Open Access Article
Samuel Vizcaíno Páez
ab,
Diego Durango
b,
Christian Jürgen Müllerc,
Matthias Breuning
*c and
Wiston Quiñones Fletcher*a
aQuímica Orgánica de Productos Naturales, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia. E-mail: wiston.quinones@udea.edu.co
bQuímica de los Productos Naturales y los Alimentos, Universidad Nacional de Colombia, Medellín, 050034, Antioquia, Colombia
cDepartment of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany. E-mail: matthias.breuning@uni-bayreuth.de
First published on 25th January 2024
A short and flexible route to pyrazolidin-3-one analogs of the phytohormone (+)-7-iso-jasmonoyl-L-isoleucine is presented. The compounds were assembled from four basic building blocks, namely a pyrazolidin-3-one core, alkyl chain, linker and amino ester or acid. The efficacy of this approach was demonstrated in the synthesis of 11 analogs with variations in all parts of the molecule.
![]() | ||
| Fig. 1 The phytohormones jasmonic acid (1) and (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile, 2), the new pyrazolidin-3-one based JA-Ile analogs 3, and their four building blocks 4–7. | ||
A similar substitution in the field of JA-Ile (2), viz. the replacement of the chiral cyclopentanone core by a simple, achiral pyrazolidine-3-one, would lead to analogs of type 3, which should be by far more easily accessible since all stereocenters are omitted and the nitrogen atoms provide versatile attachment points for side chains. Consequently, a quick preparation of a structurally broad library of JA-Ile derivatives, as required for in-depth SAR studies, would be possible. In this work, we realized this idea and synthesized a couple of JA-Ile analogs 3. We developed a convergent route based on four different building blocks, the pyrazolidin-3-one core 4, the alkyl side chain 5, the acid linker 6, and the terminal amino acid 7. This strategy is highly efficient and permits access to a wide range of structural modifications, because all building blocks can be varied independently and prior to the final coupling stage.
| Entry | R | Cmpdb (Yield [%]) | Cmpdb (Yield [%]) |
|---|---|---|---|
| a Reaction conditions: (i) 1. H2NNH2·H2O, mol sieves 3 Å, EtOH, 0 °C to reflux, 22.5 h; 2. Boc2O, MeOH, rt, 5 h, 72%; (ii) NaH, DMF, 0 °C, 30 min, then R–X (5a–d), rt, 18 h; (iii) TFA, CHCl3, rt, 18 h.b Isolated yields. | |||
| 1 | (Z)-2-Pentenyl | 9a (55) | 10a (99) |
| 2 | nPent | 9b (67) | 10b (99) |
| 3 | nHex | 9c (57) | 10c (99) |
| 4 | nBu | 9d (63) | 10d (97) |
The side chain connected to the amino group of 3 consists of an acid linker and an amino acid, which both were independently varied. In a first set, the methyl esters of L-isoleucine (7a), L-leucine (7b), L-valine (7c), and L-alanine (7d), which all possess aliphatic and hydrophobic side chains as found in JA-Ile (2), were chosen as models for the amino acid part. Note that the esters are eligible bio-precursors for the corresponding amino acids in the final products because saponification will readily occur in a living environment.2 According to a known procedure,27,28 7a–d were treated with chloroacetyl chloride (11) and NEt3, which introduced the ‘natural’ two-carbon linker of JA-Ile (2) and furnished the known chlorides 12aa–ad in excellent yields above 90%. It should be stressed that, under slightly modified conditions,29 this procedure is also applicable to unprotected amino acids. The chloride 12ae was obtained in good 80% yield from 11 and two equivalents of L-isoleucine (7e) in MeCN at −20 °C. Cl/I-exchange in 12aa–ae under Finkelstein conditions, in order to improve the quality of the leaving group for the final coupling, delivered the desired iodides 6aa–6ae in high 74–94% yield. Note that compounds of type 6ae and 12ae, which possess a free acid group and a leaving group like chloride or iodine, are prone to undergo intramolecular cyclization to morpholin-2,5-diones.30 In our case, however, only traces of such by-products were observed. Finally, a precursor for a side chain with a longer three-carbon linker was prepared, too. Treatment of acryloyl chloride (13) with L-isoleucine methyl ester (7a) furnished the enamide 6ba in 77% yield (Table 2).
| Entry | Cmpd | R′b | R′′ | Yieldc [%] |
|---|---|---|---|---|
| a Reaction conditions: (i) for 12aa–ad and 6ba: Et3N, CHCl3, 0 °C, 1 h, 62–96%.31,32 for 12ae: Et3N, MeCN, −20 °C, 48 h, 92%; (ii) KI, acetone, rt, 24 h.b In brackets: corresponding L-amino acid.c Isolated yields. | ||||
| 1 | 6aa | sBu (Ile) | Me | 80 |
| 2 | 6ab | iBu (Leu) | Me | 94 |
| 3 | 6ac | iPr (Val) | Me | 74 |
| 4 | 6ad | Me (Ala) | Me | 77 |
| 5 | 6ae | sBu (Ile) | H | 89 |
| 6 | 6ba | sBu (Ile) | Me | 77 |
The final coupling step between the pyrazolidin-3-one cores 10a–d and the side chains 6aa–ad occurred smoothly under SN2-conditions (Cs2CO3, DMF) at room temperature, giving the desired JA-Ile analogs 3 in good to high yields (48–83%). Mol sieves 4 Å was added to remove traces of water, as formed by the carbonate, to prevent any yield-lowering solvolysis of the iodide. An aza-Michael addition was intended for the linkage of the α,β-unsaturated amide 6ba to the core 10a. Under standard conditions with MeOH as the solvent, only an oxo-Michael addition of MeOH was observed. We therefore changed to more forcing conditions in a polar, but low-nucleophilic solvent (TFE/H2O 1
:
1, 100 °C),31,32 under which the desired aza-Michael product 3aba was formed in acceptable 58% yield (Table 3).
| Entry | Cmpd | R | n | R′ | R′′ | Yieldb [%] |
|---|---|---|---|---|---|---|
a Reaction conditions: (i) for 6aa–ad: Cs2CO3, DMF, mol sieves 4 Å, rt, 16–48 h; for 6ba: TFE/H2O 1 : 1, 100 °C, 24 h.b Isolated yields. |
||||||
| 1 | 3aaa | (Z)-2-Pentenyl | 1 | sBu | Me | 70 |
| 2 | 3aab | (Z)-2-Pentenyl | 1 | iBu | Me | 63 |
| 3 | 3aac | (Z)-2-Pentenyl | 1 | iPr | Me | 77 |
| 4 | 3aad | (Z)-2-Pentenyl | 1 | Me | Me | 48 |
| 5 | 3aae | (Z)-2-Pentenyl | 1 | sBu | H | 77 |
| 6 | 3baa | nPent | 1 | sBu | Me | 83 |
| 7 | 3caa | nHex | 1 | sBu | Me | 66 |
| 8 | 3daa | nBu | 1 | sBu | Me | 74 |
| 9 | 3aba | (Z)-2-Pentenyl | 2 | sBu | Me | 58 |
| 10 | 3bab | nPent | 1 | iBu | Me | 52 |
:
2 → 90
:
10) delivered product 4 (2.70 g, 14.4 mmol, 72%) as white needles. Mp. 107–110 °C. FTIR (ATR):
max/cm−1 3301 (NH), 2978, 2933, 1686 (C
O).·1H NMR (500 MHz, CDCl3): δ (ppm) 8.56 (s, 1H), 3.95 (t, J = 8.6 Hz, 2H), 2.67 (t, J = 8.6 Hz, 2H), 1.49 (s, 9H). 13C NMR (125 MHz, CDCl3): δ (ppm) 170.72 (C
O), 153.78 (C
O), 82.75 (Cq), 44.82 (CH2), 31.09 (CH2), 28.36 (CH3).
:
15) provided the 9a (66.0 mg, 0.263 mmol, 55%) as a colorless oil. FTIR (ATR):
max/cm−1 3009 (C
CH), 2973, 2935, 2875, 1704 (C
O), 1640 (C
C), 1314, 1153. 1H NMR (500 MHz, CDCl3): δ (ppm) 5.66–5.58 (m, 1H), 5.36–5.28 (m, 1H), 4.34 (d, J = 7.1 Hz, 2H), 3.94 (t, J = 7.7 Hz, 2H), 2.54 (t, J = 7.7 Hz, 2H), 2.11 (pd, J = 7.5, 1.2 Hz, 2H), 1.50 (s, 9H), 0.97 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.02 (C
O), 156.93 (C
O), 137.16 (
CH), 122.01 (
CH), 82.77 (Cq), 47.80 (CH2), 42.13 (CH2), 31.44 (CH2), 28.27 (CH3), 20.86 (CH2), 14.39 (CH3). HRMS (+ESI): m/z calcd for C13H23N2O3+ [M + H]+: 255.1703; found: 255.1698.
max/cm−1 2958, 2933, 2874, 1702 (C
O), 1315, 1155. 1H NMR (500 MHz, CDCl3): δ (ppm) 3.95 (t, J = 7.7 Hz, 2H), 3.69 (t, J = 7.2 Hz, 2H), 2.55 (t, J = 7.7 Hz, 2H), 1.57 (p, J = 7.4 Hz, 2H), 1.50 (s, 9H), 1.38–1.28 (m, 2H), 1.28–1.20 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 171.57 (C
O), 157.05 (C
O), 82.83 (Cq), 47.63 (CH2), 45.18 (CH2), 31.65 (CH2), 28.99 (CH2), 28.30 (CH3), 26.16 (CH2), 22.44 (CH2), 14.11 (CH3). HRMS (+ESI): m/z calcd for C13H25N2O3+ [M + H]+: 257.1860; found: 257.1855.
max/cm−1 2959, 2931, 2860, 1703 (C
O), 1314, 1155. 1H NMR (500 MHz, CDCl3): δ (ppm) 3.95 (t, J = 7.7 Hz, 2H), 3.69 (t, J = 7.2 Hz, 2H), 2.55 (t, J = 7.7 Hz, 2H), 1.56 (p, J = 7.2 Hz, 2H), 1.50 (s, 9H), 1.33–1.22 (m, 6H), 0.87 (t, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 171.58 (C
O), 157.06 (C
O), 82.85 (Cq), 47.64 (CH2), 45.22 (CH2), 31.66 (CH2), 31.55 (CH2), 28.31 (CH3), 26.51 (CH2), 26.44 (CH2), 22.65 (CH2), 14.14 (CH3). HRMS (+ESI): m/z calcd for C14H27N2O3+ [M + H]+: 271.2016; found: 271.2010.
max/cm−1 2960, 2934, 2875, 1701 (C
O), 1316, 1155. 1H NMR (500 MHz, CDCl3): δ (ppm) 3.94 (t, J = 7.8 Hz, 2H), 3.68 (t, J = 7.2 Hz, 2H), 2.53 (t, J = 7.8 Hz, 2H), 1.54 (p, 7.4 Hz, 2H), 1.48 (s, 9H), 1.27 (sext, J = 7.5 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 171.54 (C
O), 157.01 (C
O), 82.79 (Cq), 47.59 (CH2), 44.85 (CH2), 31.60 (CH2), 28.52 (CH3), 28.26 (CH2), 20.02 (CH2), 13.83 (CH3). HRMS (+ESI): m/z calcd for C12H23N2O3+ [M + H]+: 243.1703; found: 243.1699.
:
2.6
:
0.3). Traces of TFA were removed by treatment with 3 M KOH (1.0 mL), followed by extraction with EtOAc (3 × 10 mL). Evaporation of the solvent delivered analytically pure amine 10a (688 mg, 4.46 mmol, 99%) as an orange oil. FTIR (ATR):
max/cm−1 3218 (NH), 3020 (C
CH), 2966, 2936, 2878, 1666 (C
O). 1H NMR (500 MHz, CDCl3): δ (ppm) 5.68–5.61 (m, 1H), 5.38–5.31 (m, 1H), 4.37 (s, 1H, N–H), 4.08 (d, J = 7.0 Hz, 2H), 3.37 (t, J = 7.8 Hz, 2H), 2.54 (t, J = 7.7 Hz, 2H), 2.15 (pd, J = 7.5, 1.3 Hz, 2H), 0.99 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 171.88 (C
O), 137.17 (
CH), 122.17 (
CH), 43.83 (CH2), 40.67 (CH2), 33.35 (CH2), 20.80 (CH2), 14.27 (CH3). HRMS (+ESI): m/z calcd for C8H15N2O+ [M + H]+: 155.1179; found: 155.1175.
max/cm−1 3216 (NH), 2957, 2930, 2872, 1663 (C
O). 1H NMR (500 MHz, CDCl3): δ (ppm) 4.31 (s, 1H, N–H), 3.41 (t, J = 7.2 Hz, 2H), 3.36 (t, J = 7.7 Hz, 2H), 2.55 (t, J = 7.6 Hz, 2H), 1.58 (p, J = 7.4 Hz, 2H), 1.38–1.23 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.27 (C
O), 44.18 (CH2), 44.12 (CH2), 33.67 (CH2), 29.07 (CH2), 27.06 (CH2), 22.46 (CH2), 14.13 (CH3). HRMS (+ESI): m/z calcd for C8H17N2O+ [M + H]+: 157.1335; found: 157.1330.
max/cm−1 3215 (NH), 2959, 2929, 2858, 1663 (C
O). 1H NMR (500 MHz, CDCl3): δ (ppm) 4.35 (s, 1H, N–H), 3.41 (t, J = 7.2 Hz, 2H), 3.36 (t, J = 7.7 Hz, 2H), 2.54 (t, J = 7.5 Hz, 2H), 1.57 (p, J = 7.1 Hz, 2H), 1.33–1.25 (m, 6H), 0.87 (t, J = 6.7 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.26 (C
O), 44.18 (CH2), 44.15 (CH2), 33.67 (CH2), 31.58 (CH2), 27.33 (CH2), 26.59 (CH2), 22.67 (CH2), 14.15 (CH3). HRMS (+ESI): m/z calcd for C9H19N2O+ [M + H]+: 171.1492; found: 171.1487.
max/cm−1 3216 (NH), 2960, 2934, 2875, 1662 (C
O). 1H NMR (500 MHz, CDCl3): δ (ppm) 4.36 (s, 1H, N–H), 3.41 (t, J = 7.2 Hz, 2H), 3.35 (t, J = 7.7 Hz, 2H), 2.53 (t, J = 7.6 Hz, 2H), 1.55 (p, J = 7.4 Hz, 2H), 1.32 (sext, J = 7.5 Hz, 2H), 0.92 (t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.27 (C
O), 44.16 (CH2), 43.82 (CH2), 33.64 (CH2), 29.40 (CH2), 20.11 (CH2), 13.84 (CH2). HRMS (+ESI): m/z calcd for C7H15N2O+ [M + H]+: 143.1179; found: 143.1175.
max/cm−1 3500–2500 (COOH), 3364 (NH), 2964, 2925, 2878, 1709 (C
O), 1622 (C
O), 1533 (NH), 1235. 1H NMR (500 MHz, CDCl3): δ (ppm) 7.06 (d, J = 8.4 Hz, 1H, N–H), 4.63 (dd, J = 8.6, 4.6 Hz, 1H), 4.12 (s, 2H, CH2Cl), 2.07–1.98 (m, 2H), 1.57–1.47 (m, 1H), 1.33–1.20 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.97 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 175.85 (C
O), 166.36 (C
O), 56.81 (CH), 42.67 (CH2), 37.74 (CH), 25.14 (CH2), 15.58 (CH3), 11.73 (CH3). HRMS (+ESI): m/z calcd for C8H15NClO3+ [M + H]+: 210.0735; found: 208.0734.
max/cm−1 3317 (NH), 2969, 2936, 2879, 1736 (C
O), 1644 (C
O), 1536 (NH). 1H NMR (500 MHz, CDCl3): δ (ppm) 6.49 (d, J = 7.6 Hz, 1H, N–H), 4.57 (dd, J = 8.6, 4.8 Hz, 1H), 3.75 (s, 3H, OCH3), 3.75 (d, J = 11.5 Hz, 1H), 3.70 (d, J = 11.5 Hz, 1H), 1.99–1.90 (m, 1H), 1.50–1.40 (m, 1H), 1.27–1.15 (m, 1H), 0.94 (t, J = 7.4 Hz, 3H), 0.93 (d, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.19 (C
O), 166.81 (C
O), 57.23 (CH), 52.43 (OCH3), 38.18 (CH), 25.22 (CH2), 15.52 (CH3), 11.73 (CH3), −0.90 (ICH2). HRMS (+ESI): m/z calcd for C9H17NIO3+ [M + H]+: 314.0248; found: 314.0243.
max/cm−1 3287 (NH), 2956, 2871, 1742 (C
O), 1648 (C
O), 1539 (NH). 1H NMR (500 MHz, CDCl3): δ (ppm) 6.37 (d, J = 7.3 Hz, 1H, N–H), 4.61 (td, J = 8.6, 4.9 Hz, 1H), 3.75 (s, 3H, OCH3), 3.74 (d, J = 11.1 Hz, 1H, H–CHI), 3.70 (d, J = 11.5 Hz, 1H, H–CHI), 1.73–1.63 (m, 2H), 1.63–1.53 (m, 1H), 0.95 (d, J = 6.1 Hz, 3H), 0.95 (d, J = 6.2 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 173.26 (C
O), 166.92 (C
O), 57.62 (CH), 51.59 (OCH3), 41.63 (CH2), 24.97 (CH), 22.94 (CH3), 22.10 (CH3), −1.13 (ICH2). HRMS (+ESI): m/z calcd for C9H17NIO3+ [M + H]+: 314.0248; found: 314.0243.
max/cm−1 3279 (NH), 2965, 2902, 2875, 1723 (C
O), 1640 (C
O), 1548 (NH). 1H NMR (500 MHz, CDCl3): δ (ppm) 6.49 (d, J = 7.4 Hz, 1H, N–H), 4.53 (dd, J = 8.8, 4.8 Hz, 1H), 3.76 (d, J = 11.4 Hz, 1H, H–CHI), 3.76 (s, 3H, OCH3), 3.71 (d, J = 11.4 Hz, 1H, H–CHI), 2.22 (septd, J = 6.9, 4.8 Hz, 1H), 0.96 (d, J = 6.9 Hz, 3H), 0.93 (d, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.23 (C
O), 167.05 (C
O), 57.82 (CH), 52.49 (OCH3), 31.65 (CH), 19.01 (CH3), 17.78 (CH3), −0.98 (ICH2). HRMS (+ESI): m/z calcd for C8H15NIO3+ [M + H]+: 300.0091; found: 300.0086.
max/cm−1 3285 (NH), 2966, 2952, 2928, 1722 (C
O), 1644 (C
O), 1542 (NH). 1H NMR (500 MHz, CDCl3): δ (ppm) 6.58 (s, 1H, N–H), 4.57 (p, J = 7.2 Hz, 1H), 3.77 (s, 3H, OCH3), 3.71 (s, 2H, CH2I), 1.43 (d, J = 7.2 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 173.20 (C
O), 166.55 (C
O), 52.80 (OCH3), 48.98 (CH), 18.27 (CH3), −1.09 (ICH2). HRMS (+ESI): m/z calcd for C6H11NIO3+ [M + H]+: 271.9778; found: 271.9776.
max/cm−1 3292 (NH), 3200–2700 (COOH), 2968, 2957, 2877, 1704 (C
O), 1623 (C
O), 1557 (NH), 1255. 1H NMR (500 MHz, CD3OD): δ (ppm) 4.33 (d, J = 5.8 Hz, 1H), 3.86 (d, J = 9.8 Hz, 1H, H–CHI), 3.75 (d, J = 9.8 Hz, 1H, H–CHI), 1.99–1.89 (m, 1H), 1.58–1.48 (m, 1H), 1.33–1.22 (m, 1H), 0.97 (d, J = 6.9 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CD3OD): δ (ppm) 174.47 (C
O), 171.38 (C
O), 58.57 (CH), 38.35 (CH), 26.03 (CH2), 16.01 (CH3), 11.76 (CH3), −2.05 (ICH2). HRMS (+ESI): m/z calcd for C8H15NIO3+ [M + H]+: 300.0091; found: 300.0089.
:
30) to give 6ba (154 mg, 0.770 mmol, 77%) as a pale yellow oil. [α]26D + 30.8 (c 1.1, HCCl3). FTIR (ATR):
max/cm−1 3286 (NH), 2965, 2937, 2879, 1741 (C
O), 1657 (C
O), 1532 (NH). 1H NMR (500 MHz, CDCl3): δ (ppm) 6.31 (dd, J = 17.0, 1.3 Hz, 1H), 6.15 (dd, J = 17.0, 10.3 Hz, 1H), 6.11 (s, 1H, N–H), 5.68 (dd, J = 10.3, 1.0 Hz, 1H), 4.70 (dd, J = 8.6, 5.0 Hz, 1H), 3.75 (s, 3H, OCH3), 1.97–1.88 (m, 1H), 1.51–1.41 (m, 1H), 1.27–1.14 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 172.65 (C
O), 165.21 (C
O), 130.55 (
CH), 127.35 (
CH2), 56.48 (CH), 52.32 (OMe), 38.31 (CH), 25.41 (CH2), 15.52 (CH3), 11.72 (CH3). HRMS (+ESI): m/z calcd for C10H18NO3+ [M + H]+: 200.1281; found: 200.1279.
max/cm−1 3310 (NH), 3021 (C
CH), 2964, 2935, 2878, 1740 (C
O), 1683 (C
O), 1669 (C
O), 1513 (NH), 1204. 1H NMR (500 MHz, CDCl3): δ (ppm) 7.22 (d, J = 8.9 Hz, 1H, N–H), 5.67–5.59 (m, 1H), 5.43–5.35 (m, 1H), 4.61 (dd, J = 9.0, 4.8 Hz, 1H), 4.20–3.97 (m, 2H), 3.74 (s, 3H, OCH3), 3.53 (d, J = 15.8 Hz, 1H), 3.46 (d, J = 15.9 Hz, 1H), 3.48–3.20 (m, 2H), 2.74–2.47 (m, 2H), 2.14 (pd, J = 7.5, 0.8 Hz, 2H), 1.99–1.89 (m, 1H), 1.48–1.38 (m, 1H), 1.21–1.10 (m, 1H), 0.98 (t, J = 7.5 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.19 (C
O), 171.23 (C
O), 168.23 (C
O), 136.44 (
CH), 122.75 (
CH), 58.66 (CH2), 56.14 (CH), 52.32 (OCH3), 51.47 (CH2), 39.61 (CH2), 37.79 (CH), 29.03 (CH2), 25.23 (CH2), 20.85 (CH2), 15.74 (CH3), 14.21 (CH3), 11.68 (CH3). HRMS (+ESI): m/z calcd for C17H30N3O4+ [M + H]+: 340.2231; found: 340.2224.
max/cm−1 3303 (NH), 3019 (C
CH), 2958, 2935, 2873, 1744 (C
O), 1689 (C
O), 1667 (C
O), 1516 (NH), 1204. 1H NMR (500 MHz, CDCl3): δ (ppm) 7.05 (d, J = 8.9 Hz, 1H, N–H), 5.67–5.58 (m, 1H), 5.43–5.35 (m, 1H), 4.67 (td, J = 8.9, 5.0 Hz, 1H), 4.20–3.95 (m, 2H), 3.74 (s, 3H, OCH3), 3.52 (d, J = 15.8 Hz, 1H), 3.46 (d, J = 15.8 Hz, 1H), 3.47–3.20 (m, 2H), 2.75–2.46 (m, 2H), 2.12 (p, J = 7.5 Hz, 2H), 1.74–1.53 (m, 3H), 0.99 (t, J = 7.5 Hz, 3H), 0.95 (d, J = 6.3 Hz, 6H). 13C NMR (125 MHz, CDCl3): δ (ppm) 173.25 (C
O), 171.29 (C
O), 168.31 (C
O), 136.46 (
CH), 122.82 (
CH), 58.72 (CH2), 52.53 (OCH3), 51.51 (CH2), 50.38 (CH), 41.46 (CH2), 39.62 (CH2), 29.06 (CH2), 25.17 (CH), 23.00 (CH3), 21.94 (CH3), 20.88 (CH2), 14.24 (CH3). HRMS (+ESI): m/z calcd for C17H30N3O4+ [M + H]+: 340.2231; found: 340.2226.
max/cm−1 3308 (NH), 3020 (C
CH), 2964, 2935, 2876, 1741 (C
O), 1683 (C
O), 1667 (C
O), 1513 (NH), 1206. 1H NMR (500 MHz, CDCl3): δ (ppm) 7.21 (d, J = 9.0 Hz, 1H, N–H), 5.67–5.60 (m, 1H), 5.43–5.36 (m, 1H), 4.57 (dd, J = 9.2, 4.7 Hz, 1H), 4.21–3.97 (m, 2H), 3.74 (s, 3H, OCH3), 3.54 (d, J = 15.8 Hz, 1H), 3.46 (d, J = 15.9 Hz, 1H), 3.47–3.20 (m, 2H), 2.74–2.47 (m, 2H), 2.22 (septd, J = 6.9, 4.9 Hz, 1H), 2.12 (pd, J = 7.5, 1.0 Hz, 2H), 0.98 (t, J = 7.5 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.21 (C
O), 171.24 (C
O), 168.37 (C
O), 136.48 (
CH), 122.75 (
CH), 58.66 (CH2), 56.72 (CH), 52.39 (OCH3), 51.49 (CH2), 39.61 (CH2), 31.14 (CH), 29.04 (CH2), 20.87 (CH2), 19.23 (CH3), 17.78 (CH3), 14.24 (CH3). HRMS (+ESI): m/z calcd for C16H28N3O4+ [M + H]+: 326.2074; found: 326.2069.
max/cm−1 3307 (NH), 3062 (C
CH), 2956, 2941, 2876, 1743 (C
O), 1683 (C
O), 1663 (C
O), 1520 (NH), 1209. 1H NMR (300 MHz, CDCl3): δ (ppm) 7.20 (d, J = 7.7 Hz, 1H, N–H), 5.58–5.48 (m, 1H), 5.34–5.22 (m, 1H), 4.59–4.46 (m, 1H), 4.08–3.87 (m, 2H), 3.66 (s, 3H, OCH3), 3.44 (d, J = 15.9 Hz, 1H), 3.37 (d, J = 16.0 Hz, 1H), 3.35–3.14 (m, 2H), 2.64–2.38 (m, 2H), 2.02 (p, J = 7.3 Hz, 2H), 1.33 (d, J = 7.2 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 172.84 (C
O), 171.17 (C
O), 167.93 (C
O), 136.12 (
CH), 122.53 (
CH), 58.62 (CH2), 52.39 (OCH3), 51.36 (CH2), 47.47 (CH), 39.36 (CH2), 28.87 (CH2), 20.57 (CH2), 18.03 (CH3), 13.92 (CH3). HRMS (+ESI): m/z calcd for C14H23N3O4+ [M + H]+: 298.1761; found: 298.1758.
:
4.8) to give the acid 3aae (42.0 mg, 0.129 mmol, 58%) as an orange oil. [α]23D + 1.0 (c 0.7, HCCl3). FTIR (ATR):
max/cm−1 3300–2700 (COOH), 3290 (NH), 3061 (C
CH), 2964, 2934, 2877, 1730 (C
O), 1653 (C
O), 1526 (NH). 1H NMR (300 MHz, CDCl3): δ (ppm) 7.26 (d, J = 8.4 Hz, 1H, N–H), 5.68–5.58 (m, 1H), 5.43–5.33 (m, 1H), 4.65–4.49 (m, 1H), 4.21–3.94 (m, 2H), 3.56 (d, J = 15.8 Hz, 1H), 3.49 (d, J = 16.0 Hz, 1H), 3.47–3.24 (m, 2H), 2.78–2.50 (m, 2H), 2.11 (p, J = 7.5 Hz, 2H), 2.05–1.91 (m, 2H), 1.56–1.43 (m, 1H), 1.32–1.13 (m, 1H), 1.01–0.88 (m, 9H). 13C NMR (125 MHz, CDCl3): δ (ppm) 174.49 (C
O), 171.72 (C
O), 168.81 (C
O), 136.57 (
CH), 122.55 (
CH), 58.44 (CH2), 56.44 (CH), 51.47 (CH2), 39.69 (CH2), 37.44 (CH), 29.13 (CH2), 25.12 (CH2), 20.86 (CH2), 15.79 (CH3), 14.20 (CH3), 11.74 (CH3). HRMS (+ESI): m/z calcd for C16H28N3O4+ [M + H]+: 326.2074; found: 326.2070.
max/cm−1 3308 (NH), 2960, 2934, 2875, 1741 (C
O), 1681 (C
O), 1665 (C
O), 1513 (NH), 1204. 1H NMR (500 MHz, CDCl3): δ (ppm) 7.27 (d, J = 8.9 Hz, 1H, N–H), 4.63 (dd, J = 9.0, 4.7 Hz, 1H), 3.75 (s, 3H, OCH3), 3.48 (d, J = 16.1 Hz, 1H), 3.43 (d, J = 16.1 Hz, 1H), 3.43–3.25 (m, 4H), 2.71–2.51 (m, 2H), 2.01–1.91 (m, 1H), 1.68–1.58 (m, 2H), 1.50–1.39 (m, 1H), 1.39–1.23 (m, 4H), 1.23–1.11 (m, 1H), 0.94 (t, J = 7.4 Hz, 3H), 0.93 (d, J = 6.9 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.23 (C
O), 171.22 (C
O), 168.28 (C
O), 58.35 (CH2), 56.15 (CH), 52.37 (OCH3), 51.56 (CH2), 41.94 (CH2), 37.83 (CH), 29.30 (CH2), 28.98 (CH2), 27.12 (CH2), 25.27 (CH2), 22.45 (CH2), 15.80 (CH3), 14.09 (CH3), 11.71 (CH3). HRMS (+ESI): m/z calcd for C17H32N3O4+ [M + H]+: 342.2387; found: 342.2381.
max/cm−1 3308 (NH), 2959, 2933, 2858, 1741 (C
O), 1681 (C
O), 1665 (C
O), 1513 (NH), 1205. 1H NMR (500 MHz, CDCl3): δ (ppm) 7.27 (d, J = 9.3 Hz, 1H, N–H), 4.63 (dd, J = 9.0, 4.7 Hz, 1H), 3.75 (s, 3H, OCH3), 3.48 (d, J = 16.1 Hz, 1H), 3.43 (d, J = 16.1 Hz, 1H), 3.44–3.23 (m, 4H), 2.71–2.52 (m, 2H), 2.01–1.92 (m, 1H), 1.66–1.57 (m, 2H), 1.49–1.39 (m, 1H), 1.36–1.24 (m, 6H), 1.22–1.11 (m, 1H), 0.94 (t, J = 7.4 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.24 (C
O), 171.22 (C
O), 168.29 (C
O), 58.36 (CH2), 56.15 (CH), 52.37 (OCH3), 51.57 (CH2), 41.99 (CH2), 37.82 (CH), 31.57 (CH2), 29.31 (CH2), 27.40 (CH2), 26.51 (CH2), 25.27 (CH2), 22.64 (CH2), 15.81 (CH3), 14.14 (CH3), 11.73 (CH3). HRMS (+ESI): m/z calcd for C18H34N3O4+ [M + H]+: 356.2544; found: 356.2534.
max/cm−1 3304 (NH), 2961, 2935, 2876, 1741 (C
O), 1683 (C
O), 1663 (C
O), 1513 (NH), 1204. 1H NMR (500 MHz, CDCl3): δ (ppm) 7.28 (d, J = 8.9 Hz, 1H, N–H), 4.63 (dd, J = 9.0, 4.7 Hz, 1H), 3.75 (s, 3H, OCH3), 3.49 (d, J = 16.1 Hz, 1H), 3.43 (d, J = 16.1 Hz, 1H), 3.45–3.23 (m, 4H), 2.71–2.49 (m, 2H), 2.01–1.91 (m, 1H), 1.65–1.57 (m, 2H), 1.50–1.40 (m, 1H), 1.35 (sext, J = 7.5 Hz, 2H), 1.22–1.12 (m, 1H), 0.94 (t, J = 6.8 Hz, 6H), 0.93 (d, J = 6.8 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.25 (C
O), 171.23 (C
O), 168.27 (C
O), 58.36 (CH2), 56.15 (CH), 52.38 (OCH3), 51.57 (CH2), 41.67 (CH2), 37.85 (CH), 29.53 (CH2), 29.30 (CH2), 25.29 (CH2), 20.08 (CH2), 15.80 (CH3), 13.87 (CH3), 11.73 (CH3). HRMS (+ESI): m/z calcd for C16H30N3O4+ [M + H]+: 328.2231; found: 328.2224.
:
1H2O/trifluoroethanol (TFE) biphasic system (1.0 mL). This mixture was heated at 100 °C for 24 h. At rt, acetone was added (5 mL) and the resulting solution was concentrated under reduced pressure to give an orange oil. The Michael adduct was purified by column chromatography (silica gel, DCM/MeOH/NH3 (aq., 25%) 97.1
:
2.6
:
0.3) providing 3aba (40.0 mg, 0.113 mmol, 58%) as a brown oil. [α]25D + 15.5 (c 1.0, HCCl3). FTIR (ATR):
max/cm−1 3293 (NH), 3021 (C
CH), 2964, 2935, 2878, 1742 (C
O), 1667 (C
O), 1652 (C
O), 1535 (NH), 1201. 1H NMR (500 MHz, CDCl3): δ (ppm) 6.77 (d, J = 8.0 Hz, 1H, H–N), 5.60–5.52 (m, 1H), 5.43–5.36 (m, 1H), 4.59 (dd, J = 8.5, 5.0 Hz, 1H), 4.26–3.95 (m, 2H), 3.73 (s, 3H, OCH3), 3.40–3.00 (m, 4H), 2.71–2.45 (m, 2H), 2.44 (t, J = 6.8 Hz, 2H), 2.13 (pd, J = 7.5, 0.8 Hz, 2H), 1.93–1.83 (m, 1H), 1.48–1.38 (m, 1H), 1.22–1.10 (m, 1H), 0.98 (t, J = 7.5 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 172.61 (C
O), 171.50 (C
O), 170.61 (C
O), 135.68 (CH), 123.32 (CH), 56.54 (CH), 52.26 (OCH3), 51.39 (CH2), 49.16 (CH2), 40.08 (CH2), 37.99 (CH), 33.84 (CH2), 29.66 (CH2), 25.45 (CH2), 20.96 (CH2), 15.61 (CH3), 14.20 (CH3), 11.73 (CH3). HRMS (+ESI): m/z calcd for C18H32N3O4+ [M + H]+: 354.2387; found: 354.2378.
max/cm−1 3297 (NH), 2955, 2933, 2869, 1743 (C
O), 1661 (C
O), 1519 (NH), 1204. 1H NMR (500 MHz, CDCl3): δ 7.09 (d, J = 8.6 Hz, 1H), 4.71–4.64 (m, 1H), 3.74 (s, 3H), 3.47 (d, J = 16.0 Hz, 1H), 3.43 (d, J = 16.1 Hz, 1H), 3.47–3.20 (m, 4H), 2.72–2.47 (m, 2H), 1.80–1.53 (m, 5H), 1.39–1.22 (m, 4H), 0.95 (d, J = 6.3 Hz, 6H), 0.90 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 173.26 (C
O), 171.27 (C
O), 168.33 (C
O), 58.41 (CH2), 52.54 (OCH3), 51.55 (CH2), 50.42 (CH), 42.00 (CH2), 41.47 (CH2), 29.29 (CH2), 28.97 (CH2), 27.16 (CH2), 25.21 (CH), 22.96 (CH3), 22.43 (CH2), 22.01 (CH3), 14.09 (CH3). HRMS (+ESI): m/z calcd for C17H32N3O4+ [M + H]+: 342.2387; found: 342.2388.
max/cm−1 3305 (NH), 2958, 2933, 2874, 1741 (C
O), 1684 (C
O), 1664 (C
O), 1515 (NH), 1208. 1H NMR (300 MHz, CDCl3): δ (ppm) 7.24 (d, J = 9.1 Hz, 1H), 4.53 (dd, J = 9.1, 4.7 Hz, 1H), 3.70 (s, 3H), 3.46 (d, J = 16.1 Hz, 1H), 3.39 (d, J = 16.2 Hz, 1H), 3.41–3.22 (m, 2H), 2.65–2.47 (m, 2H), 2.27–2.10 (m, 1H), 1.58 (p, J = 7.0 Hz, 2H), 1.35–1.18 (m, 4H), 0.92 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 6.9 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 172.10 (C
O), 171.15 (C
O), 168.33 (C
O), 58.20 (CH2), 56.61 (CH), 52.28 (OCH3), 51.43 (CH2), 41.82 (CH2), 31.03 (CH), 29.19 (CH2), 28.86 (CH2), 26.97 (CH2), 22.31 (CH2), 19.14 (CH3), 17.65 (CH3), 13.97 (CH3). HRMS (+ESI): m/z calcd for C16H30N3O4+ [M + H]+: 328.2231; found: 328.2237.Footnote |
| † Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra07887f |
| This journal is © The Royal Society of Chemistry 2024 |