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ed oxidative cross-coupling of
phenols†

Zhen He, Gregory J. P. Perry and David J. Procter *

A metal-free, oxidative coupling of phenols with various nucleophiles, including arenes, 1,3-diketones and

other phenols, is reported. Cross-coupling is mediated by a sulfoxide which inverts the reactivity of the

phenol partner. Crucially, the process shows high selectivity for cross-versus homo-coupling and allows

efficient access to a variety of aromatic scaffolds including biaryls, benzofurans and, through an iterative

procedure, aromatic oligomers.
Introduction

Metal-catalyzed cross-coupling, involving an aryl halide and an
organometallic partner, is a powerful tool for biaryl synthesis
(Scheme 1A).1 However, oxidative, C–H/C–H couplings,
involving non-prefunctionalized partners, have recently come to
the fore as an attractive alternative (Scheme 1B).2 Their devel-
opment remains a challenge, as the reactivity of one partner
must be inverted, and known processes are compromised by the
s-coupling. (C and D) Metal-free,
) Sulfoxide-mediated, oxidative
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requirement for expensive, supply risk, metal oxidants or metal
catalysts.2 The development of selective, metal-free C–H/C–H
coupling reactions is, therefore, an important goal.3

Phenols, in particular unsymmetrical phenol-derived biaryls,
are ubiquitous in nature, biomaterials and ligand collections
for catalysis.4 Approaches to these compounds generally require
multiple steps – prefunctionalization of partners or manipula-
tion of protecting groups – and/or the use of metals.5 Metal-free
oxidative coupling of unprotected phenols is therefore of
interest, however, avoiding homocoupling is a challenge
(Scheme 1C).6 Nevertheless, metal-free cross-coupling of
phenols has been described, most notably using electroorganic
synthesis7 or hypervalent iodine reagents,8 amongst other
approaches9 (Scheme 1D).

We proposed that sulfoxides10,11 could be used to invert the
reactivity of a phenol partner, thus providing an alternative
approach to their oxidative coupling (Scheme 1E). Capture of
phenols by sulfoxides will deliver aryloxysulfonium intermedi-
ates I that are electrophilic and capable of coupling with various
nucleophiles (e.g. Ar2).12–14 The major challenge in such an
approach is the avoidance of homocoupling.13 Furthermore,
alternative Pummerer chemistry of the sulfoxide15 and rear-
rangement of sulfonium intermediates I9a,10,16must be by-passed.

Here we describe the metal-free, oxidative cross-coupling of
phenols with various carbon nucleophilic partners, including
other phenols, arenes, and 1,3-diketones (Scheme 1E).
Couplings deliver biaryls, 2-aryl 1,3-dicarbonyl compounds and
benzofurans. An iterative procedure allows selective double
functionalization of phenols and the preparation of aryl
oligomers.
Results and discussion
Oxidative cross-coupling of phenols with phenols, phenol
derivatives and arenes

Guided by our previous studies, phenol 1a in CH2Cl2 was
treated with sulfoxide 4a, activated using triuoroacetic
Chem. Sci., 2020, 11, 2001–2005 | 2001
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Scheme 2 Oxidative cross-coupling of phenols with phenols, phenol
derivatives and arenes. Reaction conditions: to sulfoxide 4a (0.11
mmol) in CH2Cl2 (1 mL, 0.1 M) in an oven-dried tube flushed with N2 at
�40 �C was added TFAA (0.17 mmol, 1.7 equiv.). After 5 min, phenol 1
(0.1 mmol in 0.5 mL CH2Cl2) was added in one portion. Arene 2
(0.15 mmol in 0.5 mL CH2Cl2) was then added immediately. After
15 min at �40 �C, the mixture was warmed to room temperature and
stirred for 2 h. a CH2Cl2/TFA (1 : 1) as solvent. b Larger scale: (1.2 g of 1
was used). c 2 equiv. of 2 and 2.2 equiv. of 4a.

Scheme 3 Oxidative coupling of phenols with 1,3-diketones. Reaction
conditions: to sulfoxide 4a (0.11 mmol) in CH2Cl2 (1 mL, 0.1 M) in an
oven dried tube flushed with N2 at �40 �C was added TFAA
(0.17 mmol, 1.7 equiv.). After 5 min, phenol 1 (0.1 mmol in 0.5 mL
CH2Cl2) was added in one portion. 1,3-Dicarbonyl 5 (0.15 mmol in
0.5 mL CH2Cl2) was then added immediately. After 15 min at �40 �C,
the mixture was warmed to room temperature and stirred for 2 h.
a CH2Cl2/TFA (1 : 1) as solvent.
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anhydride (TFAA), before subsequent addition of 2a (1.5
equivalents), to give the product of cross-coupling 3a in 91%
isolated yield (see the ESI† for optimisation).
2002 | Chem. Sci., 2020, 11, 2001–2005
2-Naphthols bearing bromo (3c, 3e, 3h), methoxy (3b),
phenyl (3d), cyano (3f) and ester (3g, 3i) groups at the 3-, 6- and
7-positions were found to be compatible with the coupling
(Scheme 2). The process also embraced 1-naphthol (3j), phenols
(3k–3m) and their methyl ether derivatives (3n–3q). Of partic-
ular note, pyrene (3r) underwent coupling with 1a to give 3r. The
structure of 3r was conrmed by X-ray crystallographic
analysis.17

The phenol coupling partner (Ar1) could also be varied and
products of ortho-coupling with a range of nucleophilic partners
gave products 3s–3ac (30–90% yield). Interestingly, treatment of
4-methoxyphenol with 1,2,4-trimethoxybenzene, under our
standard conditions, gave the product of double arylation 3ab0

in 46% yield. The yield of 3ab0 could be increased by using 2.2
equivalent of the sulfoxide 4a and 2.0 equivalents of 1,2,4-tri-
methoxybenzene (80%). Diarylated compound 3ac0 could also
be obtained. Interestingly, the couplings could be tuned to
favour products of mono- or bis-coupling; using CH2Cl2/TFA
(1 : 1) as solvent favoured formation of the mono-arylated
products 3ab and 3ac. Finally, the oxidative coupling could be
carried out on a gram scale; the use of 1.2 g of 4-methoxyphenol
produced 1.6 g of 3ab (55% isolated yield). In all cross-
couplings, 3-methyl benzothiophene was recovered in high
yield by chromatography and could be reused.
Oxidative coupling of phenols with 1,3-diketones

1,3-Dicarbonyl compounds could be used as the second nucle-
ophilic partner (Scheme 3). For example, treatment of 1a with
1,3-diphenylpropane-1,3-dione afforded 6a in 85% yield. The
products of ortho coupling underwent cyclization to give
This journal is © The Royal Society of Chemistry 2020
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Scheme 5 Proposed mechanism and support for the intermediacy of
an aryloxysulfonium salt.
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benzofuran products; for example, the use of 4-methoxyphenol
gave aroyl[b]benzofuran18 6e in 55% isolated yield.

Iterative coupling of three nucleophiles

Intrigued by the formation of the triaryl products 3ab0 and 3ac0

(Scheme 2), we considered an iterative process that would allow
the sequential, metal-free, oxidative coupling of phenols with
two different nucleophilic partners (Scheme 4). For example, 4-
methoxy phenol was rst coupled with 1,2,4-trimethoxybenzene
to afford 3ab. Subsequent treatment of 3ab with 1,3-dimethox-
ybenzene gave the unsymmetrical, diarylated phenol 7a in 68%
yield. 1,3-Diphenylpropane-1,3-dione could also be used as the
third nucleophilic partner and gave C7-arylated benzofurans 7c
and 7h.19

Mechanistic studies

Based on the above results, and our previous studies,10,13

a possible mechanism for the oxidative cross-coupling is shown
in Scheme 5A.13 Activation of sulfoxide 4a with TFAA gives acy-
loxysulfonium salt II and interrupted Pummerer reaction with
a phenol coupling partner gives aryloxysulfonium salt I.
Subsequent attack of the second partner, at the ortho or para
position of the rst, results in C–C bond formation and expul-
sion of 3-methylbenzothiophene. The control experiments in
Scheme 5B highlight the important role of the hydroxy group in
Scheme 4 Iterative coupling of three nucleophiles. Reaction condi-
tions: to sulfoxide 4a (0.11 mmol) in CH2Cl2 (1 mL, 0.1 M) in an oven
dried tube flushed with N2 at �40 �C was added TFAA (0.17 mmol, 1.7
equiv.). After 5 min, 3 (0.1 mmol in 0.5 mL CH2Cl2) was added in one
portion. A third nucleophile (0.15 mmol in 0.5 mL CH2Cl2) was then
added immediately. After 15 min at �40 �C, the mixture was warmed
to room temperature and stirred for 2 h. a Compound 3z was used as
the substrate. b CH2Cl2/TFA (1 : 1) as solvent.

This journal is © The Royal Society of Chemistry 2020
the rst partner and suggest that activation of the phenol occurs
via intermediate I. However, we were unable to detect or isolate
this intermediate and further studies are needed to conrm the
exact mechanism for phenol activation. Scheme 5C shows that
the order in which the two nucleophilic partners are combined
can be critical, suggesting that rapid and irreversible, arylox-
ysulfonium salt formation takes place between the activated
sulfoxide I and the rst phenol partner, and that arylox-
ysulfonium salt intermediates have very different reactivities.20
Conclusions

In summary, a metal-free, sulfoxide-mediated, oxidative cross-
coupling unites phenols and various nucleophilic partners,
including phenols, 1,3-diketones and arenes. The capture and
inversion of reactivity of the rst nucleophilic partner, using an
interrupted Pummerer reaction, prior to coupling with the
second nucleophile, is key to the cross-coupling. Homocoupling
is not observed and alternative Pummerer and rearrangement
processes are avoided. Iterative sulfoxide-mediated couplings
allow the construction of polyaryl compounds.
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This journal is © The Royal Society of Chemistry 2020
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20 When reversing the order of addition of the coupling
partners (Scheme 5C, bottom), the phenol could be
recovered (85% recovery), however, only a trace of the
naphthol component was observed. We have been unable
to detect any other side products and are currently
investigating possible decomposition pathways.
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