Resilient hollow fiber nanofiltration membranes fabricated from crosslinkable phase-separated copolymers†
Abstract
As wastewater reclamation and reuse technologies become more critical to meeting the growing demand for water, a need has emerged for separation platforms that can be tailored to accommodate the highly varied feed water compositions and treatment demands of these technologies. Nanofiltration (NF) membranes based on copolymer materials are a promising platform in this regard because they can be engineered at the molecular scale to address an array of separation process needs. Here, for example, a resilient NF membrane is developed through the design of a poly(trifluoroethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate-co-glycidyl methacrylate) [P(TFEMA-OEGMA-GMA)] copolymer that can be dip-coated onto hollow fiber supports. By exploiting the microphase separation of the oligomeric ethylene glycol side chains from the copolymer backbone and by elucidating the processing–structure–property relationships for the dip-coating process, membranes with pores 2 nm-in-diameter that exhibit a hydraulic permeability of 15.6 L m−2 h−1 bar−1 were generated. The GMA repeat units were functionalized post-coating with hexamethylene diamine to incorporate positively-charged moieties along the pore walls. This functionality resulted in membranes that rejected 98% of the MgCl2 from a 1 mM feed solution. Moreover, the reaction with the diamine crosslinked the copolymer such that the membranes operated stably in ethanol, an organic solvent that damaged the unreacted parent membranes irreparably. Finally, the stability of the crosslinked P(TFEMA-OEGMA-GMA) copolymer resulted in membranes that could operate continuously for a 24 hour period in aqueous solutions containing 500 ppm chlorine without exhibiting signs of structural degradation as evidenced by consistent rejection of neutral probe solutes. These results demonstrate how resilient, charge-selective NF membranes can be fabricated from microphase separated copolymers by engineering each of the constituent repeat units for a directed purpose.
- This article is part of the themed collections: 2021 MSDE Symposium Collection and Molecular Engineering for Water Technologies