Issue 11, 2024

Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms

Abstract

Synthetic biology is the design and modification of biological systems for specific functions, integrating several disciplines like engineering, genetics, and computer science. The field of synthetic biology is to understand biological processes within host organisms through the manipulation and regulation of their genetic pathways and the addition of biocontrol circuits to enhance their production capabilities. This pursuit serves to address global challenges spanning diverse domains that are difficult to tackle through conventional routes of production. Despite its impact, achieving precise, dynamic, and high-throughput manipulation of biological processes is still challenging. Microfluidics offers a solution to those challenges, enabling controlled fluid handling at the microscale, offering lower reagent consumption, faster analysis of biochemical reactions, automation, and high throughput screening. In this review, we diverge from conventional focus on automating the synthetic biology design-build-test-learn cycle, and instead, focus on microfluidic platforms and their role in advancing synthetic biology through its integration with host organisms – bacterial cells, yeast, fungi, animal cells – and cell-free systems. The review illustrates how microfluidic devices have been instrumental in understanding biological systems by showcasing microfluidics as an essential tool to create synthetic genetic circuits, pathways, and organisms within controlled environments. In conclusion, we show how microfluidics expedite synthetic biology applications across diverse domains including but not limited to personalized medicine, bioenergy, and agriculture.

Graphical abstract: Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms

Article information

Article type
Critical Review
Submitted
19 Dec 2023
Accepted
24 Apr 2024
First published
07 May 2024

Lab Chip, 2024,24, 2834-2860

Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms

C. Leal-Alves, Z. Deng, N. Kermeci and S. C. C. Shih, Lab Chip, 2024, 24, 2834 DOI: 10.1039/D3LC01090B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements