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The generation and intermolecular functionalisation of carbon-centred radicals has broad potential

synthetic utility. Herein, we show that benzylic radicals may be generated electrochemically from
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benzylboronate derivatives at low electrode potentials (ca. —0.3 V vs. CpoFe®*) via single electron

oxidation. Use of a catalytic quantity of a ferrocene-based electron-transfer mediator is crucial to
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Carbon-centred radicals are versatile reaction intermediates,>
and recent studies have led to numerous methods to exploit
these species in unique synthetic transformations.® Radical
pathways can be lower in energy and provide different selectivity
relative to those based on other reactive carbonaceous species,
such as carbanions or carbocations. The growing interest in
accessing radical-based pathways for organic synthesis moti-
vates efforts toward the development of new methods to
generate these species.

Electrochemistry provides a unique opportunity to generate
and manipulate radicals due to its reagent-free and tunable
control over redox processes, and it continues to expand as
a powerful technology for organic synthesis.* The oxidative
generation and functionalisation of radicals is often intimately
linked to the nature of the chemical oxidant employed.> Elec-
trochemical oxidation of radical precursors, however, is not
linked to the subsequent radical functionalisation step, thus
potentially providing the basis for a wider variety of intermo-
lecular functionalisation strategies. There are myriad examples
of electrochemical oxidation to access net two-electron reac-
tivity,® but far fewer electrochemical methods exist that rely on
single-electron pathways to selectively generate and function-
alise neutral radicals (Fig. 1A). Most precedents feature trapping
of an electrochemically generated radical by O,,” while those
undergoing anaerobic functionalisation are scarce.® The limited
number of precedents may be attributed, in part, to the
proclivity of carbon-centred radicals to undergo side reactions
when generated in close proximity to an electrode surface.
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achieve successful radical functionalisation and avoid undesirable side reactions arising from direct
electrochemical oxidation or from the use of stoichiometric ferrocenium-based oxidants.

Common side reactions include direct reaction with the elec-
trode, further oxidation of the radical to afford carbocation
species, and homocoupling of the radicals to afford dimeric
(Kolbe-type) products (Fig. 1B). Intramolecular functionalisa-
tion of radicals can circumvent some of these problems, and
a number of demonstrations of such reactivity have been
recently described.® Ultimately, however, it would be desirable
to control the intermolecular reactivity of electrochemically
generated radicals. Herein, we show that significantly improved
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Fig. 1 Aspects of electrochemical radical generation.
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control of radical reactivity is possible through the use of
ferrocene-based electron-transfer mediators. The mediator
shuttles redox equivalents into the bulk solution, away from the
electrode surface where the radical is susceptible to degradation
pathways, and it enables productive intermolecular reactivity
through an electrochemical-chemical (EC’) mechanism
(Fig. 1C). The results herein illustrate the utility of a mediated
electrolysis strategy for radical generation,'" with potentially
broader implications for the growing field of electro-organic
chemistry.

Benzylboronic esters were selected as appealing entry-points
for electrochemical generation of carbon-centred radicals. The
oxidative liberation of radicals from organoboron compounds
has been demonstrated under photochemical'* conditions and
with stoichiometric oxidants,*® but electrochemical oxidation of
organoboron reagents to generate radical intermediates has yet
to be fully explored.™

Benzylpinacol boronic ester (1a) was analysed by cyclic vol-
tammetry, and was found not to undergo oxidation within the
examined potential window (Fig. 2A). This observation is
consistent with the need to use strong chemical oxidants (ca. 2 V
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Fig. 2 (A) CVs showing no oxidation of 1la without added base. (B)

Single electron oxidation of benzylboronate with homolytic C-B bond
cleavage to reveal radical. (C) Onset oxidation potentials measured for
a variety of boronic esters (la, 1c, 1d) with bases (colour-coded for
their use with each boronic ester) and boronate 1b. Lines through
points indicate a range of uncertainty.
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vs. NHE)" to oxidise neutral boronic acids.”*** Addition of
NaOH to 1a generates the anionic boronate (*'B NMR), which is
readily oxidised at lower potentials. The cyclic voltammogram
(CV) exhibits an irreversible redox wave,'® suggesting single
electron-transfer (SET) at the anode forms an unstable neutral
radical that rapidly homolyses via C-B bond cleavage to give the
benzylic radical (Fig. 2B). Variation of the boron substituents
led to significant changes in the boronate oxidation potential,
with an observed potential range of nearly 1 V (Fig. 2C). The
potential is affected by both the ancillary ligation (e.g., diolate,
diamide, trifluoro) and the identity of the anionic activator (X ),
which appears to include both electronic (¢f. TBAF vs. NaOH for
1a) and steric effects (¢f. KOt-Bu vs. KOMe). The resulting ben-
zylboronate species exhibit redox potentials that are more than
0.5 Vlower than many functional groups commonly assumed to
be easily oxidised, (e.g., enamines (0.0-0.2 V vs. Fc¢/Fc"), tri-
alkylamines (0.45-0.55 V) or anilines (0.1-0.6 V))."

Benzyltrifluoroborate 1b oxidises at the highest potential,
consistent with the anionic stabilisation from three electro-
negative fluorides. The fluoride adduct of boronic ester 1c
(derived from addition of TBAF) is oxidised more readily than
the fluoride adduct of 1a, suggesting the 6-membered ring of 1c
engenders a less stable tetrahedral boronate. In the absence of
an anionic activator, aniline oxidation was observed in dia-
minoboron reagent 1d at approximately 0.1 V vs. Fe/Fe'. Addi-
tion of TBAF, however, increases the oxidation potential and
leads to an irreversible CV trace,'”® which indicates boronate
oxidation and C-B bond cleavage. No electrochemical activity
was observed for benzyl MIDA boronates and ill-defined redox
activity was observed for a benzyl cyclic triol boronate.'® The
significant influence of anion ligation to boronic ester deriva-
tives offers a flexible strategy to adjust the oxidation potential
for radical generation, and may find useful synthetic and
materials applications beyond those presented herein.

During the voltammetric studies, cycling the applied
potential multiple times led to a decrease in the magnitude of
the response current (Fig. 3). This effect was observed for all
tested boronates, with both glassy-carbon (GC) and Pt disk
electrodes,™ and it was not attenuated by the presence of an
exogenous radical trap, which could plausibly compete for
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Fig.3 Cycled CVsreveal a current loss due to benzylic radical grafting
and subsequent electrode fouling. CVs of 1la + NaOH in MeCN and
TBAP (0.1 M) and oxo-TEMPO (5 mM) (blue) and 1b (5 mM) with
dihydroanthracene (5 mM) in MeCN and TBAP (0.1 M) (red).
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reaction with the benzylic radical. The activity could only be
restored after polishing the electrodes. SEM analysis of the
electrode surface before and after fouling did not reveal bulk
changes,"™ suggesting that electrical insulation arises from
molecular scale modification of the electrode surface.' This
conclusion is consistent with precedents for intentional deri-
vatisation of electrode surfaces via oxidation of benzylcarbox-
ylates™ or reduction of diazonium reagents.*

The electrode fouling observed by voltammetry was also
manifested in the oxidation of boronates via bulk electrolysis
(Scheme 1). The electrolysis was performed with RVC in the
presence of 4 equivalents of TEMPO to trap the benzylic radical.
The TEMPO-functionalised product was observed, but only in
moderate yields and with a relatively poor mass balance (MB).**
This outcome, which could not be improved by altering the
identity of the boronate, is attributed to non-productive
substrate consumption and electrode fouling.

These observations prompted us to consider the use of an
electrochemical mediator. Triarylamines® and imidazoliums®
have been reported as electrochemical single-electron redox
mediators, however, they operate at much higher oxidation
potentials (ca. 0.5-1.5 V) that are poorly matched to the low
potential benzylboronates (Fig. 2). On the other hand, ferrocene
(Fc) derivatives display redox potentials in the appropriate
range. Ferrocene itself was recently demonstrated by Xu and co-
workers as an electrochemical mediator in radical generation
for intramolecular functionalisation,> but other ferrocene
derivatives have yet to be explored in this role. The redox states
of all tested ferrocene derivatives show stable and reversible
activity (CV), and thus we decided to investigate their use as
catalytic mediators for boronate oxidation.

Voltammetric analysis of two ferrocene derivatives, octa-
methyl-ferrocene (FcMeg) and dibromo-ferrocene (FcBr,), dis-
played an increased oxidation current in the presence of
a boronate substrate (Fig. 4). This current increase is typical of
an electrochemical-chemical (EC’) mechanism (Fig. 1C), in
which the mediator is regenerated on the timescale of the CV
scan, and is proportional to catalyst activity.*

The onset redox potentials of these two ferrocene derivatives
are approximately 200 mV lower than the onset potential of the
respective boronates (3a + NaOH and 1b, respectively). This
feature is designed to attenuate direct substrate oxidation at the
electrode and ensure that the majority of the substrate is

Direct oxidation

X - h
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M™ “Bpin TEMPO 0
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MeCN, TBAP NaOH| 65% |76%
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Scheme 1 Inefficient radical generation and functionalisation with

direct oxidation. Reactions performed in divided cells under N,
atmosphere with RVC:Pt electrodes (0.1 mmol scale), under constant
potential (0.0 V, TBAF) or current (0.4 mA, NaOH), NMR yields shown.
2a used in bulk electrolyses for °F NMR probe. Secondary benzyl-
boronate oxidation potentials are between 60-90 mV lower than the
primary benzylboronates shown in Fig. 2.*
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Fig. 4 CVs showing ferrocene derivative mediated boronate oxida-
tion. The increase in the current of the ferrocene derivative oxidation is
due to catalytic boronate oxidation. Left: CVs (average of 3 runs) of
FcMeg (1.5 mM) in MeCN and TBAP (0.1 M), 10 mV s~ ! (green) and,
added to that, (1-phenethyl)pinacol boronic ester (50 mM) and NaOH
(50 mM) (blue). Any current due to background substrate (3 + NaOH
(50 mM)) oxidation (grey dashed) has been removed from the blue
catalysis trace. Right: CVs (average of 3 runs) of FcBr, (1 mM) in
MeCN:THF (1:1) and TBAP (0.1 M) 10 mV s ! (green) and, added to
that, 1b (5 mM) (red). Current due to background substrate (1b (5 mM))
oxidation (grey dashed) has been removed from the red catalysis trace.

oxidised in the bulk solution by the mediator. The thermody-
namically uphill electron transfer (200 mV = 4.6 kcal mol ™) is
driven by rapid and irreversible C-B bond homolysis from the
oxidised boronate derivative. Employing less oxidising ferro-
cene derivatives, in which the energy difference is larger, led to
a decrease in the magnitude of the catalytic current, as evident
by Cv.*®

The utility of ferrocenium mediators for boronate oxidation
was then probed wunder bulk electrolysis conditions
(Scheme 2).>® Use of a catalytic quantity of FcMeg (10 mol%) led
to a significantly improved yield of the benzylic TEMPO adduct.
With constant current electrolysis, the oxidation proceeds at
a lower potential (ca. 200 mV) than in the absence of the
mediator, which attenuates electrode fouling processes that
otherwise consume substrate (Fig. 1B). A lower concentration of
TEMPO could also be tolerated under these conditions.

Electrochemically regenerating a catalytic ferrocenium
derivative proved to be more effective than employing a stoi-
chiometric quantity of the oxidant. The pairing of FcMeg" or
FcBr," with low and high potential boronates (2a + NaOH and
2b), respectively, only afforded low yields of the desired coupled
products (Scheme 3). The increased concentration of the Fc'-
based oxidants led to over-oxidation byproducts and boronate

Mediated oxidation

o FcMeg 'h
o (10mol%) [ N
Na* BRin 4 4y Q
TEMPO (Y . ,
(1.5 equiv.) " Yield = 99% '
F(z NaOH) MeCN, TBAP  F ' Mass Balance = 100%
a + Na emmmmmmmmme e d

Scheme 2 Efficient radical generation and productive functionalisa-
tion facilitated by the inclusion of a catalytic electron mediator.
Reactions performed in divided cells under N, atmosphere with
RVC:Pt electrodes (0.1 mmol scale), NMR yields shown.
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Scheme 3 Inefficient radical generation and functionalisation with the
use of stoichiometric quantities of oxidant. The more oxidatively
resilient oxo-TEMPO was required when used in combination with the
more oxidising FcBr,*.
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TEMPO
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R R' NaOH (25 equiv.) » R R'
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| TEMPO TEMPO TEMPO TEMPO '

Scheme 4 Efficient electrochemical mediated single electron oxida-
tion and trapping of benzylic radical demonstrated. Reactions per-
formed in divided cells under N, atmosphere with RVC:Pt electrodes
(0.1 mmol scale, 0.4 mA), NMR yields shown.

decomposition.'®*”?®* These observations show that controlled
electrochemical regeneration of a catalytic mediator can have
advantages over the use of a stoichiometric chemical oxidant.
The effectiveness of the mediated electrochemical oxidation
strategy proved successful with other low-potential benzylbor-
onates, exhibiting high yields and mass balances in each case
(Scheme 4). This product class is useful® as, for example, cation
precursors® or as initiators for controlled nitroxide-mediated
polymerisation reactions.*

In summary, this study demonstrates the benefits of catalytic
redox mediators in the electrochemical oxidative conversion of
benzyl boronates to benzylic radicals. Mediated electrolysis
avoids electrode fouling and side-product formation, which
occur during direct electrochemical oxidation. Mediated elec-
trolysis also offers several advantages over the use of stoichio-
metric ferrocenium-based oxidants, which lead to over-
oxidation and substrate decomposition. These insights should
aid the development of electrochemical methods for the
generation and intermolecular functionalisation of carbon-
centred radicals, a potentially transformative strategy in
synthetic chemistry.
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