Magnetic order in a quenched-high-temperature-phase of Cu-doped MnBi†
Abstract
Permanent magnets are of great importance due to their vast applications. MnBi has been proposed to be a potential permanent magnet that can be widely used while past efforts have been focused on optimizing the ferromagnetic low-temperature phase of MnBi. Herein, we report a series of new materials, CuxMn1−xBi, crystallizing in a quenched high-temperature-phase (QHTP) MnBi-related structure. We synthesized single crystals of CuxMn1−xBi and found that they crystallize in an unreported trigonal structure (P![[3 with combining macron]](https://www.rsc.org/images/entities/char_0033_0304.gif) 1c). Magnetic properties measurements imply high-temperature antiferromagnetic (AFM) ordering and low-temperature ferromagnetic or ferrimagnetic (FM/FiM) ordering. By analyzing the doping effect on crystal structure and magnetic properties, we established a magnetic phase diagram for Cu-doped MnBi and attributed the AFM and FM/FiM to two different atomic sites of Mn.
1c). Magnetic properties measurements imply high-temperature antiferromagnetic (AFM) ordering and low-temperature ferromagnetic or ferrimagnetic (FM/FiM) ordering. By analyzing the doping effect on crystal structure and magnetic properties, we established a magnetic phase diagram for Cu-doped MnBi and attributed the AFM and FM/FiM to two different atomic sites of Mn.
- This article is part of the themed collection: 2023 Journal of Materials Chemistry C HOT Papers
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        
