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The simplification of perovskite solar cells (PSCs), by replacing the
mesoporous electron selective layer (ESL) with a planar one, is
advantageous for large-scale manufacturing. PSCs with a planar
TiO, ESL have been demonstrated, but these exhibit unstabilized
power conversion efficiencies (PCEs). Herein we show that planar
PSCs using TiO, are inherently limited due to conduction band
misalignment and demonstrate, with a variety of characterization
techniques, for the first time that SnO, achieves a barrier-free
energetic configuration, obtaining almost hysteresis-free PCEs of
over 18% with record high voltages of up to 1.19 V.

Introduction

Solution processed, hybrid organic-inorganic perovskite materials
were studied by Mitzi et al. in the 1990s and were recognized as
excellent semiconducting materials." It was not, however, until
Miyasaka and coworkers pioneered the work on dye-sensitized
solar cell applications in 2009, that the materials were started
to be recognized by the photovoltaic community.” Since then, a
myriad of studies have been published exploring different
device configurations. The currently highest reported PCE value
of over 20% was achieved using a thin layer of mesoporous
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TiO,.” In this architecture, the perovskite material infiltrates a
mesoporous TiO, layer, which is sandwiched between a hole
transporting layer (HTL, typically doped 2,2’,7,7'-tetrakis(N,N’-
di-p-methoxyphenylamine)-9,9’-spirobifluorene (Spiro-OMeTAD) or
polytertiary arylamine (PTAA)) and an electron selective layer (ESL,
typically TiO,).

From the earlier studies, it was realized that the perovskite
absorber material transports both holes and electrons.*™® Naturally,
this led towards the investigation of a thin film perovskite configu-
ration with only a compact TiO, as the ESL.” However, this device
architecture shows pronounced hysteresis of the current-voltage
(J-V) curve,® ™ especially for fast voltage sweeps and to our
knowledge no PCE of over 18% in this architecture has been
reported without hysteresis and the stabilized power output. Xing
et al. showed that planar devices, using PCBM as the ESL and
methyl ammonium lead iodide (MAPbI;) as the absorbing and
transporting material, had a much improved J-V hysteretic
behaviour when compared to the TiO, ESL, which they linked
to the improved interfacial charge transfer. Wojciechowski and
co-workers showed that modifying the TiO, surface with fullerene
derivatives can work towards high efficiency PSCs.® Recent
studies have shown the potential of SnO,-based ESLs,"*™* but
so far these devices have not shown high efficiency without
hysteretic behaviour.

Using a low temperature atomic layer deposition (ALD)
process to fabricate SnO, ESLs, we demonstrate that planar
PSCs can achieve almost hysteresis-free PCEs of above 18%
with voltages exceeding 1.19 V. We show that this is not the
case for the planar TiO,. We choose SnO, considering the
favourable alignment of the conduction bands of the perovskite
materials and the ESL and show an energy mismatch in the
case of TiO,. Thus, using SnO,, which has a deeper conduction
band, enables us to fabricate planar devices with high efficiencies,
long term air stability and improved hysteretic behaviour,
while keeping the processing at low temperatures (<120 °C),
which is the key for process upscaling and high efficiency
tandem devices."

This journal is © The Royal Society of Chemistry 2015
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Results and discussion

In Fig. 1a, we illustrate how electron injection is energetically
hindered when the bands are mismatched. This is accompanied
by a schematic of the planar device architecture of a typical glass/
FTO/compact metal oxide/perovskite/hole transporter/gold stack.
We analyse the band structure further using ultraviolet photo-
electron spectroscopy (UPS) for two different perovskite materials
(MAPDI; and mixed halide/cation, ie. (FAPbI;), g5(MAPbBI3)q 15,
referred to as the mixed perovskite throughout the text) atop TiO,
and SnO, as shown in Fig. 1b and c derived from ESI,} Fig. S1 and
S2, respectively. The ionization energy (IE), i.e. the valence band
position, measurements of SnO, and TiO, were performed for the
UV ozone-treated samples atop FTO, thus obtaining the valence
band information for both substrates. It has been shown that the
valence band position of the perovskite material measured by UPS
has variations with respect to the substrate where they are
deposited.'® Thus, we performed our measurements on perovskite
films deposited on both SnO, and TiO, yielding IE differences of
above 0.1 eV. We calculated the band diagram of the different
components using the perovskite materials’ valence bands as our
reference. The construction of the band diagram, including band-
gap estimation for the perovskite materials (thickness of ca.
400 nm), is described in ESI} Fig. S1-S3. We found that for both
perovskite materials there is a conduction band misalignhment
with TiO, ESLs, in stark contrast to SnO, where we have no such
misalignment. The band diagram in Fig. 1b shows that the
conduction band of MAPDbI; is ~80 meV below that of TiO, and
about 170 meV above that of SnO,. This inhibits electron
extraction by TiO, and facilitates it using SnO,. Similarly, the
conduction band of the mixed perovskite is 300 meV below
compared to TiO, and only 30 meV below compared to SnO,.
Consequently, this band misalignment with TiO, may cause
undesirable consequences such as accumulation of photogenerated
charges, which could hamper the device performance.

It is important to note that the UPS measurements were
carried out on perovskite films as thick as 400 nm. Since UPS is
a surface measurement (measuring roughly the conditions
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in the first 10 nm), it is therefore a simplified picture of our
device energetics. Guerrero et al. have shown that the energetics
throughout the perovskite film can be different and that
band bending can be induced when employing thick films."”
In addition, work by some of us has also shown that ion
migration is induced in the perovskite material,'® which further
complicates the energetic model in the device. Indeed, these
two factors play a major role in the electronic configuration of
the device and it is something that will be further investigated
more in depth in future studies. However, with these measure-
ments we elucidate that there is an intrinsic difference between
the two ESLs, which lead to an understanding that there is
an energetic barrier at the TiO,, but not at the SnO,/perovskite
interface.

To further investigate this phenomenon, we prepared planar
devices of typical stack architecture: glass/FTO/ESL/perovskite/
HTL/gold contact as seen in the cross-sectional scanning electron
microscopy (SEM) image in Fig. 2a. We deposited a 15 nm thick
ESL of SnO,, TiO, or Nb,Os by ALD. The mixed perovskite layer,
(FAPDI;), g5(MAPDBr3), 15, was spin-coated on the electrode using a
similar composition as reported by Jeon et al.'® A doped spiro-
MeOTAD was spin-coated as the HTL and, finally, the gold top
electrode was deposited by thermal evaporation.

Fig. 2b shows the X-ray photoelectron spectroscopy (XPS) of
the 15 nm thick TiO, and SnO, layers. For TiO,, no peaks other
than oxygen O 1s at 528 eV, titanium Ti 2p at 458.5 eV and Ti
2ps/ 464.2 eV were detected confirming the deposition of TiO,
without traces of cross contamination.”® We detect no signal
from the underlying FTO indicating conformal and pinhole-
free TiO, coverage, which we further confirm by SEM (see ESI, ¥
Fig. S4a). Similarly, we confirm the formation of pure SnO,
observing the oxygen peak O 1s at 530.9 eV and Sn** peaks at
495.6 eV as well as at 487.2 eV. The top-view SEM image also
indicates a pinhole-free deposition of SnO, (see ESI,T Fig. S4b).

In order to further understand the results by UPS in a device
configuration we performed femtosecond transient absorption
(TA) measurements. With this we intended to understand
electron injection dynamics from the perovskite into the ESLs,

C.
TiO, SnO,| MAPbl, TiO, SnO,| MIXED
AE=0.08
A 3 AE=0.30
Y ——— — —
A A
: : gu * &
< Q 03 -
g g | 2 2 i
o - uf” o o uf”
S ] ]
@ (3] el
1} A A\ 1 v 1 y A
LLJm Ll_lm A LLIcn
8 = 3 b3
- N - o
o
A4 v
v
Y
v

Fig. 1 Energy level diagrams and electron injection characteristics of SnO, and TiO,-based planar PSCs. (a) Schematic conduction band diagram of the
perovskite films and the electron selective layers, TiO, and SnO, for (b) MAPbIs and (c) (FAPbIs)o g5(MAPbBr3)g 15, labeled as ‘'mixed'.
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Fig. 2 Photovoltaic device architecture and elemental composition of the electron selective layers (ESLs). (a) Cross-sectional scanning electron

micrograph of a typical layered photovoltaic device composed of FTO, SnO,

as the electron selective layer (ESL), the perovskite film, a hole transporting

layer (HTL, Spiro MeOTAD), and a gold top electrode. (b) X-ray photoelectron spectroscopy of TiO, and SnO, thin layers used as ESLs.

and therefore, indirectly probe whether an energetic barrier
exists for TiO, or SnO,. The measurements were performed on
devices with SnO, and TiO, and the mixed perovskite under
short circuit conditions, wherein the charge injection can be
resolved in time. In Fig. 3, we show the TA dynamics taken at a
probe wavelength of 750 nm - the peak of the photobleach (PB)
of the perovskite. The PB band, spectrally located at the onset of
the absorption spectrum of the semiconductor (ESL 1 Fig. S3),
corresponds to the photo-induced transparency in the material
due to the presence of electrons and holes in the bottom and
top of the conduction and valence bands, respectively.'” Hence,
the magnitude of this feature is correlated with the photo-
induced carrier population and every mechanism changing the
initial population, like electron/hole injection, results in its
quenching. We observe a PB decay in the nanosecond timescale
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Fig. 3 Transient absorption measurements of SnO, and TiO,-based
planar PSCs. Dynamics of the photo-bleaching bands for photo-excited
perovskite measured on a typical working device employing the mixed
perovskite (FAPDIs)gg5(MAPbBrs)g15 and SnO, or TiO, as the ESL. The
device is held at short circuit condition during the measurement. The
probe wavelength is 2 = 750 nm while pumping at 2 = 520 nm.
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for both TiO, and SnO,-based devices. However, while in the
TiO,-based device the dynamics do not strongly differ from the
one probed from the pristine perovskite deposited on bare
glass,21 in the case of SnO, the decay is much faster. In fact, the
carrier population is reduced by approximately 60% in 1.5 ns.
As both devices embody the same hole extracting layer, we
conclude that the striking difference observed can be considered
as the signature of different electron injection dynamics. This
strongly supports our hypothesis of better electron extraction in
pristine SnO, when compared to TiO,-based devices, due to
favorable energetic alignment.

We note that the poor charge extraction in the TiO, based
device may appear to be surprising. However, it must be
considered that, in thin film PSCs in the presence of planar
TiO, as the electron extracting layer, solar cells generally show
Jsc comparable to those using a mesoporous TiO, layer only
when the device is pre-polarized.®****>* Indeed, some of us
have recently demonstrated that the PB dynamics become
faster when measured just after keeping the TiO,-based device
at 1V for a few seconds, suggesting that the electron transfer is
suddenly activated.> This indicates that upon polarization, the
TiO,/perovskite interface is modified and such a modification
is needed to allow for an efficient charge transfer, as also
predicted by De Angelis et al.”®

We investigated the different electronic properties of devices
with TiO, or SnO, ESLs by analyzing the current density-voltage
curves based on the mixed perovskite. In Fig. 4a, we observe a
representative SnO, device with high performance and low
hysteresis between the backward and the forward scan (Table 1).
This is indicative of good charge collection independent of voltage.
In stark contrast, a representative TiO,-based device shows
strong hysteresis and low current densities (<5 mA cm™?). This
difference can also be seen in Fig. 4b where we show transient
photocurrents recorded at 0.8 V resembling closely operating
device conditions at the maximum power point. After ~50 s, we
observe a steady photocurrent when switching from an open

This journal is © The Royal Society of Chemistry 2015
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Fig. 4 Photovoltaic characteristics of planar perovskite devices based on SnO, and TiO, ESLs. (a) Current—voltage properties of TiO, and SnO,-based
planar mixed halide/cation perovskite devices. Black arrows indicate the backward scan from V. to Js. and red arrows indicate the reversed scan. (b)
Normalized transient photocurrents measured from V. to the maximum power point voltage for both planar systems. (c) Scan rate effects on J-V
characteristics of SnO, and (d) TiO,-based devices. We note that devices showed best performance when measured after 1 week of preparation.

Table 1 Solar cell performance parameters for the mixed perovskite and
SnO, device for backward and forward scans at a scan rate of 10 mV sk
short circuit photocurrent (Jsc), power conversion efficiency (PCE), open
circuit voltage (Vo). and fill factor (FF) as extracted from the data in Fig. 4a

Scan Jse Voe PCE Light intensity
ESL  direction (mAcem™?) (V) FF (%) (mWcm ?)
SnO, Backward 21.3 1.14 0.74 184 984

Forward 21.2 1.13 0.75 18.1

circuit to 0.8 V. After switching from open circuit to 0.8 V, the
current for the TiO, device drops by 70% from 10 to a stabilized
3 mA cm™ 2, whereas that for the SnO, drops by only 10% from
23 to a stabilized 20.2 mA cm™>. The stabilized current is in
good agreement with the current seen in the j-V curve at 0.8 V,
which is found to be 20.7 mA cm ™2 (Fig. 4a). In addition, SnO,-
based devices showed good long-term stability; unencapsulated
devices stored in dry air were measured for over 30 days with no
significant PCE variability (ESLt Fig. S5). Small variations were
found for 12 devices made in different batches with an average
PCE of 16.7% (ESL} Fig. S6). Integrating the external quantum
efficiency (EQE) yielded a J,. of 18 mA cm ™2 (ESL Fig. S7a), which
is in very good agreement with the measured J,. in Fig. S7b (ESIY).

We note that for both TiO, and SnO,, we observe open circuit
voltages of around 1.14 V, which are close or even exceeds most
devices prepared with mesoporous interlayers. Additionally,
some of our SnO, devices yielded stabilized voltages of over

This journal is © The Royal Society of Chemistry 2015

1.19 V (ESL T Fig. S7c) approaching the thermodynamic maximum
Voo of approx. 1.32 V.?® This suggests exceptionally good charge
selectivity and a low degree of charge recombination in our planar
perovskite/SnO, devices.

To understand the reason for the reduced photocurrent for
the TiO, based device, we performed current-voltage scans at
various voltage sweep rates. These are shown in Fig. 4c and d,
where only the backward scan is plotted which is obtained after
the device was preconditioned at 1.2 V for 10 s. For the SnO,
device there is only a slight increase of the photocurrent when
increasing the rate from 10 to 10 000 mV s~ . Slightly enhanced
sweep rates allow us to collect almost all the photogenerated
charges reaching a maximum J,. density of 23 mA cm > The
dependence on the scan rate is much more pronounced for the
TiO,-based device showing high current densities of ca. 20 mA cm ™2
for the scan at 10 V s~ * with a massive drop to about 5 mA cm™
when scanned at 10 mV s~ . This implies a low charge collection
efficiency in the planar perovskite/TiO, device at slow scan rates,
though light absorption and photocurrent generation in the
perovskite material is the same as for the perovskite/SnO,
configuration. The results are also in good agreement with
the transient photocurrent in Fig. 4b, the electron injection
characteristics in Fig. 3 and our proposed band alignment
measured by UPS in Fig. 1, clearly indicating a barrier free
charge transport across the perovskite/SnO, in contrast to the
perovskite/TiO, interface. We investigated devices with ALD Nb,Os
as the ESL (ESL{ Fig. S8) which has a similar conduction band

2
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position as Ti0,.>” With this, we can crosscheck if the energy level
alignment is indeed critical for high hysteresis and can exclude the
fact that other properties of SnO, or TiO, are responsible for
the above results. Very similar to TiO,, the Nb,Os-based devices
exhibited large hysteresis behavior and very low photocurrent
densities (ESL Fig. S8). Several independent studies have shown
similar or even more pronounced trends irrespective of the TiO,
deposition method. Spin-coating,®****%3° gsputtering®®*' and
spray pyrolysis® of TiO, have all been demonstrated to yield highly
hysteretic J-V curves in planar PSCs.

To further confirm what is found in the literature and show that
our results are not unique to the ALD technique, we prepared TiO,
by spray pyrolysis and found that the j-V curves exhibit strong
hysteretic behavior (ESLT Fig. S9). In this case, the forward scan
shows an s-shaped -V curve indicative of an unstabilized power
output.>* However, the devices using spray-pyrolysed TiO, showed
an increase in the Ji. in the backward scan when compared to ALD
TiO,. In order to understand the difference between these two layers,
we investigated the effect of the ESLs using spiro and gold-only
devices. The perovskite-free devices were investigated in reverse bias
to understand whether the ESLs suffer from pinholes. Our results,
summarized in ESL{ Fig. S10, show improved blocking properties
for the ALD layers of both TiO, and SnO, when compared to spray
pyrolysed TiO,. This difference likely explains the cause of increased
photocurrent of the latter, which we can see in ESIL,} Fig. S9.

A similar trend was found for planar devices using MAPbI;
(ESLt Fig. S11). Here, the current densities measured are slightly
higher in the backward but lower in the forward scan, suggesting
the same limitation for charge extraction as noted above. This also
matches our UPS results in Fig. 1b, where the conduction bands of
perovskite and TiO, are misaligned and highlights the importance
of correct band alignment in all planar perovskite devices. Other
studies>™ have shown high performance at stabilized currents
in thin mesoporous TiO, based ESLs, and we note that this may
be due to a proper band alignment intrinsic to the mesoporous
TiO,/perovskite interface which is different from the planar
configuration with the TiO, used in this study.

We hypothesize that the preconditioning under forward bias
leads to accumulation of negative charge and ion migration at the
ESL-perovskite interface inducing a high electric field and/or dipole
formation at this interface.'**> An elevated electric field or possibly a
reduced conduction band offset can facilitate electron injection into
the ESL. After releasing the positive bias, this beneficial effect lasts
for a few seconds only, which is the time needed for this charge to be
removed. Sweep rates in this time range give rise to large hysteresis.
For the SnO, devices, the energy levels are already well aligned
without biasing the device. Thus, charge collection is efficient
showing high FF and J,. independent of the scan rate (Fig. 4c).

Conclusions

In summary, we have demonstrated that a barrier-free band
alignment between the perovskite light harvester and the charge
selective contact is of great importance for an efficient PSC. We
found that planar PSCs employing the compact and pinhole-free

2932 | Energy Environ. Sci., 2015, 8, 2928-2934
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TiO, layer made by ALD exhibit a band misalignment, leading to
strong hysteresis behavior and scan rate dependent current
densities, indicating capacitive effects at the interface. We chose
a layer of SnO,, due to its deeper conduction band, as the
electron selective contact, which achieved voltages and PCEs
exceeding 1.19 V and 18%, respectively. We proved that modifying
the conduction band of the ESL can result in planar, high
performance PSCs with high voltages and remarkably good
stability over time. Furthermore, femtosecond TA measure-
ments clearly show that the mixed (FAPbL;), g5(MAPDBr3)g 15
perovskite materials extract charges efficiently into SnO, but
not into TiO, corroborating the conduction band misalignment
at the TiO,/perovskite interface. From this we can conclude that
a barrier-free charge transport across the SnO,/perovskite inter-
face gives rise to the high and stable current densities -
regardless of the sweep rate — which are not observed in TiO,
based devices. This study highlights the importance of a perfect
band alignment for highly efficient PSCs, especially in planar
devices with compact charge selective layers.

Methods

Electron selective layer preparation

F:SnO, substrates were first wiped with acetone, and then
cleaned for 10 min in piranha solution (H,SO,/H,0, = 3:1)
followed by 10 min in a plasma cleaner prior to ALD deposition.

Atomic layer deposition (ALD) of semi-crystalline TiO,** was
carried out in a Savannah ALD 100 instrument (Cambridge
Nanotech Inc.) at 120 °C using tetrakis(dimethylamino)titanium(wv)
(TDMAT, 99.999% pure, Sigma Aldrich) and H,0,. TDMAT was
held at 75 °C and H,0, at room temperature. The growth rate was
0.07 nm per cycle at a N, flow rate of 5 sccm as measured by
ellipsometry.

SnO, was deposited at 118 °C using tetrakis(dimethylamino)-
tin(iv) (TDMASn, 99.99%-Sn, Strem Chemicals INC) and ozone
at a constant growth rate of 0.065 nm per cycle measured by
ellipsometry. TDMASn was held at 65 °C. Ozone was produced
using an ozone generator (AC-2025, IN USA Incorporated) fed with
oxygen gas (99.9995% pure, Carbagas) producing a concentration
of 13% ozone in O,. Nitrogen was used as a carrier gas (99.9999%
pure, Carbagas) with a flow rate of 10 sccm.

Nb,Os was deposited at 170 °C and a carrier gas flow rate of
20 scem using  (tert-butylimido)bis(diethylamino)niobium
(TBTDEN, Digital Specialty Chemicals, Canada) and ozone with
a constant growth rate of 0.06 nm per cycle. TBTDEN was held
at 130 °C.

Perovskite precursor solution and film preparation

Before perovskite deposition, the ALD layers were treated with
UV ozone for 10 min to remove by-products from the deposition
process. The perovskite films were deposited from a precursor
solution containing FAI (1 M), Pbl, (1.1 M, TCI Chemicals),
MABr (0.2 M) and PbBr, (0.2 M, Alfa Aesar) in anhydrous
DMF:DMSO 4:1 (v/v, Acros). The perovskite solution was
spin-coated in a two-step program; first at 1000 for 10 s and

This journal is © The Royal Society of Chemistry 2015
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then at 4000 rpm for 30 s. During the second step, 100 pL of
chlorobenzene were poured on the spinning substrate 15 s
prior to the end of the program. The substrates were then
annealed at 100 °C for 1 h in a nitrogen filled glove box.

The spiro-OMeTAD (Merck) solution (70 mM in chlorobenzene)
was spun at 4000 rpm for 20 s. The spiro-OMeTAD was doped at a
molar ratio of 0.5, 0.03 and 3.3 with bis(trifluoromethylsulfonyl)-
imide lithium salt (Li-TFSI, Sigma Aldrich), tris(2-(1H-pyrazol-1-yl)-
4-tert-butylpyridine)-cobalt(u) tris(bis(trifluoromethylsulfonyl)imide)
(FK209, Dyenamo) and 4-tert-butylpyridine (TBP, Sigma Aldrich),
respectively.”>**?¢ As a last step 70-80 nm of gold top electrode
were thermally evaporated under high vacuum.

Solar cell characterization

A ZEISS Merlin HR-SEM was used to characterize the morphology
of the device cross-section. The solar cells were measured using a
450 W xenon light source (Oriel). The spectral mismatch between
AM 1.5G and the simulated illumination was reduced by the use of
a Schott K113 Tempax filter (Prizisions Glas & Optik GmbH). The
light intensity was calibrated with a Si photodiode equipped with
an IR-cutoff filter (KG3, Schott) and it was recorded during each
measurement. Current-voltage characteristics of the cells were
obtained by applying an external voltage bias while measuring
the current response using a digital source meter (Keithley 2400).
The voltage scan rate was 10 mV s~ " and no device preconditioning
was applied before starting the measurement, such as light soaking
or forward voltage bias applied for long time. The starting voltage
was determined as the potential at which the cells furnished 1 mA
in forward bias, no equilibration time was used. The cells were
masked with a black metal mask limiting the active area to 0.16 cm®
and reducing the influence of the scattered light. It is important to
note that the devices achieved the highest hysteresis-free efficiency
after 1 week of preparation.

The EQE spectra were measured under constant white light
bias with an intensity of 10 mW cm ™ supplied by a LED array.
The superimposed monochromatic light was chopped at 2 Hz.
The homemade system comprises a 300 W Xenon lamp (ICL
Technology), a Gemini-180 double-monochromator with 1200
grooves per mm grating (Jobin Yvon Ltd) and a lock-in amplifier
(SR830 DSP, Stanford Research System). The EQE integration
was performed according to the following equation

)
Jsc:J q-¢-EQEdA
21

with 4 being the wavelength, g the elementary charge and ¢ the
photon flux calculated from the ratio of the AM 1.5 G spectral
irradiance and the photon energy.
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