Issue 24, 2023

57Fe Mössbauer spectroscopy and high-pressure structural analysis for the mechanism of pressure-induced unique magnetic behaviour in (cation)[FeIIFeIII(dto)3] (cation = Ph4P and nPrPh3P; dto = 1,2-dithiooxalato)

Abstract

A mixed-valence iron(II,III) coordination polymer, (Ph4P)[FeIIFeIII(dto)3] (2; Ph4P = tetraphenylphosphonium, dto = 1,2-dithiooxalato), exhibits a thermal hysteresis loop and a low temperature shift of the ferromagnetic phase transition temperature, with increasing pressure. The latter magnetic behaviour can also be observed in a novel compound (nPrPh3P)[FeIIFeIII(dto)3] (3; nPrPh3P = n-propyltriphenylphosphonium). To understand the structural information under pressure, we performed high-pressure powder X-ray diffraction, and the result suggests that there was no structural phase transition for either compound. Considering the 57Fe Mössbauer spectroscopy studies, both 2 and 3 may have a high transition entropy, and this finding is caused by pressure-induced unique magnetic behaviours.

Graphical abstract: 57Fe Mössbauer spectroscopy and high-pressure structural analysis for the mechanism of pressure-induced unique magnetic behaviour in (cation)[FeIIFeIII(dto)3] (cation = Ph4P and nPrPh3P; dto = 1,2-dithiooxalato)

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2023
Accepted
15 May 2023
First published
19 May 2023
This article is Open Access
Creative Commons BY license

Dalton Trans., 2023,52, 8368-8375

57Fe Mössbauer spectroscopy and high-pressure structural analysis for the mechanism of pressure-induced unique magnetic behaviour in (cation)[FeIIFeIII(dto)3] (cation = Ph4P and nPrPh3P; dto = 1,2-dithiooxalato)

R. Taniai, T. Endo, T. Kanetomo, A. Okazawa, H. Kadobayashi, S. I. Kawaguchi and M. Enomoto, Dalton Trans., 2023, 52, 8368 DOI: 10.1039/D3DT00858D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements