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Protein–protein interfaces in molecular
glue-induced ternary complexes: classification,
characterization, and prediction

Huan Rui, a Kate S. Ashton,b Jaeki Min, c Connie Wangd and
Patrick Ryan Potts *c

Molecular glues are a class of small molecules that stabilize the interactions between proteins. Naturally

occurring molecular glues are present in many areas of biology where they serve as central regulators of

signaling pathways. Importantly, several clinical compounds act as molecular glue degraders that

stabilize interactions between E3 ubiquitin ligases and target proteins, leading to their degradation.

Molecular glues hold promise as a new generation of therapeutic agents, including those molecular glue

degraders that can redirect the protein degradation machinery in a precise way. However, rational

discovery of molecular glues is difficult in part due to the lack of understanding of the protein–protein

interactions they stabilize. In this review, we summarize the structures of known molecular glue-induced

ternary complexes and the interface properties. Detailed analysis shows different mechanisms of ternary

structure formation. Additionally, we also review computational approaches for predicting protein–

protein interfaces and highlight the promises and challenges. This information will ultimately help inform

future approaches for rational molecular glue discovery.

Introduction

For the past decade, molecular glue degrader discovery has
relied on serendipity, post hoc rationalization, and phenotypic
screening. The most well-known molecular glue degraders are
thalidomide and its analogues, lenalidomide and pomalido-
mide known collectively as immunomodulatory imide drugs
(IMiDs). Their discovery as molecular glues was retrospective
following FDA approval and subsequent detection of
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immunomodulatory and anti-inflammatory activity. The E3
ubiquitin ligase cereblon (CRBN) was identified as the effector
protein of thalidomide.1 Binding of thalidomide to CRBN
recruits and degrades neosubstrates, providing an early exam-
ple of molecular glue-induced targeted protein degradation
(TPD).1–7 IMiDs are not the only known molecular glue degra-
ders whose mechanisms of action was uncovered retrospec-
tively. Indisulam and its derivatives were also first discovered
through a phenotypic screen for small molecules with anti-
cancer activity.8 Their mechanism of action was uncovered
almost 20 years later using mutagenesis and mass spectro-
metry, identifying RBM39 as their degradation target and
DCAF15 as the effector E3 ligase.9–11 Even though molecular
glue molecules are often discussed in the context of E3 ligases
and TPD, they exist in other areas of biology as well. For
instance, rapamycin inhibits the mTOR kinase by stabilizing

a protein–protein interface between FKBP12 and the FRB
domain in the kinase.12 Another example is the nuclear
receptors. Their specificity is largely modulated by the binding
of different ligands, leading to preferential recruitment of
either co-repressors or co-activators.13,14 There are many other
examples of this class of molecules, including FK506,15

inositol tetraphosphate,16 and cotylenin A.17 The discovery
of these molecules, which act as protein–protein interaction
stabilizers, faces similar challenges as the rest of the mole-
cular glues.

Recently, more systematic screening approaches have been
used to identify molecular glue degraders. CR8, a CDK12/
CyclinK molecular glue degrader, was identified by a bioinfor-
matics screen, where the cytotoxicity of clinical and preclinical
small molecules in different cancer cell lines are correlated
with their E3 ligase components mRNA levels.18 Extensive
follow-up testing and a crystal structure revealed that CR8
induces the formation of a complex between CDK12/CyclinK
and the E3 ligase DDB1 leading to the degradation of CDK12/
CyclinK. Along the same vein, other screening approaches have
shown success at discovering novel CyclinK molecular glue
degraders as well.19,20 These works also highlight the tremen-
dous effort required to perform current screening paradigms,
not only due to the nature of the screen itself – typically a
cellular assay – but also the follow-up work needed to validate
and understand the mechanism of action for any hits. Further-
more, since the hit rates of such screening efforts are usually
low, testing a large number of compounds is necessary.
Although new technologies such as cellular screens using
DNA encoded library technology21–24 offer the opportunity to
screen millions of compounds at once, hits still need to be
remade off DNA and tested again in assays to confirm activity,
making the lead generation process slow and resource inten-
sive. Because of this, screening for molecular glues currently
falls squarely within the high risk, high reward zone of drug
discovery.
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Despite these challenges, molecular glue degraders are still
highly sought after as a promising new therapeutic modality.
Compared to its bi-specific counterpart proteolysis targeting
chimeras (PROTACs), molecular glue degraders have the advan-
tage of being small with low molecular weight and the potential
for drug-like physiochemical properties, making the late-stage
optimization relatively simpler. Many research labs and phar-
maceutical companies have started programs aimed at disco-
vering new molecular glues for protein degradation, but
without a more efficient way to discover novel degraders and
protein targets, the field will face an uphill battle.

Structure-based rational design methods offer a strategy to
increase the chance of success if the target and the E3 ubiquitin
ligase of the molecular glue are known. In a recent example, the
crystal structure of ternary complex between b-TrCP, b-catenin,
and a small molecule NRX-1933 led to the discovery of
new molecular glues with enhanced mutant selectivity.25 The
discovery of the mutant-specific Ikaros degrader, ALV2, was
also guided by known crystal structures.26,27 However, struc-
tural information on the ternary complex is often difficult to
obtain and does not always aid in the prediction and discovery
of neosubstrates. The crux of this issue lies within the inter-
actions formed by the two proteins and their stabilization by
the ligand. Many molecular glues take advantage of weak,
fortuitous, pre-existing protein–protein interfaces (PPIs) that
can be further strengthened by their binding. To fully under-
stand what drives ternary structure formation and leverage this
in the discovery of new molecular glue molecules, a few ques-
tions still need to be addressed, including (1) what is the major
driving force behind the protein–protein interactions in the
ternary complexes, (2) what is the influence of the ligand on
the PPI, (3) what are the stability, kinetics, and geometry of the
ternary complexes formed, and (4) which of these parameters
are most crucial.

A plethora of excellent review articles on molecular glues
and the complexes they stabilize have been published in the
recent years, each focusing on a slightly different aspect of the
topic, with the majority of them focusing on the discovery
history, mechanism of action, and design strategy.28–37 This
review seeks to compile and analyze the current, published
molecular glue ternary complex structures with the aim of
identifying and quantifying any structural requirements for
PPIs that are induced by molecular glues, as well as surveying
the best computational methods to predict potential ‘gluable’
interfaces. To gain a general understanding of the molecular
glue-induced PPI (MG-PPI), all molecular glue-induced com-
plexes are considered, regardless of whether the molecular
glue is a degrader. The review is organized into four sections:
(1) a summary of all known MG-PPI and two set of native PPI
that do not require molecular glues to form, (2) a comparison of
the PPI properties between the sets of interfaces highlighting
similarity and differences, (3) an analysis of the ligand–protein
interactions occurring in the MG-PPI, showing different
mechanisms of MG-PPI formation, and (4) a survey of current
computational tools for PPI discovery and their potential utility
in the identification of gluable PPI.

Summary of protein–protein interfaces
Molecular glue-induced protein–protein interfaces

To establish a baseline, an analysis of currently documented
MG-PPI was performed with an emphasis on protein–protein
and protein–ligand interfaces, taking into account both their
size and nature. Table 1 provides a summary of publicly
available molecular glue-induced heterodimeric complex struc-
tures from the protein data bank (PDB). The corresponding
small molecule structures are shown in Scheme 1. The struc-
tures in Table 1 are chosen based on our best knowledge of
literature discussing molecular glues and stabilizers. All types
of molecular glues are included, including degraders and non-
degraders. There are homo-oligomer complex structures avail-
able but often times they involve multiple protein–protein
interfaces and are excluded from the current review. One
exception is BCL6 due to the recent discovery of its degrader
BI-3802,38 which causes homo-oligomerization of the BTB
domain,39 and the rising interest in its degrader design.
Bispecific degrader induced ternary structures are also not
included in Table 1 as the ternary structure formation in this
case is largely driven by the binding of the warheads to their
respective protein targets. The complex structures in Table 1
are organized into two groups based on the interacting mode
between the two protein binding partners: Group 1 (domain–
domain) features interactions between proteins with well-
folded domains, and in Group 2 (sequence motif-domain)
one of the binding partners is a stretch of residues that
contains a specific pattern for binding (Fig. 1A and B). In all
the complexes in Table 1, 45 of them belong to Group 1 and
54 belong to Group 2. Fig. 1B shows two complex structures,
DCAF15-indisulam-RBM39 and TIR1-1NAA-IAA7, exemplifying
the two groups of interactions respectively. There is a myriad of
ways to categorize these ternary complexes, the reason for the
current choice is rooted in the nature of these interfaces and
the computational discovery strategies that may follow.

Many of the complex structures in Table 1 share the same
effector proteins and are clustered together in the table. Fig. 1C
shows the breakdown of all the structures into their respective
effector proteins. There are a total of 21 effector proteins, 13 of
which are from Group 1, the rest belong to Group 2 with a
sequence motif from the binding partner protein interacting
with the effector protein. A representative structure from each
effector protein cluster is used in the following quantitative
analyses to show structural characteristics of the MG-PPI. This
includes 15 complexes from Group 1 and 14 complexes from
Group 2. They are highlighted in bold in Table 1. The selection
is based on structure completeness and resolution.

Protein–protein interfaces that are not induced by molecular
glues

Two protein–protein docking datasets, Docking Benchmark
5.5 (DB5.5)41–45 and Database of Interacting Protein Structures
(DIPS),46 are used here to represent interfaces that form
without the help of molecular glues. DB5.541–45 is a manually
curated dataset containing 253 protein–protein complexes
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spanning eight categories based on protein functions. The
binding affinities of these interfaces span a range between
picomolar as seen in some of the antibody-antigen complexes
to single digit micromolar. It is commonly used to benchmark

protein–protein docking algorithms. DIPS is a much larger
nonredundant protein–protein complex dataset assembled by
Townshend and coworkers.46 It is constructed by filtering all
protein–protein interfaces in the PDB based on structure

Scheme 1 All molecular glues in Table 1.
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resolution, PPI size, and sequence homology to the DB5 com-
plexes. It contains more than 42 000 interfaces. The DIPS
dataset was further trimmed down by removing complexes in
Table 1 to exclude MG-PPI. Interface properties are computed
for complexes from both datasets and compared with those
extracted from representative MG-PPI in Table 1.

Comparison between different types of
ppis
Protein–protein buried surface area

The average buried surface area (BSA) of the PPI of the
representative complexes in Group 1 and 2, as well as in the
DB5.5 and DIPS datasets, are shown in Fig. 2A. The average BSA
of Group 1 MG-PPI and the DB5.5 dataset are similar, but
smaller than that seen in the DIPS dataset (Fig. 2A). Complexes
in Group 2 in general have smaller BSA than those in all three
other groups (i.e., Group 1, DB5.5, and DIPS), which is unsur-
prising due to the significantly shorter amino acid sequence of
one protein partner in complexes from this dataset. The PPI in
the other three datasets (Group1, DB5.5, and DIPS) are largely
biased towards complexes formed between folded protein
partners. Intrinsically disordered proteins are not included
when building DB5.5 dataset.41–45 The DIPS dataset contains
complexes with large PPIs such as the membrane protein
complex phosphatidylcholine flippase Dnf2-Lem3 (PDB ID:
7KY8) with a PPI BSA at 4995 Å2 and the Myosin II complete

coiled–coil domain (PDB ID: 7KOG) with an extensive PPI BSA
at 25 746 Å2. Furthermore, the DIPS dataset contains a filter
to remove complexes with buried surface area smaller than
500 Å2.46 This shifts the PPI BSA distribution to the higher end
and as a result the average PPI BSA is much larger in the DIPS
dataset than any of the others.

The PPI BSA values of Group 1 complexes span a wide range
from the smallest value of 423 Å2 seen in the FKBP12-
rapamycin-FRAP complex to the largest value of 2336 Å2 seen
in the DDB1-CR8-CDK12 complex. Five of these complexes have
reported protein–protein binding affinity data in the absence of
the molecular glue (Table 1). Fig. 2B plots the log values of the
protein–protein dissociation constants without the molecular
glue, ln(KD), against the PPI BSA for these five complexes. There
is a rough correlation between the two, with interfaces that
have larger PPI BSA also registering better protein–protein
binding, even though the data is extremely limited. There is
also one outlier, namely the DDB1-CR8-CDK12 complex (PDB
ID: 6TD3). It has a large BSA PPI at 2,336 Å2, but the binding
affinity between DDB1 and CDK12 without CR8 is low (KD E
50 mM).18 This is because when CR8 is not present, the energy
cost for CDK12 to adopt the bound conformation is likely high,
leading to the observed low affinity.

The protein–protein binding affinities of Group 2 complexes
in the absence of their corresponding molecular glues span a
similar range compared to those in Group 1 (Table 1). The
weakest of them is the TIR-IAA7 complex with a KD at 18.5 mM
and the strongest is the complex formed between 14-3-3 and
the Gab2 peptide with a KD of 0.5 mM. Additionally, as many

Fig. 1 Summary of all molecular glue-induced ternary complexes.
(A) Breakdown of complexes in Table 1 into two groups based on the
interaction mode. (B) Two example structures showing Group 1 (left,
DCAF15-indisulam-RBM39, PDB ID: 6UD7) and Group 2 (right, TIR1-
1NAA-IAA7, PDB ID: 2P1O) interaction modes. The effector proteins are
shown in surface presentation and the binding partner proteins are shown
in cartoon representation. The bound molecular glue molecules are
shown in yellow. The graphics are generated using PyMOL.40 (C) Break-
down of complexes by effector proteins. The names of the effector
proteins are shown in the outer perimeter of the pie chart with blue
(Group 1) and orange (Group 2) indicating the mode of interactions.

Fig. 2 PPI BSA of complexes in different datasets and their relationship
with experimentally measured intrinsic protein–protein interaction KD.
(A) Average PPI BSA in four datasets. The PPI BSA for each complex is
computed by taking the difference between two solvent accessible
surface areas (SASA). One of them is the sum of the SASA of the two
proteins as monomers. The other is the SASA of the two proteins as a
complex. The difference is the reported PPI BSA. Molecular glues are
excluded when computing the PPI BSA for Group 1 and 2 complexes.
Standard deviation is reported for Group1, 2, and DB5.5. A two-tailed
student t-test is performed on the BSA from Group 1 and Group 2.
A p-value of 0.019 is achieved, indicating the observed difference is
statistically significant. DIPS dataset is randomly sampled 20 times and
each time with 500 samples to produce a standard error, which is
reported. All properties reported below for DIPS are sampled using this
scheme. (B) Shows the scatter plots of natural log of KD against the PPI BSA
for Group 1 (blue) and 2 (orange) complexes with known protein–protein
binding affinities (KD).
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interacting sequence motifs in Group 2 have key, specific
interactions with the effector protein, such as buried hydrogen
bonds and salt bridge interactions, these interfaces are perhaps
more efficient than those largely non-specific interactions
present in complexes from the other datasets. For the eight
complexes where protein–protein dissociation KD exist, plotting
the ln(KD) against PPI BSA shows little correlation and almost
the opposite trend as that seen in Group 1 complexes (Fig. 2B).
The complex formed between b-TrCP and its substrate pSer33
b-catenin peptide (PDB ID: 6M90) only has a BSA PPI of 509 Å2

but has one of the highest affinities in all the complexes with
known protein–protein binding KD (KD = 530 nM).25 The
efficiency of this interface with such a small PPI BSA likely
stems from the partially buried charge–charge interactions
between the phosphorylated Ser33 and the surrounding resi-
dues on the effector protein. On the other hand, the complex
formed between the plant hormone receptor COI1 and its JAZ1
degron (PDB ID: 3OGM) has the largest PPI BSA at 1279 Å2

in this set but only a moderate protein–protein KD of 5 mM
is observed.47 This shows that the nature of the interactions
formed in complexes belonging to Group 2 is likely different
than those formed between folded domains.

Amino acid preference at the interface

Amino acid preference profiles show which residues are more
likely to be observed in a class of PPI. Fig. 3 plots these for all
20 amino acids at the PPI from complexes in four datasets
described above. While Group 1 complexes exhibit similar
residue preference profiles as those in datasets DB5.5 and
DIPS, complexes in Group 2 show some differences for a few
amino acids: Gln, Thr, His, Met, Trp, Phe, and Pro. Based on
two-tail student t-tests, some of these differences are statisti-
cally significant, including those for Gln, His, Phe, and Pro.
Although the sample size is still quite small, some of these
trends may be meaningful. For example, Thr and Pro only exist
in some sequence motifs but not others likely because phos-
phorylated Thr serves as a chemical signal for protein recogni-
tion and Pro is known to introduce kinks in protein structures
that may provide the basis for shape recognition. A similar
analysis done by Hou and coworkers found that by clustering
and analyzing sequences of eukaryotic linear motifs,48 which
form reversible interactions with protein partners to illicit
downstream effects, they could identify residue preferences in
different types of sequence motifs.49 Such preferences should
be harnessed to discover neo-substrates and potential glues for

Fig. 3 Interface amino acid preference profiles. The protocol below describes how the preference profile is computed. First, an interface residue list is
generated for a complex. Each residue is counted once even if there are multiple occurrences at an interface. The lists of all complexes in a dataset are
added up based on residue types and normalized by the total number of complexes in the dataset. The value of the preference is between zero and one.
With a zero indicating a residue that is missing from all PPI in the dataset and one indicating that this residue is ubiquitous in all PPI in the dataset at hand.
Interface residues are defined as residues that are within 4.5 Å of any non-hydrogen atoms from the interacting protein. Residues with modifications like
phosphorylation and protonation are counted as their original form. The 20 residues are color by their properties: negatively charged (red), positively
charged (blue), polar (magenta), hydrophobic (green), and others (yellow). Phosphorylated residues (Ser, Thr, and Tyr) are represented with a darker shade
of color. The residues with statistically significant difference in residue preference between Group 1 and 2 are marked with a star. These include Gln, His,
Phe, and Pro with p-values at 0.0292, 0.0003, 0.0292, and 0.0008, respectively.
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E3 ubiquitin ligases. The implication of the notable differences
between the interfaces formed in Groups 1 and 2 is that
different computational schemes may need to be applied for
their prediction.

Residue-residue pair preference at the interface

To understand whether the specific interacting residues in the
PPI of the four different types of complexes show similarity or
differences, we analyzed the frequency of interacting residue
pairs. Fig. 4 plots the residue–residue pair frequencies seen
at the PPI. As expected, interactions between hydrophobic
residues are seen ubiquitously in all four groups of interfaces,
especially between Leu, Phe, and the other hydrophobic resi-
dues. Another residue that is seen often in all PPIs is Arg. The
salt bridge interactions between Arg and the negatively charged
residues are observed in nearly all interfaces. This highlights
the seminal role of hydrophobic and electrostatic interactions
in the formations of PPIs, and this is common in all PPI
including those induced by molecular glues. Interactions
between polar residues (Asn, Gln, Ser, Thr, Tyr, His) are slightly
less frequent in PPI from Group 1 and 2 than those in the DB5.5
and DIPS datasets but given the small sample size in the MG-
PPI, the significance of such difference is unclear. Nevertheless,
this analysis illustrates that the main driving force of all PPI
formation, regardless of whether a small molecule is needed
to stabilize the interface, is hydrophobic and electrostatic.

This implies that prediction algorithms that rely on physics-
or statistics-based modeling to predict PPIs without molecular
glues may still be valuable.

Ternary structure formation
mechanism imparted by ligand–
protein interactions

Aside from protein–protein interactions, molecular glue-induced
complex structures offer an opportunity to examine the inter-
actions between the small molecule and the two protein
partners. Fig. 5 plots the two ligand–protein BSA in the repre-
sentative structures taken from Table 1. The diagonal line in
Fig. 5 indicates a region where the two ligand–protein BSA in a
complex are equal. As the complex structures deviate from
this diagonal region, increasing asymmetry is seen between
the interfaces formed between the molecular glue and the two
binding partner proteins. The asymmetry of interactions
between the molecular glue and its protein binding partners
can guide the understanding of their ternary structure formation.

As may be expected for molecular glues, the majority of
compounds show asymmetric binding where the ligand BSA is
larger for one protein in the PPI compared to the other. This is
more prominent in complexes from Group 2, likely due to two
factors: (1) unresolved structure of disordered regions in one

Fig. 4 Residue pair preference profiles. The residue pair preference profile is calculated using the procedure below. All pairs of residue–residue
interaction counts are recorded for an interface, resulting in a 20 by 20 matrix. The interaction matrices are then averaged over all complexes in the
dataset without normalization. The higher the value, the more prevalent such pair of interaction is observed in a dataset. Interacting residue pairs are
defined as those with any non-hydrogen atoms within 4.5 Å of each other and the two residues must be from two different proteins. Residues with
modifications like phosphorylation and protonation are counted as their original form.
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protein partner, usually the one containing the sequence motif,
and (2) intrinsic binding between the glue and one of the
proteins even without the second protein partner, which will
be discussed further below. The most asymmetric cases lie in
the bottom right corner, for example the complex structure
formed between the peroxisome proliferator-activated receptor-
a (PPARa) and the silencing mediator for retinoid and thyroid
hormone receptors, SMRT (PDBID: 1KKQ50). There is an exten-
sive interface between the glue GW6471 and PPARa while little
interaction is seen between GW6471 and SMRT. This is sup-
ported by the already existing binding affinity between GW6471
and PPARa.50 Without GW6471, the binding between PPARa
and SMRT is weak, with a KD of 8.0 � 3.4 mM measured by
fluorescence polarization assay.50 Adding the molecular glue
enhances the KD by 5-fold. By comparing the receptor struc-
tures bound with antagonist GW6471 and agonist GW409544,
it is clear that the observed binding cooperativity lies in the
induced conformational change of the AF-2 helix upon GW6471
binding, which moves and exposes a surface that is favorable
for SMRT binding (Fig. 6A). Another example is the CR8-
induced ternary complex between DDB1 and CDK12-CyclinK
(PDBID:6TD3).18 CR8 is a known CDK inhibitor51 and the
crystal structure of the ternary complex shows that it has
extensive interactions with CDK12. Without CR8 the binding
between CDK12-CyclinK and DDB1 is minimal with a KD of
B50 mM measured by isothermal titration calorimetry (ITC).18

Binding of CR8 likely shifts the distribution of CDK12 con-
formations to one that favors binding to DDB1 (KD o 100 nM,
measured by ITC18). Fig. 6B shows the C-terminal structural
difference between an inactive CDK12 in complex with ADP and
the CR8 bound DDB1-CDK12/CyclinK complex. When CR8 is
bound to CDK12, it disrupts the interactions between the
C-terminal short helix and the C-lobe of the kinase as seen in
the inactive state, causing the C-terminus to adopt a conforma-
tion that can be recognized by DDB1, leading to the degrada-
tion of CyclinK. In both complexes which show pronounced
asymmetry, the ternary structure formation is driven by ligand–
protein binding, which induces allosteric conformational
change of the protein surface, making it recognizable by the
binding partner.

A portion of molecular glue induced complexes have roughly
similar buried surface area between the molecular glue and the
two protein binding partners. These are presented as data-
points close to the diagonal line in Fig. 5. Some complexes
belong to this category do not show any protein–protein
binding without the molecular glue. For example, the complex
formed by FKBP12, rapamycin, and FRAP (PDB ID: 1FAP)
has no detectable interactions between FKBP12 and FRAP.
However, rapamycin is known to have high affinity binding to
FKBP12 with a KD of 0.2 nM.52,53 It also binds to FRAP but
weakly (KD = 26 mM53). This can be seen from Fig. 6C, where the
PPI BSA is rather small but there is a deep, concaved binding

Fig. 5 Ligand–protein BSA of all structures in Table 1. For those effector proteins with multiple binding partners (e.g., FKBP12 and 14-3-3), all of them are
included in this plot with the same color and shape indicating the same effector protein. Ligand–protein BSA is computed in a similar fashion as the PPI
BSA. In a molecular glue induced ternary complex, the ligand (i.e., molecular glue) interacts with both protein partners. The BSA of the two interfaces are
calculated separately. For each of the ligand–protein interface, the SASA is computed for the two components alone and for the complex. The difference
is then calculated and reported as the final ligand–protein BSA. The two ligand–protein BSA for a complex are then ranked by their magnitudes, resulting
in a smaller and a larger BSA. Plotting the smaller BSA against larger BSA resulted in this plot. The complexes are colored by their effector proteins, with
the shape indicating which group of interaction mode they belong to (Group 1: circle and Group 2: diamond). The size of the symbols indicates the size of
the PPI BSA of the complex. The PDB IDs of these complexes can be found in Table 1.
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site on FKBP12 used to bind rapamycin. The rapamycin bind-
ing surface on FRAP is shallower in line with the weaker KD

between two. Even though rapamycin only binds weakly to
FRAP, the FKBP12-rapamycin complex binds to FRAP in
much higher affinity (ternary KD = 12 nM) revealed by SPR
measurements.53 This is likely due to the binding of rapamycin
to FKBP12 creating a new composite surface, driving the
recruitment of FRAP.

In the diagonal region of Fig. 5, there are also complexes
with intrinsic protein–protein binding affinities even without
the presence of molecular glues. Adding molecular glues to the
mix further strengthens the PPIs, leading to stable ternary
complexes. This is exemplified by the complex formed between
the NMDA receptor amino-terminal domains GluN1, GluN2B,
and ifenprodil (PDB ID: 3QEL).54 In the ternary structure, the
interface areas between ifenprodil and the two amino-terminal
domains are almost identical, and there are no obvious pockets
on either of the receptor subunits that indicate ifenprodil-
subunit binding (Fig. 6D). This coincides with the observation
that no binding could be detected between ifenprodil with
either GluN1 or GluN2B.54 Without ifenprodil, GluN1 and
GluN2B do interact and form a heterodimer with a KD of
0.7–1 mM when mixed. In fact, there is extensive PPI between
the two proteins in the ternary complex with a PPI BSA at
1,229 Å2 (Fig. 6D). When ifenprodil is introduced, a 20-fold
dimer stabilization effect is seen. The ternary structure for-
mation in this case likely starts with the dimerization of GluN1

and GluN2B, forming a binding pocket for ifenprodil. Once
ifenprodil is bound, it further stabilizes the complex.

Analysis of molecular glue-induced ternary structures indi-
cate that there are likely two main pathways of how the ternary
structure is formed (Fig. 7); either a protein–protein binary
interface is formed first and then the complex incorporates a
small molecule ligand at the interface, which further enhances
binding (Path 1 in Fig. 7), or a small molecule binds to a protein
partner first, which leads to altered protein surface properties,
much like the effects of post-translational modification,34

making this surface available for association with another
protein (Path 2 in Fig. 7). A similar scheme of molecular glue-
induced ternary structure formation has been proposed by
Cao and coworkers.55 The two pathways for ternary structure
formation are not independent of each other, even though in
some complexes one may dominate over the other as is the
case in GluN2B-ifenprodil-GluN1 and FKBP12-rapamycin-FRAP
(Fig. 7). There are cases where both paths are exploited to form
a ternary complex. One example is CRBN-lenalidomide-CK1a,
where relatively weak binary binding exists between the two
proteins, as well as between CRBN and lenalidomide. Even
though it is tempting to categorize all known molecular glue-
induced complexes into these three categories, it remains a
difficult task until experimental affinity for the binary compo-
nents in the ternary systems are measured and reported,
especially for those that are weak. Fig. 7 also reveals that the
ternary structure formation process is a closed reaction cycle

Fig. 6 (A) Binding of antagonist GW6471 (yellow) to the PPARa receptor (blue) alters the AF-2 helix (red) conformation (left; PDB ID: 1KKQ) compared to
when PPARa is bound to an agonist GW409544 (magenta) (right; PDB ID: 1K7L). The conformational difference in the AF-2 helix dictates the binding
partner protein whether it is the co-repressor peptide SMRT (left; orange) or a co-activator peptide (right; cyan). (B) Binding of CR8 (yellow) to CDK12
(blue) alters the conformation of its C-terminal region (red) (left; PDB ID: 6TD3) compared to when CDK12 is inactive and bound to ADP (magenta) (right;
PDB ID: 4NST). The new conformation of the CDK12 C-terminus resulted from CR8 binding is well-suited to bind to DDB1 (left; orange). (C) The protein
binding area (light orange) and the ligand binding pocket (light yellow) in FKBP12 (blue) shown in surface presentation (left). The protein binding area (light
blue) and the ligand binding surface (light yellow) in FRAP (orange) shown in surface presentation (middle). Binding of rapamycin (yellow) changes the
surface of FKBP12 (blue), making it favorable for FRAP binding (right). The structures are taken from the FKBP12-rapamycin-FRAP complex (PDB ID: 1FAP).
(D) The protein binding area (light orange) and the ligand binding surface (light yellow) in GluN2B (blue) shown in surface presentation (left). The protein
binding area (light blue) and the ligand binding surface (light yellow) in GluN1 (orange) shown in surface presentation. The structures are taken from the
GluN2B-ifenprodil-GluN1 complex (PDB ID: 3QEL).
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with every elementary step reversible. Because of this feature,
the KD of all four elementary reactions are related by the
cooperativity (a) of the system, where a = K1D/K4D = K2D/K3D.
This provides the basis for further kinetic modeling of these
systems. Such a framework is useful in the rational discovery of
molecular glues and neosubstrates. The implication of this
analysis is that different ternary structure formation mechan-
isms should be taken into consideration as one searches for
molecular glues and neosubstrates of E3 ubiquitin ligases.
Strategies for molecular glue discovery where ternary complexes
are driven primarily by protein–protein binding versus ligand–
protein binding need to be considered differently.

Computational approaches for
identifying weak protein–protein
interfaces

Discovering weak protein–protein interactions that can be
further stabilized is key to develop molecular glues. Rational
design of molecular glues has been difficult mainly due to a
lack of understanding and predictability of weak interactions,
for example between the protein of interest and the E3 ubiqui-
tin ligase. As outlined above, the molecular glue can simply
enhance an already existing PPI or it can induce one via tight
binding to a single protein first. Here, we focus on the first
scenario, identifying existing, weak, fortuitous interactions
between two proteins could be the first step in rational design
and discovery of new molecular glues. However, this approach

remains challenging. For known MG-PPI, the binding affinity
between the two proteins without the molecular glue can be in
the mM range,18,25,47,55,56 too weak for structure determination
approaches such as X-ray crystallography. NMR spectroscopy
can be used to probe weak protein–protein interactions,57 but
the throughput is slow and therefore is ill-suited for the task
of screening many potential protein pairs. Computational
methods of PPI prediction could be leveraged to fill the gap
of identifying PPIs with weak intrinsic binding affinity.

Computational approaches for predicting protein–protein
complex structures typically involve two steps, complex genera-
tion and ranking. The two tasks can be achieved via either
physics-based or machine learning (ML)-based and deep
learning (DL)-based algorithms. Physics-based approaches rely
on the underlying physics of the system and require rather little
a priori knowledge, while ML/DL models leverage existing
protein–protein complex data to learn the correct patterns for
prediction.

Physics-based protein–protein docking methods can further
be divided into ab initio approaches, or homology-based
approaches to reduce the search space. The homology-based
approach searches for homologous complexes with known
structures (e.g., templates), which are used to guide docking
pose generation.58–62 The ab initio approach uses a variety
of methods to search the conformational space of the PPIs,
including fast Fourier transform63–65 and geometric hash-
ing,66,67 and spherical polar Fourier correlations.68,69 Both
approaches provide candidate docked poses called decoys.
Ab initio docking is especially helpful when no homologous

Fig. 7 Molecular glue-induced ternary structure formation mechanism. (left) The elementary reactions leading to ternary complexes. There are two
paths for ternary structure formation. Path 1 starts from protein–protein binding while Path 2 starts from protein and molecular glue binding. Both paths
meet at the final product – the formed ternary complex. (right) Three examples showing complexes with different ternary structure formation
mechanisms. In the complex formed by GluN2B, ifenprodil, and GluN1, Path 1 dominates with K1D,GluN2B-GluN1 = 1 mM, K2D,GluN2B-ifenprodil = N.D., and
K3D,GluN2B-ifenprodil-GluN1 = 50 nM. In the complex formed by CRBN, lenalidomide, and CK1a, no single path dominates the ternary structure formation
(K1D,CRBN-CK1a = 2 mM, K2D,CRBN-lenalidomide = 180 nM, K4D,CRBN-lenalidomide-CK1a = 12 nM). In the complex formed by FKBP12-rapamycin-FRAP, Path 2
dominates with K1D,FKBP12-FRAP = N.D., K2D,FKBP12-rapamycin = 0.2 nM, K4D,FKBP12-rapamycin-FRAP = 12 nM. The color schemes of the components follow those
in the graph on the left. These components include P1, P1–P2, P1-MG-P2, and P1-MG starting from the left, going clockwise. The edges connecting the
symbols represent the reaction fluxes between different states. The thickness is a rough indication of the amount of flux with thicker lines representing
higher flux and route dominance.

RSC Chemical Biology Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 0
4/

09
/2

02
4 

3:
20

:4
7 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2cb00207h


© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Chem. Biol., 2023, 4, 192–215 |  205

complex structures exist of the queries, as is largely the case
for molecular glue induced complexes. This makes ab initio
docking an attractive tool for generating candidate structures of
gluable PPI. Recently, DL techniques have also been used to
generate protein–protein complex decoys and have provided
results that are on par or better than those generated using
traditional physics-based docking approaches and with much
less computing time.70,71

After docking poses are generated, a scoring scheme is
employed to rank them so that the most plausible structure
can be selected. There are two different types of scoring
functions, physics-based and knowledge-based. Physics-based
scoring functions usually include a weighted, linear combi-
nation of energy terms such as van der Waals, electrostatics,
and desolvation energies.72,73 They can also include empirical
terms such as shape and chemical complementarity of the
interacting surfaces and the size of buried interfaces.74,75 The
optimal weights of these terms need to be determined using
known protein–protein complex systems. Knowledge-based
scoring functions typically take the shape of a statistical
potential that is constructed using known complex struc-
tures.76–79 The frequencies of interactions between atoms or
residues are recorded for a set of known, diverse complexes.
By applying Boltzmann’s equation to the ratio of the observed
and expected frequencies for an atom/residue pair, one can
estimate its potential of mean force. A total score can then be
computed for a given interface as a contribution from all
interacting atom/residue pairs and is used in ranking.

Another avenue for developing these special scoring func-
tions is to use a ML model trained on appropriate datasets.
There are already several ML-based decoy generation and
ranking algorithms46,70,80–83 publicly available. One example
is the MaSIF framework70 which uses protein surface patches
with precomputed geometric and physicochemical features as
inputs. It then applies a geometric neural network to the inputs
to generate fingerprint representations. The fingerprints of
potential binding partners are scanned and those that show
complementarity were used to generate decoys, followed by
reranking using another trained neural network. The perfor-
mance on a test set of 100 complexes is on par with commonly
used physics-based docking programs PatchDock84 and
ZDOCK85,86 but with a fraction of the computational cost.
A recent development of the framework, dMaSIF,87 is a differ-
entiable end-to-end DL model built on the MaSIF framework.
It does not require precomputed features and uses a point
cloud to represent the protein surface. The change introduced
by dMaSIF led to a significant improvement in run time and
memory use while maintaining a similar level of performance
as MaSIF.

Inspired by the MaSIF and dMaSIF protein–protein inter-
action prediction workflow, Orasch and coworkers88 devised
an DL model that learns the most suitable embeddings for
predicting protein–protein interactions using point cloud
representation of protein surfaces together with precomputed
features. They trained this model using the MaSIF dataset and a
more diverse orthogonal dataset and then applied it to predict

protein–protein interfaces formed upon PROTAC binding.
For a set of 16 complexes, an average area under the receiver
operating characteristic curve (ROC AUC) of 0.87 is achieved,
much better than a random model which would give an ROC
AUC of 0.5. This indicates that the features present in the
training set of known protein–protein complexes are likely
important in the PROTAC-induced protein–protein interfaces
as well. One caveat of the study is that no precision or recall
values were reported for the PROTAC-induced complex set.
These are important measures of model performance and
should be part of model performance evaluation. Still, this
study highlights the potential of using ML and DL in predicting
weak interfaces, like the ones induced by molecular glues
and PROTACs, especially when appropriate datasets are used
in training.

A more rigorous approach for ranking the quality of protein–
protein poses is to compute the free energy of association. This
can be achieved using free energy simulations coupled with
enhanced sampling techniques. There are many flavors of free
energy calculations. The most commonly used ones are free
energy perturbation (FEP),89–91 thermodynamic integration
(TI),92 and potential of mean force (PMF) calculations.93 The
first two are routinely used to predict binding free energies
between proteins and ligands in the drug discovery settings and
have shown promise in terms of accuracy and efficiency.94,95

FEP calculations are also starting to gain popularity in muta-
tion effect prediction at protein–protein binding interfaces as
encouraging results emerge.96–98 PMF calculations can be used
to compute the absolute binding free energy of protein com-
plexes. For example, umbrella sampling simulations99,100

impose a series of biases along a reaction coordinate, in this
case the distance between the two binding partners, guiding
the dissociation or association of the complex. Methods like
the weighted-histogram analysis method101,102 or multistate
Bennett acceptance ratio103 can then be used to obtain the
unbiased the population distribution along the reaction coor-
dinate, from which the PMF along the reaction coordinate can
be computed. The binding free energy is the PMF difference
between the associated and fully dissociated states. This
approach has been used to study the association of well-
characterized barstar-barnase104 protein complex and the pre-
dicted binding free energy is within 2 kcal/mol of experimental
value.105 Other techniques like metadynamics106 and adaptive
bias force107–109 simulations can also be used to sample the
conformational space upon association or dissociation and
obtain the PMF, from which the binding free energy is
extracted. A recent study by Wang et al., showcased the utility
of metadynamics in protein–protein binding free energy
predictions.110 The dissociation PMF profiles and the binding
free energies of 19 distinctive protein–protein complexes were
computed and compared with the corresponding experimental
measurements. A remarkable R2 of 0.74 was observed between
the predicted and the experimental binding free energy values,
indicating a high degree of correlation. The main advantage of
applying the PMF approach to compute binding free energy
is that it uses explicit representation for both the solvent
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(e.g., water) and the solute atoms and employs molecular
dynamics simulations to incorporate conformational flexibility.
Even though it produces accurate binding free energies, the
computational cost is also considerable. Adequate sampling is
the key for success in PMF-based free energy calculations. In
the metadynamics study,110 50 replicas and an accumulative
simulation time of 2 ms are required to obtain the converged
binding free energy for each system tested. However, given the
low throughput this approach is restricted for use when a small
subset of decoys has already been chosen for analysis or when
no other alternatives are available.

Limitations still exist for computational prediction of
complex structures. One major obstacle is the lack of ability
to incorporate structural rearrangement upon complex for-
mation. Most physics-based and ML-based methods work well
on complexes formed between rigid components, but the
performance drops when one or both monomers undergo
conformational change upon complex formation.59,111,112 Tech-
niques such as soft docking,113–115 ensemble docking,116,117

sidechain optimization,72,118,119 and adaptive conformer
generation120 can be applied in ab intio docking to overcome
some of the flexibility issues, especially those involving small
and local changes (e.g., sidechain rearrangement). Predicting
complexes involving large conformational change upon bind-
ing is still challenging for ab intio docking. With ML-based
methods, by choosing the appropriate protein representation
and model architecture, one may be well-positioned when faced
with complex prediction challenges where flexibility is
involved. For example, a coarse-grained representation of pro-
tein surfaces using residue-level instead of atom-level features
will likely be less sensitive to sidechain conformational changes
and produce reasonable results for those with small induced
conformational changes upon binding.112,121 DL methods like
AlphaFold71,122 and RoseTTAFold123 use multiple sequence
alignment and residue pairwise relations to represent protein
structures. These representations are processed by multiple
neural networks to predict the relative distances between
residues, which are then used to guide the folding of a single
chain protein or the binding of two proteins. Because of these
representations, such methods are able to succeed in predict-
ing complex structures that undergo large conformational
changes upon binding and are traditionally deemed as hard
targets.124

Another factor preventing the application of these methods
in predicting molecular glue-induced PPI is accuracy. Many of
the current scoring functions in docking programs and ML/DL
methods are developed using complex datasets with little or no
presence of MG-PPI and thus fail. For example, AlphaFold-
multimer71 relies on co-evolutionary information encoded in
the multiple sequence alignments to guide the complex pre-
diction, but most of the MG-PPI do not have this intrinsic
property, except for those involving disease causing mutations
on the native substrates of E3 ubiquitin ligases, such as those
pS33/pS37 degron mutants and b-TRCP.25 This review serves as a
first attempt to understand the interactions governing MG-PPI
and how they differ from other protein–protein complexes.

With the development of special scoring functions and new,
appropriate training datasets we can overcome this important
problem.

Concluding discussion

Molecular glue-induced ternary complex is an umbrella term
used to describe all protein complexes that require a third
entity, usually a small molecule, to assemble or to gain stability.
As there is appreciable difference in all known molecular
glues,36 there is heterogeneity in the interfaces they induce,
as well as the mechanisms of how the ternary complexes are
formed. In this review, we divided the PPIs stabilized by
molecular glues into two categories, those that involve inter-
faces from well-folded protein domains and those that feature
specific sequence motif and folded domain interactions. The
interaction patterns differ for these two types of interfaces with
the first showing similarity to the rest of protein–protein
interfaces seen in the PDB. The second category of interfaces
involve sequence motifs spanning three to thirteen amino
acids, many of which have signature interaction motifs such
as phosphorylated Ser/Thr and leucine zipper. The different
nature of these two types of PPIs demands separate discovery
strategies.

Based on the currently known molecular glue-induced tern-
ary complexes, the mechanism of ternary structure formation
varies for different complexes. On one extreme of the spectrum,
ternary structure formation starts from a small molecule
binding to one of the protein partners, either altering its
surface properties or its conformational distribution, making
it more attractive to the other protein partner. On the other end
of the spectrum, the two proteins come together first with some
binding affinity. The newly formed complex then offers a
binding pocket for a molecular glue to bind and stabilize the
ternary complex. Most of the ternary complexes likely form
using a mixture of these two mechanisms. In essence, the
formation of ternary complexes involving molecular glues is
similar to that induced by bi-specific degraders.125 From mono-
mers, there are two pathways to form a ternary complex. Each
path contains two reactions, binary and ternary formation
(Fig. 7). The KD of these reactions are constrained by coopera-
tivity. Three-component systems like these have been studied
extensively.125,126 This means that one can interrogate these
ternary systems using analytical and numerical simulations.
For example, ordinary differential equations can be set up to
describe the system of reactions. For a given initial condition,
with the KD known, one may compute the amount of ternary
complexes formed. On the other hand, for a desired amount of
ternary structure formation, one may back calculate the KD that
produce such an amount and use this information to guide the
identification of molecular glues and neosubstrates.

In the context of E3 ubiquitin ligases, the rational discovery
of neosubstrates and molecular glues is difficult because one
needs to consider both variables simultaneously. To simplify
this problem, it is useful to narrow down the search space by
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reducing the number of candidate neosubstrates or molecular
glues. In the effort to reduce the number of neosubstrates,
being able to predict which target protein and E3 ubiquitin
ligase pairs are likely to form weak protein–protein interactions
that can be further stabilized by small molecules is key. Direct
prediction of whether two proteins could come together with
the help of a small molecule using cutting edge ML algorithms
is challenging due to the lack of appropriate datasets since
the number and diversity of known molecular glue-induced
complexes is limited. Predicting the binding affinities between
two protein partners in a high throughput fashion is still an
open challenge. However, protein–protein decoy generation
and ranking algorithms, both physics-based and ML-based,
show promise in finding the most likely complexes formed
between two proteins.70,84–88 These complexes then need to be
evaluated by their ability to bind and to be stabilized by small
molecules. Such a problem is similar to those in traditional
small molecule drug discovery where one needs to identify
effective binders for the targets of interest. Experimentally, this
is achieved by performing high throughput screens and hit
validation followed by lead optimization. Computational
approaches such as binding pocket identification,127–132 pro-
tein–ligand docking,133–138 virtual screening,139–141 and ligand
binding free energy calculations94,95,142,143 can also be applied
and have been shown to be helpful in this area. With a
combination of computational and experimental approaches,
rational discovery of molecular glues may indeed be feasible,
even though the best and the most effective solution to this task
is yet to be determined.

Recent development of DL models trained on large datasets
to predict protein structures122,123 and protein–protein complex
structures71,144,145 puts ML/DL methods in the spotlight in all
fields of biology. Methods inspired by these ML/DL programs
can be extremely helpful in predicting potential complexes
between two proteins of interest. Recently, Tsaban et al.146

revealed that AlphaFold2 can be used to predict peptide–
protein complexes with reasonable accuracy without using
multiple sequence alignment information for the peptide por-
tion based on the hypothesis that binding of a peptide to its
well-folded partner is similar to the final step of protein
folding,147 where the last piece of unstructured fragment folds
unto the folded portion. DL methods like AlphaFold and
RosettaFold also hold potential to incorporate conformational
changes into complex structure prediction. This is especially
helpful for predicting complexes like DDB1-CR8-CDK12, where
binding of CR8 to apo CDK12 leads to large conformational
change of the latter, revealing a new surface for DDB1 associa-
tion. By applying attention mechanism to key interactions and
folding the complex from scratch, one may finally overcome the
challenge of flexible docking. The research in this area is still in
early stage but it has been shown in a recent NeurIPS con-
ference paper that using an iterative transformer network, the
DL approach, GeoDock148 is able to predict backbone confor-
mational changes upon protein–protein complex formation.
Another example of using DL in protein–protein complex
prediction is the protein surface embedding developed in the

MaSIF framework70 trained using a large structural dataset.
This embedding could be used in different kinds of predictions
tasks. Language models like BERT (Bidirectional Encoder
Representations from Transformers)149 have also been shown
to be able to learn protein representations that encode their
fundamental properties such as secondary structure, binding
site hotspots, and sites for post-translational modification.150,151

Using such a model trained on degron data from the ELM
database, Hou and coworkers49 show that they can predict new
degrons and assign them to E3 ubiquitin ligases. In conclusion,
the outlook for molecular glue discovery is bright and ML/DL
methods hold tremendous potential to aid in this process. Fram-
ing the question correctly and constructing appropriate datasets
are crucial elements to success.

Lastly, being able to predict whether and how ternary
structures would form is only solving part of the puzzle.
Ultimately, one needs to design small molecule glues that can
induce ternary structure formation and degradation of disease
relevant neo-substrates. Ternary structure formation does
not always guarantee degradation. This has been thoroughly
discussed in the review on enzymology of degraders.152 A few
recent studies have used physics modeling153,154 and ML
techniques155 to predict or rationalize degradability of PROTAC
molecules. These studies all point to lysines, especially those
that are E2-accesible ubiquitination sites, are indicative of
degradation potential. It is difficult to say how generalizable
these approaches are as they are mostly based on a handful of
E3 ligases. The majority of E3 ligases are underexplored
in terms of their structures and their ability to engage in
molecular glue-induced degradation. The field is in its early
days, but it is quickly evolving. Many exciting new studies are
well under way. Concerted efforts from both computational and
experimental groups are required to fully understand and
harness the E3 ligase-mediated degradation system.
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