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Efficient trifluoromethylation via the
cyclopropanation of allenes and subsequent
C-C bond cleavaget

Yang Tang,i* Qiong Yui® and Shengming Ma () *2<

As we know, the incorporation of a trifluoromethyl group into organic molecules may significantly alter

their physical and biological properties due to the high electronegativity, lipophilicity, and excellent
metabolic stability of the trifluoromethyl substituent. Thus, an efficient method for the introduction of the
trifluoromethyl group is of high current interest. On the other hand, vinylic cyclopropanes are a class of

strained compounds capable of undergoing ring-opening reaction with other molecules. Here, CFs-

substituted vinylic cyclopropanes have been highly selectively formed by a copper-catalyzed cyclic
trifluoromethylation of (4,4-disubstituted-2,3-butadienyl)malonates with Togni's reagent Il, in which the
trifluoromethyl group was installed at the middle carbon of the allene unit by applying 1,10-phenanthro-
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Trifluoromethylated compounds have been widely used in all
aspects of chemistry, such as materials, pharmaceuticals, agro-
chemicals, and fine chemicals due to the high electro-
negativity, lipophilicity, and excellent metabolic stability of the
trifluoromethyl substituent."™ Of particular interest, com-
pounds containing a 2,2,2-trifluoroethylcyclopropane unit
have been identified as selective androgen receptor modula-
tors,’® anti-inflammatory agents,””* immuno-modulators,*”
and anti-tumor agents® (Scheme 1). On the other hand, vinyl-
cyclopropanes are the core structures of various pyrethroids
such as pyrethrin,"™ permethrin,”¢ cyhalothrin,"* and bi-
fenthrin.” Thus, we envisioned the structure of trifluoromethyl-
substituted vinylcyclopropanes 2 and have been interested in
developing methodologies for the efficient synthesis of this
type of compound (Scheme 1). In addition, due to the high
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line as the ligand. Such unique cyclopropanes successfully bring the trifluoromethyl group to other useful
organic skeletons by the selective cleavage of C-C bonds with an exclusive diastereoselectivity. Based on
the mechanistic studies, an allene radical addition, oxidation, and allylic substitution pathway has been
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Scheme1l A and B) Some bioactive cyclopropanes containing a
trifluoromethyl group; (C) Pd-catalyzed cyclization of allenyl malonates
with organic halides; (D) concept of introducing a trifluoromethyl group
via transition metal-catalyzed cyclopropanation.
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reactivity of the three-membered ring, such cyclopropanes 2
may also bring the trifluoromethyl group to other useful
organic skeletons via the C-C bond cleavage reactions.” To the
best of our knowledge, there is no method for the construction
of such CF;-substituted vinylic cyclopropanes and no report on
their related reactivity study. We proposed a trifluoromethyl-
ative cyclization of allenes containing a malonate unit for the
efficient synthesis of 2-type of compound (Scheme 1D).®® The
challenge here would be the regioselectivity affording either
the non-favored highly strained 3-membered products 2 or the
most favored 5-membered products 3 as observed in the Pd-
catalyzed cyclization of allenylmalonates with organic halides
(Scheme 1C).° Herein, we report our recent observation on the
highly regioselective copper-catalyzed trifluoromethylation of
(2,3-butadienyl)malonates using a hypervalent trifluoromethyl
iodonium reagent, which allows for the exclusive formation of
strained trifluoromethylated vinyl cyclopropanes 2.

Our initial investigation started with the reaction of
dimethyl 2-(buta-2,3-dienyl)malonate 1a with Togni’s reagent
II in the presence of 5 mol% of PdCl, and 2 equiv. of K,CO; in
DCM at 50 °C, however, no trifluoromethylation product 2a
was observed (Table 1, entry 1). Instead, a highly regioselective
iodo-trifluoromethylation product 3a was detected albeit as a
pair of Z/E stereoisomers.'® This clearly indicated that in this
simplest case the trifluoromethyl group was directed to the
terminal position of the allene unit in dimethyl 2-(buta-2,3-
dien-1-yl)malonate 1a, excluding the possibility of forming the
expected cyclized product 2a. Cu() or Cu(u) catalysts exhibited
similar results, still affording low yields of 4a while the for-
mation of 2a was not detected (Table 1, entries 2-4).

Thus, we envisioned to increase the steric hindrance of the
terminal position of the allene unit in 1 for the possible direc-
tion of the trifluoromethyl group to the allene middle carbon
atom to form a m-allylic metal species, which would be fol-
lowed by nucleophilic substitution to possibly afford the

Table 1 Effect of catalysts on iodo-trifluoromethylation of allene 1a?

catalyst (15 mol%)

CF;—1—0 bipyridine (20 mol%) CFs
CO,Me 1.5 equiv TBAI FsC- CO,Me
i 0 Y COMo
co 2.0 equiv KCO3 |/:\—< 2 COMe
1a Me CH,yCly, 50°C, 12 h CoMe 2a

. 4 not formed
1.5 equiv

Entry Catalyst Yield of 4a (%) (Z/E)’  Recovery of 1a” (%)

1 PdCl, © 3(2:1) 48
2 CuBr 13 (1.5:1) 26
3 [Cu(CH3CN),JPFs 20 (1.5:1) 16
4 Cu(OAc), ? 33(2.3:1) 0

“Reaction conditions: Unless otherwise specified, the reaction was
carried out using 1a (0.2 mmol), Togni’s reagent II (0.3 mmol), TBAL
(0.3 mmol), K,CO; (0.4 mmol), copper catalyst (0.03 mmol), and 2,2’
bipyridine (L1) (0.04 mmol) in 2 mL of CH,Cl, under an argon atmo-
sphere. ” Determined by 'F NMR and 'H NMR spectroscopy using
PhCF; and CH,Br, as the internal standards, respectively. “ The reac-
tion was carried out without bipyridine and TBAL “The reaction was
conducted on a 1 mmol scale of 1a with 2 equiv. of Togni’s reagent II,
K;PO, (2 mmol) as the base, Cu(OAc), (10 mol%), and 1,10-phenan-
throline (L2) (0.2 mmol) as the ligand; reaction time was 22 h.
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cyclized products 2 or 3. When dimethyl 2-(buta-2,3-dien-1-yl)
malonate 1a was replaced with dimethyl 2-(4-methyl-2,3-penta-
dienyl)malonate 1b, the reaction under the catalysis of
Cu(OAc),, CuCl,, CuF,-H,0 and Cu(OTf), (Table 2, entries 1-4)
did afford the designed trifluoromethylated vinylic cyclo-
propane 2b exclusively in moderate yields and the formation of
the 5-membered ring 3b was not observed. Cu(OAc), gave the
best results, affording 2b in 65% yield with 28% recovery of 1b
(Table 2, entry 1). CuOAc could also catalyse the reaction with
a slightly decreased yield (Table 2, entry 5). The reaction was
even better with just 1.0 equiv. of TBAI (Table 2, entry 6).
Rather unexpectedly, reducing the catalyst loading of Cu(OAc),
from 15 mol% to 10 mol% improved the yield of 2b from 65%
to 69% (Table 2, entry 7). When we further reduced the load-
ings of the catalyst and ligand, the yield dropped to 63%
(Table 2, entry 8). By comparison, only 11% of product 2b was
obtained in the absence of the copper complex (Table 2, entry 9).

Table 2 Effect of catalysts on trifluoromethylcyclopropanation of
allene 1b?

15 mol% catalyst FiC.
Ve CF,——O 20 mol% bipyridine (L1) Me_  CFs ¢

>:Z\—<002Me 1.5 equiv TBAI ——t Me
Me * O T 20equv Kco, | MéE CoMe 7\
COMe CH,Cly, 50°C, 12 h CO,Me MeO,C CO,Me

2b 3b

1b 1.5 equiv
not formed

Entry Catalyst Yield of 2b” (%) Recovery of 1b” (%)
1 Cu(OAc), 65 28
2 CuCl, 55 25
3 CuF,-H,0 35 24
4 Cu(OTf), 47 53
5 CuOAc 42 0
6 Cu(OAc), ¢ 65 15
7 Cu(OAc), “* 69 16
8 Cu(OAc), 63 14
9 — 11 51

“Reaction conditions: Unless otherwise specified, the reaction was
carried out using 1b (0.2 mmol), Togni’s reagent II (0.3 mmol), TBAI
(0.3 mmol), K,CO; (0.4 mmol), copper catalyst (0.03 mmol), and 2,2'-
bipyridine (L1) (0.04 mmol) in 2 mL of CH,Cl, under an argon atmo-
sphere. ” Determined by '°F NMR and 'H NMR spectroscopy using
PhCF; and mesitylene or CH,Br, as the internal standards. ° The reac-
tion was carried out using 1.0 equiv. of TBAL ¢The reaction was
carried out using 10 mol% of Cu(OAc),. ° The reaction was carried out
with 5 mol% of Cu(OAc), and 10 mol% of L1.

Q, O

</ \i E/ \>
- =

L4

NN 7NN
=N N= = =

1 WA
L3 L5
To further improve the yield, we applied the ligand effect by
evaluating a series of bidentate ligands (Table 3): when 1,10-
phenanthroline (L2) was used, the yield was further improved
to 77% (Table 3, entry 2); the use of 1,10-phenanthroline-5,6-
dione (L4) afforded the product in 42% yield; it is observed
that the use of a di-2-pyridyl ketone (L3) or 2,2"-biquinoline
(L5) afforded 2b in 12% and 27% yields, respectively (Table 3,
entries 3 and 5). By contrast, in the absence of any ligands, the

u L2

Org. Chem. Front, 2017, 4, 1762-1767 | 1763


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7qo00419b

Open Access Article. Published on 23 June 2017. Downloaded on 09/11/2025 2:35:49 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Research Article

Table 3 Effect of ligands and bases on the reaction of

trifluoromethylcyclopropanation?
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Table 4 Copper-catalyzed trifluoromethylcyclopropanation of (2,3-
butadienyl)malonates?

10 mol% Cu(OAc),

Me, CF3—1—0 20 mol% ligand ~ Me_  CF3
CO.Me 1.0 equiv TBAI
Me>=:\—< * @O 2.0 equiv Base Me COMe
COMe CHyCly, 50°C, 12 h CO,Me
1b 1.5 equiv 2b
Yield of Recovery of
Entry L Base 2b” (%) 1b® (%)
1 L1 K,CO,4 69 16
2 L2 K,CO4 77 13
3 L3 K,CO, 12 27
4 L4 K,CO; 42 19
5 L5 K,CO3 27 26
6 — K,CO4 10 34
7 L2 Na,CO; 63 17
8 L2 Cs,CO; 12 0
9 L2 K;3PO, 82 9
10 L2 K;PO, ¢ 76 12
1’ L2 K;PO, 87 0
12 L2 — 40 31
137 L2 K;PO, 42 0

“Reaction conditions: Unless otherwise specified, the reaction was
carried out using 1b (0.2 mmol), Togni’s reagent II (0.3 mmol), TBAI
(0.2 mmol), base (0.4 mmol), Cu(OAc), (0.02 mmol), and ligand
0.04 mmol) in 2 mL of CH,Cl, under an argon atmosphere.
Determined by '°F NMR and "H NMR spectroscopy using PhCF; and
mesitylene or CH,Br, as the internal standards °The reaction was
carried out with 2.5 equiv. of K;PO,. ?The reaction was carried out
with 2.0 equiv. of Togni’s reagent II. The reaction was carried out
with 10 mol% of CuOAc instead of Cu(OAc),.

yield is much lower (Table 3, entry 6). Subsequently, we tested
some bases with K;PO, being the best (Table 3, entry 9).
Further increasing the amount of K;PO, led to a lower yield
(Table 3, entry 10). To our delight, 2 equiv. of Togni’s II
reagent led to the full consumption of 1b, affording 2b in 87%
yield (Table 3, entry 11). In the absence of a base, the reaction
was poor (Table 3, entry 12). It should be noted that the yield
dropped to 42% with the full consumption of 1b when the
catalyst was replaced by CuOAc (Table 3, entry 13).

With the optimized protocol in hand, we next turned to
demonstrate the generality of this reaction. The results summar-
ized in Table 4 show that this reaction indeed provides a
straightforward entry to a series of trifluoromethylated vinyl
cyclopropanes in moderate to good yields. Different substi-
tutions at the terminal position of allene, such as methyl, ethyl,
butyl, cyclobutyl, cyclopentyl and cyclohexyl could be compati-
ble in this reaction, affording the corresponding trifluoro-
methylated vinyl cyclopropanes 2b-2j in moderate to good
yields (Table 4, entries 1-9); the substrate with a sterically bulky
isopropyl substituent also furnishes the corresponding product
2k in a moderate yield (Table 4, entry 10). Moreover, phenyl-
and methyl-substituted malonate 11 afforded the corresponding
product 21 in 66% yield with a ratio of 1:3 for the corres-
ponding stereoisomers (Table 4, entry 11). To further demon-
strate the potential of this reaction, we carried out this reaction
on a gram scale under the standard conditions: when 1.0604 g
of 1b was used, 1.1061 g of 2b was obtained in 79% yield.

1764 | Org. Chem. front, 2017, 4, 1762-1767

10 mol% Cu(OAc),

R CF3—I—0 20 mol% L2 R! CF3
CO,R? 1.0 equiv TBAI >=ﬂ><
J + o — — _J CO,R®
R co.R? 20equivKsPO, R oS
2 CH,Cl, 50 °C, t 2
1 2 equiv 2
Entry R', R? R® t (h) Yield of 27 (%)
1 Me, Me Me (1b) 12 86 (79°)(2b)
2 —(CH,)s— Me (1c) 24 84 (2¢)
3 Me, Me Et (1d) 13.5 82 (2d)
4 Me, Me Bn (1e) 12 74 (2e)
5 Et, Et Et (1f) 24 70 (2f)
6 n-Bu, n-Bu Et (1g) 24 79 (2g)
7 -(CH,)s— Et (1h) 17 64 (2h)
8 -(CH,)4— Et (1i) 15 60 (2i)
9 ~(CH,)5~ Et (1j) 13 74 (2))
107 i-Pr, i-Pr Et (1Kk) 24 (zk)
11 Ph, Me Me (1) 12 6° (21)

“Reaction conditions: Unless otherwise specified, the reaction was
carried out using 1 (1 mmol), Togni’s reagent II (2.0 mmol), TBAI
(1 mmol), K;PO, (2 mmol), Cu(OAc), (0.10 mmol) and L2 (0.20 mmol)
in 7 mL of CH,CI, under an argon atmosphere. ? Isolated yield. ° The
reaction was carried out using 1b (5 mmol, 1.0604 g), Togni’s reagent
I (10.0 mmol) TBAI (5 mmol), and Cu(OAc), (0.5 mmol) and L2
(1.0 mmol) in 35 mL of CH,Cl, under an argon atmosphere 9The reac-
tion was carried out using 3 equiv. of K;PO, and 3 equiv. of Togni’s
reagent II. “ The reaction gave a pair of Z/E stereoisomers with a ratio
of 1:3.

As stated in the introduction, one unique character of the
strained three-membered ring is the selective cleavage of C-C
bonds in cyclopropanes with an easy incorporation of other
molecules to afford a series of complex molecules bearing the
trifluoromethyl group. After some screening of the reported
Lewis acid catalysts for such transformations,>"! we observed
that reactions catalyzed by 10 mol% of Sc(OTf); in DCE
afforded the ring-opening products under very milder con-
ditions: when trifluoromethylated vinylic cyclopropane 2b was
exposed to benzaldehyde, a highly substituted tetrahydrofuran
product cis-5a'> was formed highly diastereoselectively in 85%
yield; with nitrone, cis-tetrahydro-1,2-oxazines cis-6a'> and cis-
6b were formed in 81% and 84% yields from 2b and 2c,
respectively; the reaction of 2b with N-methylindole afforded
the ring-opened functionalized indole product 7a'?* in 90%
yield (Scheme 2 and Fig. 1).

During the study, we also identified the Togni’s reagent II-
based by-product by the X-ray diffraction study unambiguously
as methylene bis(2-iodobenzoate) 8 (Scheme 3A)."> Control
experiments showed that in the absence of the copper
complex, potassium 2-iodobenzoate didn’t react with CH,Cl,
(Scheme 3B, eqn (1)). When potassium 2-iodobenzoate was
exposed under the standard conditions without the allene and
K3;PO,4, compound 8 was formed in 31% yield. In order to
further study the mechanism, radical scavengers were added
under the standard reaction conditions (Scheme 4). With 1,4-
dinitrobenzene, the reaction was somewhat suppressed to
yield 21% of 2g (Scheme 4, eqn (1)). With benzoquinone, the
trifluoromethylative cyclization reaction was completely shut

This journal is © the Partner Organisations 2017
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Scheme 3 Formation of by-product 8: (A) ORTEP representation.

(B) Control experiments.

down (Scheme 4, eqn (2)). With TEMPO, the reaction didn’t
occur and the radical trapping TEMPO-CF; adduct 9 was
formed in 71% yield (Scheme 4, eqn (3)). With BHT, the
trifluoromethylative product 2g was not formed while a
BHT-CF; adduct 10 was observed in 33% yield as judged by
the analysis of the crude product comparing the signals with
those reported in the literature™ (Scheme 4, eqn (4)). These
results indicated that the reaction may proceed via a radical
pathway in the beginning.
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2 equiv 1,4-dinitrobenzene
10 mol% Cu(OAc),

n-Bu, CF3—I—0 20 mol% L2
n-Bi CF.
COzEt 1.0 equiv TBAI ¢ 3
n-Bu >
CO,Et 2 equiv K3PO, n-Bu COEt 1)
CH,Cl,,50°C,12 h COZEt
Ziequl 29, 21% NMR yield
2 equiv benzoquinone
10 mol% Cu(OAc),
n-Bu CF3—l— 20 mol% L2
n-Bu CF.
COzEt 1.0 equiv TBAI 3
n-Bu Q e — — )
CO,Et 2 equiv K3PO, n-Bu CO,Et
CH,Cl,, 50 °C,12 h CO,Et
2 equiv 2g, not formed
2 equiv TEMPO
10 mol% Cu(OAc),
n-Bu CF3—I—0 20 mol% L2 N n-Bu CF3
COzEt 1.0 equiv TBAI by —
n—Bu 3 ] n-Bu CO,Et 3)
co,et 2 equiv KsPO, PR ok &
CH,Cl, 50°C,12h  71% NMR yield 2
2 equiv based on TEMPO  2g, not formed
2 equiv BHT CFy
10 mol% Cu(OAc),
n-Bu 20 mol% L2
Fay—l n-Bu CF.
COzE' __10equivTBAI . % @
n-Bu
CO,E 2equivK,PO,  M-BU CO,Et
CH,Cl,, 50°C,12 h CO,Et OH
2 equiv 2g, not formed 10

33% NMR yield
based on BHT

Scheme 4 Radical trapping experiments.

A mechanism was then proposed on the basis of the above
results (Scheme 5). Initially, the in situ reduction™ or dis-
proportionation'® of Cu(OAc), forms the highly reactive Cu(1),
which would coordinate with the ligand forming a catalytically
active copper(r) species A. Then a radical intermediate B could
be generated by the reaction of A with Togni’s reagent II,
which would further release the CF; radical and (2-iodobenzoyl-
oxy)copper(n) C. Allene 1 would be attacked by the trifluoro-
methyl radical and its nucleophilic unit would be deproto-
nated with the base to form the thermodynamically more
stable w-allylic radical syn-D. The intermediate syn-D would
further undergo oxidation with Cu(u) species C yielding the
n-allylic copper(m) intermediate E, which would undergo an
intramolecular nucleophilic attack to release the cyclopropane
products 2 and the o-iodobenzoic acid anion associated with

| 0@ R' CFy
@Ao . RZZS><COzR3 Cu(OAc),
COR? Ilgand
CFy—1—
/Cu(l)
CH,Cl, )
o o
A0
1 R
I8 (N‘N/ij ({0} COR?
Q@ Co,R® o

O

bﬁﬂﬁ

R2q T— R

3, 3,
R°0,C COR® R®0,C
anti-D syn-D
1base
R1
CO,R?®
R2
1 CO,R®

Scheme 5 Proposed mechanism.
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the regeneration of the catalytically active Cu(1) species A. The
reaction of two molecules of the o-iodobenzoic acid anion with
CH,Cl, would generate the isolated by-product 8.'° The un-
favored formation of anti-D excludes the formation of 3-type of
a 5-membered ring. However, it should be noted that the
mechanism requires more studies and there may be other
possibilities.

In conclusion, we have demonstrated an efficient copper-
catalyzed introduction of a trifluoromethyl group into organic
skeletons through the cyclization of allenes and C-C bond
cleavage-based transformations via the formation of the
strained trifluoromethylated vinyl cyclopropanes with an excel-
lent regioselectivity under ambient conditions. Further studies
in this area are ongoing in our laboratory.
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