Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

HfO2-based ferroelectric memories have garnered significant attention for their potential to serve as artificial synaptic devices owing to their scalability and CMOS compatibility. This review examines the key material properties and challenges associated with HfO2-based ferroelectric artificial synaptic devices as well as the recent advancements in engineering strategies to improve their synaptic performance. The fundamental physics and material properties of HfO2-based ferroelectrics are reviewed to understand the theoretical origin of the aforementioned technical issues in ferroelectric HfO2-based synaptic devices. Based on the understanding, strategies to resolve the various technical issues from the device to array level are discussed, along with reviewing important progresses in recent studies. Based on these recent technical advancements, new perspectives to achieve high performance and highly reliable HfO2-based ferroelectric synaptic devices and their array are provided.

Graphical abstract: HfO2-based ferroelectric synaptic devices: challenges and engineering solutions

Page: ^ Top