pores.19 These characteristics
of the metal-carboxylate lattices are utilized in size- and
shape-selective separations and catalysis.20

Reticular chemistry, whose rules allow for a rational
design of MOFs to a great extent, has emerged as a powerful
synthetic tool to alter the chemical composition, framework
topology, porosity and its environment in porous crystalline
materials.21–23 By rationally choosing the target topologies
and molecular building blocks, specific MOFs can be
constructed with atomic precision.24,25 Over the last few
years, Zr-based MOFs have attracted great attention due to
their exceptional chemical stability26–33 and, besides the
applications of these materials in various fields, among
others, their use as catalysts for organic syntheses34–36 and
hydrolytic decontaminants of chemical warfare agents.37–41

Herein, we report the synthesis of Zr-based MOFs employing
octahedral iron(II) clathrochelate bearing ditopic carboxylic
acid ligands and lateral butyl groups, affording readily stable
crystalline MOFs at a low modulator concentration and
exhibiting a high BET surface area reaching up to 650 m2 g−1

after supercritical CO2 (ScCO2) activation from acetonitrile.
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Materials synthesis and
characterization
Materials

All reagents were obtained from commercial sources and
used without further purification, unless otherwise noted.

X-ray diffraction analyses

Powder X-ray diffraction (PXRD) of MOFs was carried out at
room temperature on a STOE-STADI MP powder
diffractometer equipped with an asymmetric curved
germanium monochromator (CuKα1 radiation, λ = 1.54056 Å)
and a one-dimensional silicon strip detector (MYTHEN2 1K
from DECTRIS). The line focused Cu X-ray tube was operated
at 40 kV and 40 mA. The activated powder was sandwiched
between two Kapton foils and measured in transmission
geometry using a rotating holder. Intensity data from 1 to 40
degrees two theta were collected.

N2 sorption measurements

N2 adsorption and desorption isotherms on activated
materials were measured at Northwestern University on an
ASAP 2420 (Micromeritics) instrument at 77 K after
activation. Ultra-high purity N2 (99.999%) was purchased
from Airgas and used as received. Sorption measurements
were carried out using approximately 30–40 mg of the
sample.

Supercritical CO2 (ScCO2) procedure

Supercritical CO2 activation experiments were performed on
a Tousimis Samdri PVT-30 critical point dryer. Before doing
the ScCO2 drying, the as-synthesized materials were soaked
in DMF for 3 days, followed by solvent exchange into ethanol
or acetonitrile for 1 day. The solvent was refreshed every 12
h, and 12 mL of fresh solvent was added into the vials. The
material was then transferred to a small glass container with
minimal solvent to cover the sample for ScCO2 drying (note:
do not let the materials dry in the solvent, and make sure the
materials are always submerged in the solvent before
performing the ScCO2 drying procedure).

Single-crystal X-ray diffraction

SCXRD data were collected at 200 K, using a Rigaku Cu-
Synergy diffractometer equipped with a shutterless
electronic-noise free Hybrid Photon Counting (HPC) detector,
a Cryostream 80–500 K (Cryostream Oxford Cryosystems,
Oxford, United Kingdom), a CuKα (λ = 1.54184 Å) microfocus
source with a beam size of ∼110 μm, and a 4-circle Kappa
geometry goniometer. The single crystals were mounted on a
MicroMesh (MiTeGen) with paratone oil. The structures were
determined by intrinsic phasing (SHELXT 2018/2) and refined
by full-matrix least-squares refinement (SHELXL-2018/3)
using the Olex2 software packages. The disordered non-
coordinated solvents and alkane side chains were removed

using the solvent marks option in the Olex2 software. The
refinement results are summarized in Table S1.†
Crystallographic data for Zr-GU-1 in CIF format have been
deposited in the Cambridge Crystallographic Data Centre
(CCDC) under deposition number 2224952.

Synthesis of a Zr-clathrochelate MOF (Zr-GU-1)

A Zr-GU-1 MOF was prepared solvothermally by combining a
mixture of clathrochelate linker GU-1 (0.0129 mmol, 11.9 mg)
and ZrOCl2·8H2O (0.0155 mmol, 5.0 mg) in 1 mL DMF and
20 μL TFA at 120 °C for 48 h. The crystals were collected,
washed three times over two days with anhydrous DMF and
then sequentially immersed in anhydrous DMF.

Results and discussion

Previous reports have shown the synthesis of clathrochelate-
based MOFs using copper or zinc metal nodes;6,42,43 however,
to the best of our knowledge, no crystal structures have been
reported for iron(II) clathrochelate-based MOFs using
zirconium nodes. Therefore, we attempted to synthesize the
latter and obtain their single crystal structures by employing
the iron(II) clathrochelate dicarboxylic acid linkers GU-1 to -4,
as shown in Scheme 1, which were synthesized following a
procedure reported in the literature42 and bear different
lateral groups, namely, butyl, cyclohexyl, phenyl and methyl
moieties. Zr-GU-1 MOF was synthesized solvothermally by
mixing 12.9 μmol of GU-1 (a linker with a soluble butyl
chain) and ZrOCl2·8H2O (15.5 μmol) in 1 mL of DMF and 20
μL of TFA at 120 °C for 48 h. Similar conditions were used to
prepare the Zr-clathrochelate MOFs Zr-GU-2 to -4, which bear
various lateral chains on the linker (R = cyclohexyl, phenyl, or
methyl). Although the MOF synthesis using the
abovementioned linkers (GU-2 to -4) seems feasible, their
lower solubility compared to GU-1 required some additional

Scheme 1 Synthetic scheme of Zr-clathrochelate MOFs Zr-GU-1 to -
4 and formation of octahedral and tetrahedral cavities within the
framework.
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fine-tuning to obtain a crystalline sample of better quality
(Fig. 2).

Interestingly, stable single crystals of Zr-GU-1 with suitable
sizes for SCXRD analysis were obtained by employing the
synthetic conditions mentioned above. SCXRD data analysis
revealed the atomic structure of Zr-GU-1 which crystallizes in
the Fm3̄m space group with an fcu topology (Fig. 1) and
lattice constants a = b = c = 37.5848(3) Å and α = β = γ = 90°.
Zr-GU-1 is composed of hexanuclear zirconium (Zr6) clusters
bridged by ditopic iron(II) clathrochelate ligands to form both
octahedral and tetrahedral cavities connected by triangular
windows/pore apertures (Scheme 1). As could be noticed from
Fig. 2, the as-synthesized and simulated powder X-ray
diffraction (PXRD) patterns of Zr-GU-1 are well-matched, thus
confirming the phase purity of the bulk sample.

Several attempts were carried out to obtain SCXRD
structures for the remaining MOFs Zr-GU-2 to -4. First, in
order to overcome the low solubility of the clathrochelate
linkers GU-2 to -4, we attempted a solvothermal synthesis of
Zr-GU-2 to -4 under the same conditions described above to
make Zr-GU-1 but employing a lower linker concentration of
2.9 μmol mmol instead of 12.9 μmol. These conditions were
successful, affording large single crystals of Zr-GU-2 but
whose S CXRD structure was not feasible because the crystals
decomposed soon after the removal of the solvent (Fig. S2†).
Further efforts to obtain single crystals of Zr-GU-3 and Zr-GU-
4 using other modulators such as acetic acid or formic acid
were unsuccessful, and increasing the amount of the
modulator resulted in the formation of different products as
confirmed by PXRD analysis (Fig. S1†).

To probe the porosity of Zr-GU-1, we first tried thermal
activation at 100 °C, but the N2 adsorption isotherm at 77 K
revealed no porosity. Therefore, an alternative attempt has
been carried out by using supercritical CO2 activation (ScCO2)
of Zr-GU-1 from either ethanol (EtOH) or acetonitrile (ACN),
where the latter exhibited the highest porosity obtained for
Zr-GU-1 compared to other activation methods with an
experimental total pore volume of 0.37 cm3 g−1 at P/P0 = 0.9
compared to the theoretical pore volume of 0.83 cm3 g−1. The
apparent Brunauer–Emmett–Teller (BET) surface area of Zr-
GU-1 was found to be 650 m2 g−1 (Fig. 3). It is noteworthy
that the crystallinity of Zr-GU-1 was lost following the ScCO2

activation but was partially restored after soaking it back in
ACN (Fig. S3†), therefore indicating a reversible structural
change between the ‘open’ and ‘closed’ forms, which could
be attributed to the lower experimental pore volume.

Due to the relatively high crystallinity of Zr-GU-2
compared to Zr-GU-3 and Zr-GU-4, we further investigated its
bulk porosity using N2 adsorption isotherms. Interestingly,
Zr-GU-2 exhibits significantly higher BET surface areas after
thermal activation at 100 °C and ScCO2 activation from ACN
exchange compared to Zr-GU-1. The BET surface was found
to be 475 m2 g−1 after thermal activation compared to the
negligible BET surface area for Zr-GU-1 when using the same
activation technique. Furthermore, ScCO2 activation after
ACN exchange yielded a BET surface area of 850 m2 g−1 with
a pore volume of 0.49 cm3 g−1 (Fig. 3) compared to the
theoretical pore volume of 0.91 cm3 g−1. This larger BET
surface area could mainly be attributed to the bulkier
cyclohexyl lateral groups in Zr-GU-2 which are positioned in
close proximity to the framework walls, thus allowing the
structure to maintain its ‘open’ form as opposed to the linear
butyl groups in Zr-GU-1.

Conclusions

In summary, new metal organic frameworks (MOFs) based
on zirconium were successfully synthesized using iron(II)
clathrochelate-bearing ditopic carboxylic acid ligands and Zr6
inorganic nodes. Stable crystalline MOFs were obtained from
iron(II) clathrochelate based dicarboxylic acid linkers bearing
lateral butyl groups Zr-GU-1, and their formation was
confirmed by single-crystal X-ray crystallography. N2-
adsorption study of Zr-GU-1 reveals a porous nature with a

Fig. 1 SCXRD structure for Zr-GU-1 along the a- and b-axis.
Hydrogen atoms and disordered linkers are removed for clarity.

Fig. 2 (a) Experimental and simulated PXRD patterns of the as-
synthesized Zr-GU-1 and the following can exchange. (b) Comparison
of the experimental PXRD patterns of Zr-GU-2 to -4 with the
simulated PXRD pattern of Zr-GU-1.

Fig. 3 Experimental N2 adsorption and desorption isotherms at 77 K
after ScCO2 and thermal activation for (a) Zr-GU-1 and (b) Zr-GU-2.
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pore volume of 0.37 cm3 g−1. Furthermore, the apparent
Brunauer–Emmett–Teller (BET) surface area of Zr-GU-1 was
found to be 650 m2 g−1 after acetonitrile ScCO2 activation.
Additionally, replacing the butyl groups with bulkier
cyclohexyl groups allowed the framework to achieve a BET
surface area of 850 m2 g−1.
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